MSR/SBSE Tools and
Infrastructures

By Diomidis Spinellis (rapporteur),
Tse-Hsun (Peter) Chen, Yasutaka Kamei,
Masanari Kondo, Neil Walkinshaw,
Xin Xia, and Shin Yoo

NIl Shonan Meeting: Data-Driven Search-Based Software Engineering December 14th, 2017

Outline

Tools
nfrastructures and Data
Practices

~our key readings
More readings
Future

Generic Tools

e Git (CLI)
* Shell scripts
— Flexible
— Collect and structure ready for analysis

— Easy to interface from Git and to R/Python
— Easy to construct pipeline incrementally

Text Processing Tools

e Mallet
 TwitterLDA

Interaction Data Collection

* ActivitySpace
* Mylyn
* Hackystat

Evolutionary Computation Tools

Evolutionary Computation Framework —
http://ecf.zemris.fer.hr/

jMetal (Java, MOEAs) https://ijmetal.github.io/iMetal/

DEAP — Distributed Evolutionary Algorithms in Python
— https://github.com/DEAP/deap

ECJ — Evolutionary Computation in Java —
https://cs.emu.edu/~eclab/projects/ecj/

Apache Commons Math —
http://commons.apache.org/proper/commons-math/

MOEA (Multi-objective evolutionary algorithms)
Framework — https://moeaframework.org

http://ecf.zemris.fer.hr/
https://jmetal.github.io/jMetal/
https://github.com/DEAP/deap
https://cs.gmu.edu/~eclab/projects/ecj/
http://commons.apache.org/proper/commons-math/
http://commons.apache.org/proper/commons-math/
http://commons.apache.org/proper/commons-math/
https://moeaframework.org/

Search-Bas

ed Software Testing Tools

EvoSuite — unit testing for Java
http://www.evosuite.org

CAVM — structural testing generation for C using
AVM https://bitbucket.org/teamcoinse/cavm/src

FLUCCS — Fau
Defects4), GP-
nttps://bitbuc

t Localisation, works with
nased localisation

ket.org/teamcoinse/fluccs

GunPowder — Code instrumentation for C
PyGGl — genetic improvement at line level

http://www.evosuite.org/
https://bitbucket.org/teamcoinse/cavm/src
https://bitbucket.org/teamcoinse/fluccs

Code Analysis Tools and Frameworks

ASM (Java bytecode)

BCEL

SOOT (Unmaintained)

JavaParser (Less powerful than SOOT)

SrcML — Provides XML representation of code
ckjim — Chidamber and Kemerer Java Metrics

gmcalc — calculate quality metrics from C
source code

Repository Analysis Tools

Commit-Guru — http://commit.guru/

reaper — Project selection
nttps://github.com/RepoReapers/reaper

RepoDriller — Java Framework
nttps://github.com/mauricioaniche/repodriller

Boa — a DSL for querying software repositories
http://boa.cs.iastate.edu/

GrimoireLab — Data gathering, enrichment, and
visualization from diverse data sources
http://grimoirelab.github.io/

http://commit.guru/
https://github.com/RepoReapers/reaper
https://github.com/mauricioaniche/repodriller
http://boa.cs.iastate.edu/
http://grimoirelab.github.io/

Data Collections

PROMISE — tera-PROMISE — SeaCraft (on
Zenodo)

MSR Challenge data sets
MSR data showcase papers

awesome-msr —
https://github.com/dspinellis/awesome-msr

— Links to all data sets that follow

https://github.com/dspinellis/awesome-msr
https://github.com/dspinellis/awesome-msr
https://github.com/dspinellis/awesome-msr

Product Data

AndroZoo — a growing collection of Android Applications

Boa — a domain-specific language and infrastructure that
eases mining software repositories

GHTorrent — an effort to create a scalable, queriable,
offline mirror of data offered through the Github REST API

GitHub on Google BigQuery — GitHub data accessible
through Google's BigQuery platform

RepoReapers Data Set — A data set containing a collection
of engineered software projects from GHTorrent.

Maven metrics — a collection of software complexity &
sizing metrics for the Maven Repository

Unix history — a Git repository with 46 years of Unix
history evolution

Fault and Failure Data

Bug Prediction Dataset — a collection of models and metrics from
Eclipse JDT Core, PDE Ul, Equinox Framework, Lucene, Mylyn, and
their histories

CoREBench — a collection of 70 realistically Complex Regression
Errors that were systematically extracted from the repositories and
bug reports of four open-source software projects: Make, Grep,
Findutils, and Coreutils

Defects4) — a collection of 395 reproducible bugs collected with
the goal of advancing software testing research

Findbugs-maven — a set of FindBugs reports for the Java projects
of the Maven repository

SIR — Software-artifact Infrastructure Repository — Java, C, C++,
and C# software together with test suites and fault data

Process Data

Code Reviews — Code reviews of OpenStack,
LibreOffice, AOSP, Qt, Eclipse

KaVE — developer tool interaction data

mzdata — Multi-extract and Multi-level Dataset
of Mozilla Issue Tracking History

Stack Exchange — an anonymized dump of all
user-contributed content on the Stack Exchange
network.

TravisTorrent — TravisTorrent provides free and
easy-to-use Traivs Cl build analyses.

Other Data

* Enron Spreadsheets and Emails — all the
spreadsheets and emails used in the paper
'Enron's Spreadsheets and Related Emails: A

Dataset and Analysis'

« STAMINA — (STAte Machine INference
Approaches) data are used to benchmark
techniques for learning deterministic finite
state machines (FSMs)

Practices

Ensure reproducibility

Separate the data from its processing

Adopt easily shareable data formats

Use Git porcelain format, terminate records with blank (-z)
Provide SBSE algorithm parameters

Statistical rigor
— Use appropriate sample size
— Include descriptive statistics
— Provide random number seeds

Adopt scientific computing best practices
Use a systematic process for data set selection

OPEN @ ACCESS Freely available online @PLOS | sioLocy
Community Page

Best Practices for Scientific Computing
Greg Wilson'*, D. A. Aruliah?, C. Titus Brown?, Neil P. Chue Hong*, Matt Davis®, Richard T. Guy®",

Steven H. D. Haddock’, Kathryn D. Huff®, lan M. Mitchell®, Mark D. Plumbley'®, Ben Waugh'’,
Ethan P. White'?, Paul Wilson'?

GPLOS | satpire

PERSPECTIVE
Good enough practices in scientific computing

Greg Wilson'® #, Jennifer Bryan®*, Karen Cranston®, Justin Kitzes"*, Lex Nederbragt™,
Tracy K. Teal®™

1. Write programs for people, not computers.

(a) A program should not require its readers to hold more
than a handful of facts in memory at once.

(b) Make names consistent, distinctive, and meaningful.
(¢) Make code style and formatting consistent.

2. Let the computer do the work.

(a) Make the computer repeat tasks.

—

b) Save recent commands in a file for re-usc.

() Use a build tool to automate workflows.
3. Make incremental changes.

(@) Work in small steps with frequent feedback and course
correction.

(b) Use a version control system.

() Put everything that has been created manually in version
control.

4. Don’t repeat yoursell (or others).

(a) Every picce of data must have a single authoritative
representation in the system.

(b) Modularize code rather than copying and pasting.

() Re-use code instead of rewriting it.

5. Plan for mistakes.

P
&

Add assertions to programs to check their operation.

e

Use an off-the-shelf unit testing library.

<
&

T'urn bugs into test cases.

=

Use a symbolic debugger.

6. Optimize software only after it works correctly.

(a) Use a profiler to identify bottlencecks.
(b) Write code in the highest-level language possible.

7. Document design and purpose, not mechanics.

(a) Document interfaces and reasons, not implementations.

(b) Refactor code in preference to explaining how it works.

(¢) Embed the documentation for a picce of software in that
software.

8. Collaborate.

(a) Use pre-merge code reviews.
(b) Use pair programming when bringing someone new up to
speed and when tackling particularly tricky problems.

(¢) Use an issue tracking tool.

On Reproducibility

Provide script to extract data

Fork the repository from which data was extracted
Provide data set

Archive data set (e.g. on Zenodo) and cite its DOI

Provide a way to run the processing

— Provide an interactive notebook

— Shell script with dependency installation
— Docker file

— VM Image file

Provide statistical analysis scripts

For double-blind reviewing
— Anonymised read-only data sharing: Zenodo, OSF.io

Five Key Readings

Bird, Christian, Tim Menzies, and Thomas Zimmermann, eds. The
Art and Science of Analyzing Software Data. Elsevier, 2015.

Kuhn, Max, and Kjell Johnson. Applied predictive modeling. Vol.
810. New York: Springer, 2013.

P. McMinn. Search-based software test data generation: A survey.
Software Testing, Verification and Reliability, 14(2):105-156, June
2004.

J. Petke, S. Haraldsson, M. Harman, w. langdon, D. White, and J.
Woodward. Genetic improvement of software: a comprehensive
survey. |IEEE Transactions on Evolutionary Computation, PP(99):1-1,
2017.

Wilson, Greg, Dhavide A. Aruliah, C. Titus Brown, Neil P. Chue Hong,
Matt Davis, Richard T. Guy, Steven HD Haddock et al. "Best practices
for scientific computing." PLoS biology 12, no. 1 (2014): e1001745.

http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1001745&utm_content=buffer184f2&utm_medium=social&utm_source=twitter.com&utm_campaign=buffer
http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1001745&utm_content=buffer184f2&utm_medium=social&utm_source=twitter.com&utm_campaign=buffer

More Articles

G. Fraser and A. Arcuri. Whole test suite generation. IEEE Trans. Softw. Eng., 39(2):276-291, Feb.
2013.

Just, René, Darioush Jalali, and Michael D. Ernst. "Defects4): A database of existing faults to enable
controlled testing studies for Java programs." In Proceedings of the 2014 International Symposium
on Software Testing and Analysis, pp. 437-440. ACM, 2014.

Rosen, Christoffer, Ben Grawi, and Emad Shihab. "Commit Guru: analytics and risk prediction of
software commits." In Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering, pp. 966-969. ACM, 2015.

Bao, Lingfeng, Deheng Ye, Zhenchang Xing, Xin Xia, and Xinyu Wang. "Activityspace: a remembrance
framework to support interapplication information needs." In Automated Software Engineering
(ASE), 2015 30th IEEE/ACM International Conference on, pp. 864-869. IEEE, 2015.

Gousios, Georgios, and Diomidis Spinellis. "GHTorrent: GitHub's data from a firehose." In
Proceedings of the 9th IEEE Working Conference on Mining Software Repositories, pp. 12-21. IEEE
Press, 2012.

Krishna, Rahul, Tim Menzies, and Wei Fu. "Too much automation? The bellwether effect and its
implications for transfer learning." In Proceedings of the 31st IEEE/ACM International Conference
on Automated Software Engineering, pp. 122-131. ACM, 2016.

What we would do in a month

* Cookbook guide to various techniques

* Cross reference between tools/data sets and
published papers

What we should do as a community

e Shared data infrastructure
— On a cloud provider

* Product and process data from proprietary
projects

* Greater emphasis to replicate experiments of
significantly larger scale data sets

— This might be difficult to publish

— Specialist tracks for things that are difficult to publish
e Reproducibility
* Negative results
* (Asis done RENE-track in SANER 2018)

Product and process data from
proprietary projects
e Difficult

— Legal, regulatory, reputation, problems.
— Can leak proprietary data

* Old projects might be candidates

— Existing examples
* Microsoft Word 2.0
* Unix Research Editions
* Microsoft DOS
* Apple MacPaint
* AppleiOS kernel

* Provide and obtain aggregate process data

[

B

(
Kk

L VAN

.‘ . p "
N\ \ "1\4 "¢
% 0

\
.

l\‘
N

N

d

¥

&
/& [\

Yoy ~
’ \
LY
-
. %
D
-
o {
e\

7

~

JLG LIFTLUX 153-12

PRk 2

-

CN D 4 T A

Acknowledgements

 The meeting’s financial supports from Japan's
National Institute of Informatics (NII) is
gratefully acknowledged.

 The research described has been partially
carried out as part of the CROSSMINER
Project, which has received funding from the
European Union's Horizon 2020 Research and
Innovation Programme under grant
agreement No. 732223.

