Software Engineering in Practice Course introduction

Diomidis Spinellis
Department of Management Science and Technology
Athens University of Economics and Business

dds@aueb.gr http://www.dmst.aueb.gr/dds @CoolSWEng

2025-02-19

What is software engineering?

Software engineering

"The application of a systematic, disciplined, quantifiable approach to the development, operation, and maintenance of software; that is, the application of engineering to software."

— ISO/IEC/IEEE Systems and Software Engineering Vocabulary (SEVOCAB)

Course objectives

- · Cover of the software engineering body of knowledge
- · Experience key professional tools and practices
- · Software configuration management
- · Building automation
- · Issue tracking
- Tool implementation
- · Contribution to a real software system
- · Practice in
- · software maintenance tasks
- group assignment
- · collaboration at global level
- · use of popular tools

Course structure

- · Software requirements
- · Software design
- · Software implementation
- · Software testing
- Software maintenance
- · Software configuration management

- · Software engineering management
- · Software engineering process
- Software engineering models and methods
- Software quality
- · Software engineering professional practice
- · Software engineering economics

Course organisation and teaching method

- · Independent study
- Participation
- Questions
- Assignment
- · Assignment teams
- · Lab and tools
 - Wednesday, 13:00-15:00

The notes

- · The course's presentations
- · Will not be distributed
- Accessible at http://www.dmst.aueb.gr/dds/sweng-en
- (Greek version at http://www.dmst.aueb.gr/dds/sweng-el)
- · Summary of the course's topics
- · Updated continuously
- · Printable as one page

Lecture schedule

- Stand-up meeting for each team with respect to the assignment (3')
- Stand-up presentation from each team's representatives (5'-10')
 - All teams or a random subset of them?
- · Discussion on topics you studied prior to the lecture
- · Short presentation of next lecture's topics and assignment.

Grading

- · During the semester
- · No exams
- Grade allocation
- Group assignments (30%)
- Use of tools at the lab (20%)
- Class participation (20%)
- Implementation assignment (40%)

(Total 110%)

Implementation assignment

- · Contribution to an open source software (OSS) project
- Grade distribution (110%)
- Comprehension and documentation of OSS project (10%)
- Contribution breadth (15%)
- Quality of implementation (15%)
- Integration (10%)
- Testing (10%)
- · Collaboration with the OSS project's development team
- Presentations (10%)
- Quality of deliverables (10%)
- GitHub use (wiki, issues, commits, branching) (10%)
- · Code reviews (received and submitted) (10%)

Choosing an open source project

- · In a language you know or willing to learn
- · Runs and builds on a platform you use / can put together
- At least modestly popular (>5-10 stars)
- Developed by a team (>2 contributors)
- · Evidence of accepted PRs
- Documented
- Active
- Processes (CI, reviews, issues)
- · Avoid algorithm implementations, collections, Greek

Excluded and open projects

- Excluded
 - Jarvis
 - Zulip
 - Sherlock-project
- · Looking for contributors
 - sunshineGR
 - python-docs-gr (If you find a code contribution.)
 - Awesome First PR Opportunities

Class participation

- Register the code in the piece of paper through the form at pixelbonus.com
- · You can view participation results on this page

Course preparation

- Download the SWEBOK from the course's Moodle materials
- The taught chapters of SWEBOK are also available in Greek
- · Create a GitHub account
- Form assignment teams of 5-8 students
- Form implementation teams of 1-2 students
- · Register in Moodle for this course
- · Declare your participation to the course through this form
- · Don't forget to declare additional duties that interest you

Advice for the weekly presentations

- Study the theory; many terms have non-obvious meanings.
- · Read beyond SWEBOK, which is a dry, often unengaging, concise guide.
- · Do not verbatim read notes or slides when presenting.
- Do not present material that can be easily produced by generative AI.
 Instead, produce original research through analysis, synthesis, critique, interpretation, comparison, classification, evaluation, triangulation, visualization, experimentation.

Indicative time schedule

- Milestone 1: Participation and teams (23/2)
- Milestone 2: Selection of OSS project (16/3)
- Milestone 3: Presentation of OSS project (17/3)
- Milestone 4 (50%): Presentation of contribution design (7/4)
- Milestone 5 (final): Presentation of implementation

Next lecture preparation

- Study SWEBOK v 3.0 chapter 1
- Obtain a GitHub account
- · Read the guidelines How to Contribute to Open Source
- Visit the repository How to choose (and contribute to) your first open source project
- · Assignment:
- Identify requirements in an important/popular OSS project.
- · Specific objectives:
 - Identify stakeholders
 - Identify functional and non-functional requirements
 - Study the impact of change to the requirements
- Video: http://www.youtube.com/watch?v=VDjoiRkt06M
- Prepare your participation badge using the provided MS Word DOCX, Open/Libre Office ODT, or Inkscape PDF template.

Presentation on OSS

- Working with open-source software
 - Selecting, using, adapting, and contributing back

Distribution License

Unless otherwise expressly stated, all original material on this page created by Diomidis Spinellis, Marios Fragkoulis, and Antonis Gkortzis is licensed under the Creative Commons Attribution-Share Alike Greece.

