
A Survey on Software Smells

Tushar Sharma and Diomidis Spinellis

Department of Management Science and Technology
Athens University of Economics and Business

{tushar,dds}@aueb.gr

Abstract

Context: Smells in software systems impair software quality and make them
hard to maintain and evolve. The software engineering community has ex-
plored various dimensions concerning smells and produced extensive research
related to smells. The plethora of information poses challenges to the com-
munity to comprehend the state-of-the-art tools and techniques.
Objective: We aim to present the current knowledge related to software
smells and identify challenges as well as opportunities in the current prac-
tices.
Method: We explore the definitions of smells, their causes as well as ef-
fects, and their detection mechanisms presented in the current literature.
We studied 445 primary studies in detail, synthesized the information, and
documented our observations.
Results: The study reveals five possible defining characteristics of smells —
indicator, poor solution, violates best-practices, impacts quality, and recur-
rence. We curate ten common factors that cause smells to occur including
lack of skill or awareness and priority to features over quality. We classify
existing smell detection methods into five groups — metrics, rules/heuristics,
history, machine learning, and optimization-based detection. Challenges in
the smells detection include the tools’ proneness to false-positives and poor
coverage of smells detectable by existing tools.

Keywords: Code smells, Software smells, Antipatterns, Software quality,
Maintainability, Smell detection tools, Technical debt

Preprint submitted to Journal of Systems and Software November 6, 2018



1. Introduction

Kent Beck coined the term “code smell” in the context of identifying
quality issues in code that can be refactored to improve the maintainability
of a software [38]. He emphasized that the presence of excessive number of
smells in a software system makes the software hard to maintain and evolve.

Since then, the smell metaphor has been extended to various related
subdomains of software systems including testing [26], database [52], and
configuration [109]. Further, since the inception of the metaphor, the soft-
ware engineering community has explored various associated dimensions that
include proposing a catalog of smells, detecting smells using a variety of tech-
niques, exploring the relationships among smells, and identifying the causes
and effects of smells.

The large number of available resources poses a challenge, equally to both
researchers and practitioners, to comprehend the status quo of tools, meth-
ods, and techniques concerning software smells. Analyzing and synthesizing
available information could not only help the software engineering commu-
nity understand the existing knowledge, but also reveal the challenges that
exist in the present set of methods and opportunities to address them.

There have been a few attempts to understand current practices and pro-
vide an overview of the existing knowledge about software smells. Singh et
al. [116] present a systematic literature review on code smells and refac-
toring in object-oriented software systems by studying 238 primary studies.
The survey focuses on the smell detection methods and tools as well as the
techniques and tools used to refactor them. The authors divide smell detec-
tion methods based on the degree of automation employed in smell detection
methods.

Similarly, Zhang et al. [140] review studies from year 2000 to 2009 and

Journal of Systems and Software, 138:158–173, April 2018. DOI:
10.1016/j.jss.2017.12.034

This is a pre-print draft of an accepted manuscript. The publication should always be
cited in preference to this draft using the reference in the previous footnote. This material
is presented to ensure timely dissemination of scholarly and technical work. Copyright
and all rights therein are retained by authors or by other copyright holders. All persons
copying this information are expected to adhere to the terms and constraints invoked by
each author’s copyright. In most cases, these works may not be reposted without the
explicit permission of the copyright holder. c©2018. This manuscript version is made
available under the CC-BY-NC-ND 4.0 license.

2

https://doi.org/10.1016/j.jss.2017.12.034
http://creativecommons.org/licenses/by-nc-nd/4.0/


draw a few observations about current research on smells. They reveal a
large gap in existing smells’ literature — current studies have chosen a small
number of smells for their study and some of the smells (such as message
chains) are poorly explored by the community. Further, the study emphasizes
that the impact of code smells is not well understood.

Various tools have been proposed to detect smells. Fernandes et al. [32]
provides a comprehensive study containing a comparison of 84 smell detection
tools. Similarly, Rasool et al. [103] also review existing code smell detection
tools and reveal the challenges associated with them. A few studies [4, 78]
provide an extensive coverage to refactoring techniques available to refactor
the smells.

In this study, we explore the resources related to smells extensively that
were published between the years 1999 – 2016 and present the current knowl-
edge in a synthesized and consolidated form. Additionally, our goal is to iden-
tify challenges in the present knowledge and find opportunities to overcome
them.

1.1. Contributions of this study

This survey makes the following contributions to the field.

• The study provides a holistic status quo of various dimensions associ-
ated with software smells. These dimensions include definition, clas-
sification, types, detection methods, as well as causes and impacts of
smells.

• It presents the state-of-the-art in the current research, reveal deficien-
cies in present tools and techniques, and identifies research opportuni-
ties to advance the domain.

The rest of the paper is organized as follows: we define the methodology
followed in the study in Section 2. We discuss the results in Section 3 and
we present our conclusions in Section 4.

2. Methodology

In this section, we first present the objectives of this study and derived
research questions. We illustrate the search protocol that we used to identify
relevant studies. The search protocol includes not only the steps to collect
the initial set of studies, but also inclusion and exclusion criteria that we
apply on the initial set of studies to obtain a filtered set of primary studies.

3



2.1. Research objectives and questions

The goal of this study is to provide a consolidated yet extensive overview
of software smells covering their definition, types, causes, detection methods,
and impact on various aspects of software development. In this study, we
address the following research questions:

RQ1 What is the definition of a software smell?
We aim to understand how the term “smell” is defined by various re-
searchers. We infer basic defining characteristics and types of smells.

RQ2 How do smells get introduced in software systems?
We explore the reasons that cause smells in software systems.

RQ3 How do smells affect the software development processes, artifacts, or
people?
We present the impact of smells on software systems. Specifically, we
study impacts of smells on processes, artifacts, and people.

RQ4 How do smells get detected?
We discuss the techniques employed by researchers to identify smells.

RQ5 What are the open research questions?
We present the perceived deficiencies and the open research questions
with respect to smells, their detection, and their interpretations.

2.2. Literature search protocol

The literature search protocol aims to identify primary studies which form
the basis of the survey. Our search protocol has three phases:

1. We identify a list of relevant conferences and journals and manually
search their proceedings.

2. We search seven well-known digital libraries.

3. We perform filtering and consolidation of the studies identified in the
previous phases and prepare a single library of relevant studies.

2.2.1. Literature search – Phase 1

We identify a comprehensive list of conferences and journals based on
papers published in these venues related to smells. We manually search the
proceedings of the selected venues between the year 1999 and 2016. The start
year has been selected as 1999 since the smell metaphor was introduced in

4



1999. During the manual search, the following set of terms were searched in
the title of studies: smell, antipattern, quality, maintainability, maintenance,
and metric. All the studies containing at least one of the search terms in their
title were selected and recorded. Table 1 presents the selected conferences
and journals along with their corresponding number of studies selected in
Phase 1.

The domain of refactoring is closely related to that of software smells.
Given the vast knowledge present in the field of refactoring, it requires a
separate study specifically for software refactoring. Therefore, we consider
work concerning refactoring outside the scope of this study.

Table 1: Studies selected in the Phase 1
Venue Type #Studies
Automated Software Engineering Conference 24
Empirical Software Engineering Journal 61
Empirical Software Engineering and Measurement Conference 68
European Conference on Object-Oriented Pro-
gramming

Conference 2

Foundations of Software Engineering Conference 19
IEEE Software Journal 78
International Conference of Software Maintenance
and Evolution

Conference 220

International Conference on Program Comprehen-
sion

Conference 38

International Conference on Software Engineering Conference 85
Journal of Systems and Software Journal 146
Mining Software Repositories Conference 28
Software Analysis, Evolution, and Reengineering
/ European Conference on Software Maintenance
and Reengineering

Conference 135

Source Code Analysis and Manipulation Conference 22
Systems, Programming, Languages and Applica-
tions: Software for Humanity

Conference 8

Transactions on Software Engineering Journal 83
Transactions on Software Engineering and
Methodology

Journal 11

Total selected studies in Phase 1 1028

5



2.2.2. Literature search – Phase 2

In the second phase, we carried out search on seven well-known digital
libraries. The terms used for the search are: software smell, antipattern,
software quality, maintainability, maintenance, and software metric. We ap-
pended the term “software” to the search terms in order to obtain more
relevant results. Additionally, we apply filters such as “computer science”
and “software engineering” wherever it was possible and relevant to refine the
search results. Table 2 shows the searched digital libraries and corresponding
number of selected studies.

Table 2: Studies selected in the Phase 2
Digital Library Number of studies
Google Scholar 196
SpringerLink 44
ACM Digital Library 108
ScienceDirect 40
Scopus 150
IEEE Xplore 151
Web of Science 58
Total selected studies in Phase 2 747

2.2.3. Literature search – Phase 3

In the third phase, we defined inclusion and exclusion criteria to filter
out irrelevant studies and to prepare a consolidated library. The inclu-
sion/exclusion criteria are listed below.

Inclusion criteria

• Studies that discuss smells in software development, present a catalog
of one of the different types of software smells (such as code smells, test
smells, and configuration smells), produce factors that cause smells, or
explore their impact on any facet of software development (for instance,
artifacts, people, or process).

• Studies introducing smell detection mechanisms or providing a com-
parison using any suitable technique.

• Resources revealing the deficiencies in the present set of methods, tools,
and practices.

6



Exclusion criteria

• Studies focusing on external (in-use) software quality or not directly
related with software smells.

• Studies that propose the refactoring of smells, or identifies refactoring
opportunities.

• Articles containing keynote, extended abstract, editorial, tutorial, poster,
or panel discussion (due to insufficient details and small size).

• Studies whose full text is not available.

Each selected article from phase 1 or 2 went through a manual inspection
of title, keywords, and abstract. The inspection applied the inclusion and
exclusion criteria leading to inclusion or exclusion of the articles. We obtained
445 articles after completing the inspection and removing the duplicates.
These articles are the primary studies that we studied in detail. We took
notes while studying the selected articles. We then mark all the relevant
articles for each research question and included them in the corresponding
discussion.

We did not limit ourselves to only to the primary studies. We included
secondary sources of information and articles as and when we spotted them
while studying primary studies. Therefore, although our primary studies
belong to the period 1999 – 2016, due to the inclusion of the secondary
studies, we refer studies in this paper that were published before or after
the selected period. An interested reader may find the list of all the selected
papers in each phase online [112].

After we completed the detailed study, we categorized the resources based
on the dimensions of smells they belong to. Figure 1 provides an overview
of the studied dimensions of software smells; a number in brackets shows the
number of associated references. A document containing extended version of
the figure has been made available online [108]; the document additionally
shows all the references in the figure.

3. Results and Discussion

In this section, we present our synthesized observations corresponding to
each research question addressed in this study.

7



Figure 1: Overview of the study; a number in brackets shows the number of associated
references

3.1. RQ1: What is the definition of a software smell?

We break down the question into the following sub-questions where each
sub-question deals with precisely one specific aspect of software smells’ defi-
nition.

RQ1.1 What are the defining characteristics of a software smell?

RQ1.2 What are the types of smells?

RQ1.3 How are the smells classified?

RQ1.4 Are smells and antipatterns considered synonyms?

3.1.1. RQ1.1: What are the defining characteristics of a software smell?

Kent Beck coined the term “code smell” [38] and defined it informally as
“certain structures in the code that suggest (sometimes they scream for) the
possibility of refactoring”. Later, various researchers gave diverse definitions
of software smells. A complete list of definitions of smells provided by various
authors can be found online [111]. Based on these, we synthesize the following
five possible defining characteristics of a software smell.

8



• Indicator: Authors define smells as an indicator to or a symptom of
a deeper design problem [79, 136, 123, 24].

• Poor solution: The literature describes smells as a suboptimal or
poor solution [58, 54, 37, 9, 129, 20].

• Violates best practices: According to authors such as Suryanarayana
et al. [123] and Sharma et al. [109], smells violate recommended best
practices of the domain.

• Impacts quality: Smells make it difficult for a software system to
evolve and maintain [136, 58]. It is commonly agreed that smells impact
the quality of the system [51, 80, 9, 42, 109, 123].

• Recurrence: Many authors define smells as recurring problems [70,
101, 58].

3.1.2. RQ1.2: What are the types of smells?

Authors have explored smells in different domains and in different focus
areas. Within software system domain, authors have focused on specific as-
pects such as configuration systems, tests, and models. These explorations
have resulted in various smell catalogs. Table 3 presents a summary of cat-
alogs and corresponding references.

We have compiled an extensive catalog belonging to each focus area. Here,
considering the space constraints, we provide a brief catalog of code smells
in Table 4. We have selected the smells to include in this table based on
the popularity of the smells i.e., based on the number of times the smell has
been studied in the literature. The comprehensive and evolving taxonomy of
software smells can be accessed online.1

1http://www.tusharma.in/smells

9

http://www.tusharma.in/smells


Table 3: Types of smells

Focus References
Implementation [38], [9], [16], [29] [1], [46]
Design [123] [15]
Architecture [42], [16] [62]
Tests [45], [49] [26]
Performance [118], [114], [135]
Configuration systems [109]
Database [52]
Aspect-oriented systems [6], [14]
Energy [131]
Models [28], [25]
Services [92], [61], [94]
Usability [5]
Reuse [67]
Web [86]

Table 4: Common code smells

Code Smell /
References

Description

God class [104] The god class smell occurs when a huge class which is
surrounded by many data classes acts as a controller
(i.e., takes most of the decisions and monopolises the
functionality offered by the software). The class de-
fines many data members and methods and exhibits
low cohesion.
Related smells: Insufficient modularization [123],
Blob [16], Brain class [133].

Feature envy[38] This smell occurs when a method seems more inter-
ested in a class other than the one it actually is in.

Shotgun surgery
[38]

This smell characterizes the situation when one kind
of change leads to a lot of changes to multiple different
classes. When the changes are all over the place, they
are hard to find, and it’s easy to miss an important
change.

10



Table 4: Common code smells

Code Smell /
References

Description

Data class [38] This smell occurs when a class contains only fields and
possibly getters/setters without any behavior (meth-
ods).
Related smells: Broken modularization [123].

Long method[38] This smell occurs when a method is too long to un-
derstand.
Related smells: God method [104], Brain method
[133].

Functional
decomposition[16]

This smell occurs when the experienced developers
coming from procedural languages background write
highly procedural and non-object-oriented code in an
object-oriented language.

Refused bequest
[38]

This smell occurs when a subclass rejects some of the
methods or properties offered by its superclass.
Related smells: Rebellious hierarchy [123]

Spaghetti code [16] This smell refers to an unmaintainable, incomprehen-
sible code without any structure. The smell does
not exploit and prevents the use of object-orientation
mechanisms and concepts.

Divergent change
[38]

Divergent change occurs when one class is commonly
changed in different ways for different reasons.
Related smells: Multifaceted abstraction [123].

Long parameter
list[38]

This smell occurs when a method accepts a long list
of parameters. Such lists are hard to understand and
difficult to use.

Duplicate code [38] This smell occurs when same code structure is dupli-
cated to multiple places within a software system.
Related smells: Duplicate abstraction [123], Un-
factored hierarchy [123], Cut and paste programming
[16].

Cyclically-
dependent modu-
larization [123]

This smell arises when two or more abstractions de-
pend on each other directly or indirectly.

Related smells: Dependency cycles [76]

11



Table 4: Common code smells

Code Smell /
References

Description

Deficient encapsu-
lation [123]

This smell occurs when the declared accessibility of
one or more members of an abstraction is more per-
missive than actually required.
Related smells: Excessive global variables [30].

Lava flow [16] This smell is characterized by a piece of code that no-
body remembers the purpose and usage, and is largely
not utilized.
Related smells: Unutilized abstraction [123].

Speculative gener-
ality [38]

This smell occurs where an abstraction is created
based on speculated requirements. It is often unnec-
essary that makes things difficult to understand and
maintain.
Related smells: Speculative hierarchy [123]

Lazy class [38] This smell occurs where a class is not doing enough
i.e., it does not realize a concrete responsibility.
Related smells: Unnecessary abstraction [123].

Switch statement
[38]

This smell occurs when switch statements that switch
on type codes are spread across the software system
instead of exploiting polymorphism.
Related smells: Unexploited encapsulation [123],
Missing hierarchy [123].

Primitive obses-
sion [38]

This smell occurs when primitive data types are used
where an abstraction encapsulating the primitives
could serve better.
Related smells: Missing abstraction [123].

Swiss army knife
[16]

This smell arises when the designer attempts to pro-
vide all possible uses of the class and ends up in an
excessively complex class interface.
Related smells: Multifaceted abstraction [123].

3.1.3. RQ1.3: How are the smells classified?

An appropriate classification is required to better comprehend a long list
of smells based on their characteristics. We collected, categorized, inferred,
and synthesized the following set of meta-classification of software smells.

12



• Effect-based smell classification: Mäntylä et al. [72] classified
smells based on their effects on software development activities. The
categories provided by the classification include bloaters, couplers, and
change preventers.

• Principle-based smell classification: Samarthyam et al. [41] and
Suryanarayana et al. [123] classified design smells based on the primary
object-oriented design principle that the smells violate. The principle-
based classification divided the smells in four categories namely: ab-
straction, modularization, encapsulation, and hierarchy smells.

• Artifact characteristics-based smell classification: Wake [134]
proposed a smell classification based on characteristics of the types.
Categories such as data, interfaces, responsibility, and unnecessary com-
plexity include in his classification. Similarly, Karwin [52] classified sql
antipatterns in the following categories — logical database design, phys-
ical database design, query, and application development antipatterns.

• Granularity-based smell classification: Moha et al. [79] classified
smells using two-level classification. At first, a smell is classified in
either inter-class and intra-class category. The second level of classi-
fication assigns non-orthogonal categories i.e., structural, lexical, and
measurable to the smells. Similarly, Brown et al. [16] discussed an-
tipatterns classified in three major categories — software development,
software architecture, and software project management antipatterns.

Kenneth Bailey [10] discusses a few desirable properties of a classification.
By applying them in the context of our study, we propose that an ideal
classification of smells must exhibit the following properties.

• Exhaustive: classify all the considered smells,

• Simple: classify smells within the scope and granularity effortlessly,

• Consistent: produce a consistent classification even if it carried out
by different people, and

• Coherent: produce clearly distinguishable categories without over-
laps.

13



3.1.4. Are smells and antipatterns considered synonyms?

Software engineering researchers and practitioners often use the terms
“antipattern” and “smell” interchangeably. Specifically, authors such as
Palma et al. [93], Palomba et al. [98], and Linares et al. [65] use both
the terms as synonyms. For instance, Linares et al. [65] asserts this notion
explicitly — “. . . we use the word smells to refer to both code smells and
antipatterns, . . . ”

Some authors treat antipatterns and smells as quality defects at different
granularity. For example, Moha et al. [80] and Moha et al. [79] defined design
defects as antipatterns at design granularity and as smells at implementation
granularity.

Andrew Koenig [60] coined the term “antipatterns” in 1995 and defined
it as follows: “An antipattern is just like pattern, except that instead of solu-
tion it gives something that looks superficially like a solution, but isn’t one”.
Hallal et al. [48] also describes antipatterns in this vein — “something that
looks like a good idea, but which backfires badly when applied”. Based on
Andrew’s definition, our following interpretation makes antipatterns funda-
mentally different from smells — antipatterns get chosen but smells occur,
mostly inadvertently. An antipattern is chosen in the assumption that the
usage will bring more benefits than liabilities whereas smells get introduced
due to the lack of knowledge and awareness most of the times.

Brown et al. [16] specify one key characteristic of antipatterns as “. . . that
generates decidedly negative consequences.” This characteristic makes an-
tipatterns significantly different from smells — a smell is considered as an
indicator (refer Section 3.1.1) of a problem (rather than the problem itself)
whereas antipatterns bring decidedly negative consequences.

An antipattern may lead to smells. For instance, a variant of Singleton
introduces sub-type knowledge in a base class leading to cyclic hierarchy
[123] smell in the code [35]. Further, the presence of smells may indicate
that a certain practice is an antipattern rather than a recommended practice
in a given context. For example, the Singleton pattern makes an abstraction
difficult to test and hence introduces test smells; the presence of test smells
helps us identify that the employed pattern is deteriorating the quality more
than helping us solving a design problem.

3.1.5. Implications

We can draw the following implications from the above-discussed research
question.

14



• We found that smells may occur in various stages of software develop-
ment and impair many dimensions of software quality of different arti-
fact types. This implies that software developers should adopt practices
to avoid smells at different granularities, artifacts, and quality dimen-
sions at all stages of software development.

• We identified the core characteristics of software smells. This can help
the research community to identify smells even when they are not
tagged as smells. For example, it is a recommended practice to avoid
accessing external dependencies, such as a database, in a unit test [13].
A non-adherence to the recommended practice exhibits the smell char-
acteristics violates best practices and impacts quality (maintainability
and performance). Therefore, such a violation of the recommended
practice could be identified as a test smell despite not being referred to
as a smell.

• We elaborated the distinction between antipatterns and smells. This
distinction can be further explored in future research on these topics.

3.2. RQ2: How do smells get introduced in software systems?

Authors have explored factors that introduce smells in software systems.
We classify such causal factors into the following consolidated list.

• C1: Lack of skill or awareness A major reason that cause smells
in software systems is poor technical skills of developers and lack of
awareness towards writing high quality code. Many authors [123, 77,
22, 125] have pointed out this cause in their studies.

• C2: Frequently changing requirements Certain design decisions
are made to fulfil the requirements at hand; however, frequent changes
in requirements impair the effective decision making and introduce
smells [77, 63].

• C3: Language, platform, or technology constraints The cur-
rent literature [121, 77, 59, 63, 22] shows that the chosen technology
influences design decisions and could be another reason that leads to
smells.

• C4: Knowledge gap Missing or complex documentation introduces a
knowledge gap which in turn could lead to smells in a software [63, 77].

15



• C5: Processes The adopted processes may help avoid smells to occur
or remain in a software system. Therefore, an ineffective or a missing
set of processes could also become a cause for software smells [125, 124].

• C6: Schedule pressure Developers adopt a quick fix rather than an
appropriate solution in the scarcity of time. These quick fixes are a
source of smells in software systems [63, 77, 123].

• C7: Priority to features over quality Managers consistently pres-
surise the development teams to deliver new features quickly and ignore
the quality of the system [77].

• C8: Politics Organizational politics for control, position, and power
influence the software quality [22, 63, 122].

• C9: Team culture Many authors [3, 22, 125] have recognized the
practices and the culture prevailed within a team or an organization as
a cause of software smells.

• C10: Poor human resource planning Poor planning of human
resources required for a software project may force the present devel-
opment team to adopt quick fixes to meet the deadlines [63].

A cause-based classification can help us understand the categories of fac-
tors that causes smells. We propose an alternative to cause-based classifica-
tion in the form of actor-based classification. The actor-based classification
assigns the responsibility of the causes to specific actor(s). The identified
actors should either correct smells in the current project or learn from the
experience so as to avoid these smells in the future. For example, in the
current context, we consider three actors — manager (representing individ-
uals in the management hierarchy), technical lead (the person leading the
technical efforts of a software development team), and a software developer.
Table 5 presents the classification of causes following the actor-based classifi-
cation scheme. Such a classification can help us in identifying the actionable
tasks. For example, if the skill or awareness of software developers is lack-
ing, the actor-based classification suggests that developers as well as their
technical-lead are responsible to take a corrective action. Similarly, if appro-
priate processes are not in-place, it is the responsibility of the technical-lead
to deploy them.

16



Table 5: Actor-based Classification of Smells Causes
Actor\Causes C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
Manager X X X X X
Technical lead X X X X X X
Developer X X X

The above discussed roles and responsibility assignment is an indicative
example. The classification has to be adapted based on the team dynamics
and the context. For instance, the roles could differ in software development
teams that follow different development methods (e.g. agile, traditional wa-
terfall, and hybrid). Furthermore, some development teams are mature to
take collective decisions whereas some teams have roles such as scrum master
to take decisions that impact the whole team.

3.2.1. Implications

The above exploration consolidates factors reported in the literature that
cause smells. It would be interesting to observe their comparative degree of
impact on software smells. Further, we propose a classification that identi-
fies the actors responsible to correct or avoid the causes of specific smells.
This explicit identification of responsible actors is actionable; software devel-
opment teams can improve code quality by making the actors accountable
and working with them to correct the underlying factors that lead to specific
smells

3.3. RQ3: How do smells affect the software development processes, artifacts,
or people?

Smells not only impact software product but also the processes and people
working on the product. Table 6 summarizes the impact of smells on software
product, process, and people.

Smells have multi-fold impact on the artifacts produced in the software
development process and associated quality. Specifically, smells impact main-
tainability, reliability, testability, performance, and change-proneness of the
software. Further, smells also increase effort (and hence cost) required to
produce a software.

Presence of excessive amount of smells in a product may influence the
outcome of a process; for instance, a high number of smells in a piece of code
may lead to pull request rejection [115].

17



Table 6: Impact of Smells

Entity Attribute References

Software product

Maintainability
[11], [100], [82],
[137], [136], [138],
[119]

Effort/Cost [117], [120], [105],
[68]

Reliability
[51], [47], [139],
[12], [81], [56]

Change proneness [88], [56], [139], [55]
Testability [105]
Performance [18], [50], [114]

Software development [115]
Processes

People
Morale and motivation [125], [123]
Productivity [125]

A high number of smells (and hence high technical debt) negatively im-
pact the morale and motivation of the development team and may lead to
high attrition [125, 123].

3.3.1. Implications

The above exploration reveals that impact of smells on certain aspects has
not been studied in detail. For example, the impact of smells on testability of
a software system and productivity of a software development team have been
studied only by one study each. Further research in this area can quantify the
degree of the smells’ impact on diverse product and process quality aspects
along with the corresponding implications.

3.4. RQ4: How do smells get detected?

A large body of knowledge exists to detect software smells. Smells have
been detected in many studies by employing various techniques. We classify
the smell detection strategies in five broad categories; we describe these cat-
egories below. Figure 2 shows an abstract layered process flow that we have
synthesized by analyzing existing approaches to detect smells using the five
categories of smell detection.

18



< > Source code 
(or source artifact)

H
is

to
ric

al
 

in
fo

rm
at

io
n

M
at

he
m

a
-ti

ca
l

m
od

el

Ex
is

tin
g 

ex
am

pl
es

f(x)

f(x)f(x)f(x)

Populated 
model

Machine learning 
algorithm

Detection 
model

Source code
model

Rules/Heuristics

Metrics

Optimization 
algorithm

<!> Smells

Ex
is

tin
g 

ex
am

pl
es

1.1

1.2

1.3

2.1

2.2

2.3

3.1

3.2

3.3

4.1 4.2

4.3

4.4

4.5

4.6

5.1

5.2

5.3

5.4

5.52.4

Metric-based

Rule/Heuristic-based

History-based

Machine learning-based

Optimization-based

1.s

2.s

4.s

5.s

3.s

Figure 2: A layered overview of smell detection methods. Each detection method starts
from the code (or source artifact) and goes through various steps to detect smells. The
direction of the arrows shows the flow direction and annotations on the arrows show the
detection method (first part) and the step number (second part).

1. Metrics-based smell detection: A typical metrics-based smell de-
tection method takes source code as the input, prepares a source code
model (such as an ast (Abstract Syntax Tree)) (step 1.1 in the figure
2) typically by using a third-party library, detects a set of source code
metrics (step 1.2) that capture the characteristics of a set of smells,
and detects smells (step 1.3) by applying a suitable threshold [75].
For example, an instance of the god class smell can be detected using
the following set of metrics: wmc (Weighted Methods per Class), atfd
(Access To Foreign Data), and tcc (Tight Class Cohesion) [74, 133].
These metrics are compared against pre-defined thresholds and com-

19



bined using logical operators. Apart from these, the community fre-
quently uses other metrics such as noc (Number of Children), nom
(Number of Methods), cbo (Coupling Between Objects), rfc (Re-
sponse For Class), and lcom (Lack of Cohesion of Methods) [19] to
detect other smells.

2. Rules/Heuristic-based smell detection: Smell detection methods
that define rules or heuristics [79] (step 2.2 in the figure 2) typically
takes source code model (step 2.1) and sometimes additional software
metrics (step 2.3) as inputs. They detect a set of smells when the
defined rules/heuristics get satisfied.
There are many smells that cannot be detected by the currently avail-
able metrics alone. For example, we cannot detect rebellious hierarchy,
missing abstraction, cyclic hierarchy, and empty catch block smells us-
ing commonly used metrics. In such cases, rules or heuristics can be
used to detect smells. For example, the cyclic hierarchy [123] smell
(when the supertype has knowledge about its subtypes) is detected by
defining a rule that checks whether a class is referring to its subclasses.
Often, rules or heuristics are combined with metrics to detect smells.

3. History-based smell detection: Some authors have detected smells
by using source code evolution information [95]. Such methods extract
structural information of the code and how it has changed over a period
of time (step 3.1 in the figure 2). This information is used by a detection
model (step 3.2) to infer smells in the code. For example, by applying
association rule mining on a set of methods that have been changed
and committed often to the version control system together, divergent
change smell can be detected [95].

4. Machine learning-based smell detection: Various machine learn-
ing methods such as Support Vector Machines [70], and Bayesian Belief
Networks [57] have been used to detect smells. A typical machine learn-
ing method starts with a mathematical model representing the smell
detection problem (step 4.1 in the figure 2). Existing examples (step
4.2) and source code model (step 4.3 and 4.4) could be used to in-
stantiate a concrete populated model. The method results in a set of
detected smells by applying a chosen machine learning algorithm (step
4.5) on the populated model. For instance, a Support Vector Machine
classifier could be trained using object-oriented metrics attributes for
each class. Then the classifier can be used on other programs along
with corresponding metrics data to detect smells [70].

20



5. Optimization-based smell detection: Approaches in this category
apply optimization algorithms such as genetic algorithms [90] to detect
smells. Such methods apply an optimization algorithm on computed
software metrics (step 5.4 in the figure 2) and, in some cases, existing
examples (step 5.1) of smells to detect new smells in the source code.

Among the surveyed papers, we selected all the papers that employ a smell
detection mechanism. We classify these attempts based on the employed
smell detection method. Table 7 shows existing attempts to identify smells
using one of the smell detection methods. The table also shows number of
smells detected by each of the method and target language/artifact.

Each detection method comes with a set of strengths and weaknesses.
Metrics-based smell detection is convenient and relatively easy to implement;
however, as discussed before, one cannot detect many smells using only com-
monly known metrics. Another important criticism of metrics-based methods
is their dependence on choosing an appropriate set of thresholds, which is
a non-trivial challenge. Rule/Heuristic-based detection methods expand the
horizon of metrics-based detection by strengthening them with the power
of heuristics defined on source code entities. Therefore, rule/heuristic-based
methods combined with metrics offer detection mechanisms that can reveal a
high proportion of known smells. History-based methods have a limited ap-
plicability because only a few smells are associated with evolutionary changes.
Therefore, a source code entity (say a method or a class) that has not nec-
essarily evolved in a certain way to suffer from a smell cannot be detected
by history-based methods. Machine learning approaches depend heavily on
training data and the lack of such training datasets is a concern [57]. Also,
it is still unknown whether machine learning-based detection algorithms can
scale to the large number of known smells. Further, optimization-based smell
detection methods depend on metric data and corresponding thresholds. This
fact makes them suffer from limitations similar to metrics-based methods.

Table 7: Smell Detection Methods and Corresponding
References

Smell detection
method

Reference #Smells Languages/
Artifacts

Metrics-based

[27] 1 Java
[75] 10 Java, C++
[83] 2 Java

21



Table 7: Smell Detection Methods and Corresponding
References

Smell detection
method

Reference #Smells Languages/
Artifacts

[107] 5 Java
[130] 2 Java
[85] 1 Java
[89] 1 Java
[69] 11 Java
[37] 5 UML Dia-

grams
[14] 7 Aspects-

oriented
systems

[113] 3 Java
[30] 13 JavaScript
[133] 10 Java
[91] 2 Java
[2] 3 NA
[31] 1 C
[87] 1 Java
[132] 10 JavaScript
[88] 2 Java
[57] 1 Java
[17] 1 Java
[58] 3 Java
[70] 4 Java
[23] 1 Java

Machine learning-based

[71] NA Java
[40] 3 Java

History-based
[95] 5 Java
[102] 5 C
[28] 8 Use-case

Model
[1] 8 C++
[34] 1 Java
[127] 1 Java

22



Table 7: Smell Detection Methods and Corresponding
References

Smell detection
method

Reference #Smells Languages/
Artifacts

[128] 1 Java
[21] 4 UML Mod-

els
[7] 1 UML Mod-

els
[99] 5 Java
[64] 1 Java
[92] 8 REST

APIs
[79] 4 Java
[126] 6 Palladio

Compo-
nent Model

[9] 17 Java

Rule/Heuristics-based

[110] 30 C#

Optimization-based

[53] 8 Java
[106] 7 Java
[43] 3 Java
[90] 5 XML

(WSDL)

3.4.1. Implications

We identify five categories of smell detection mechanisms. An implication
of the categorization for the research community is the positioning of new
smell detection methods; the authors can classify their new methods as one
of these categories or propose a new smell detection method category.

Among the five types of smell detection methods, metrics-based tools
are most popular and relatively easier to develop. On the other hand, re-
searchers are attracted towards machine learning-based methods to overcome
the shortcomings of other smell detection methods such as the dependence on
choosing appropriate threshold values for metrics. The availability of a stan-
dard training dataset would encourage researchers to develop better smell
detection tools using machine learning approaches.

23



3.5. RQ5: What are the open research questions?

Despite the availability of huge amount of literature to understand smells
and associated aspects, we perceive many opportunities to expand the do-
main knowledge.

1 False-positives and lack of context: Results produced by the present
set of smell detection tools are prone to false-positive instances [35, 58].

• The major reason of the false-positive proneness of the smell de-
tection methods is that metrics and rule-based methods depend
heavily on the metrics thresholds. The software engineering com-
munity has identified threshold selection as a challenge [53], [37].
There have been many attempts to identify optimal thresholds
[36, 66, 33]; however, the proneness to false-positives cannot be
eliminated in metrics and rule-based methods since one set of
thresholds (or a method to derive thresholds) do not hold good in
another context.

• Many authors have asserted that smell detection is a subjective
process [73, 96, 84]. As Gil et al. [44] say — “Bluntly, the code
metric values, when inspected out of context, mean nothing.” Sim-
ilarly, Fontana et al. [35] list a set of commonly detected smells
that solve a specific design problem in the real-world.

We suggest that the identified smells using tools must go through
an expert-based scrutiny to finally tag them as quality problems.
Essentially, the present set of smell detection methods are not
designed to take context into account. One potential reason is
that it is not easy to define, specify, and capture context. This
presents an interesting yet challenging opportunity to significantly
improve the relevance of detected smells.

• Another interesting concern related to smells in the context of
false-positives is that smells are indicative by definition and thus
it is unfair to tag smells as false-positive based on the context.
As shown in Figure 3, a recorded smell could be a false-positive
instance (and thus not an actual smell) when it does not fulfil the
criteria of a smell by the definition of a smell. When the recorded
smell is not a false-positive instance, it could either be a smell
which is not a quality problem considering the context of the de-
tected smell. Finally, a detected smell could be a definite quality

24



problem contributing to technical debt. This brings up an inter-
esting insight that researchers and practitioners need to perceive
smells (as indicators) differently from definite quality problems.

<!> Recorded
smell

< >

False positive

The recorded 
smell is a smell 

but not a 
quality problem 
considering the 

context.

The detected smell is a 
definite quality problem.

<!>

<!>

Is
recorded smell

an actual smell by 
the definition of a 

smell?

No

Is
recorded smell

not a quality problem 
considering the 

context?

Yes Yes

No

Figure 3: A recorded smell could be a false-positive instance, a smell that is not a quality
problem, or a definite quality problem.

For example, consider a tool reports an instance of data class smell
in a software system. As explained in Table 4, this smell occurs
when a class contains only data fields without any methods. A
common practice is to tag the instance of a data class as a false-
positive when it is serving a specific purpose in that context [35].
However, we argue that rather than tagging the instance as a false-
positive (based on the context), we define smells as being separate
from the definite quality problems. A fowl smell in a restaurant
may indicate something is rotten, but can also accompany the
serving of a strongly smelling cheese.

In a manual inspection, if we find that the class has one method
apart from data fields then the reported smell is a false-positive
instance since it does not fulfil the condition of a data class smell.
On the other hand, if the class only contains data fields without
any method definition, it is a smell. As a developer, if one consid-
ers the context of the class and infers that the class is being used,
for instance, as a dto (Data Transfer Object) [39] the smell is not
a quality problem because it is the result of a conscious design de-
cision. However, if the above case doesn’t apply and the developer
is using another class (typically a manager or a controller class)
to access and manipulate the data members of the data class, the
identified smell is a definite quality problem.

25



2 Limited detection support for known smells: Table 8 shows all the
smell detection tools selected in this study and their corresponding
supported smells. It is evident that most of the existing tools support
detection of a significantly smaller subset of known smells. Researchers
[97, 103, 110] have identified the limited support present for identifying
smells in the existing literature. The deficiency poses a serious threat
to empirical studies that base their research on a severely low number
of smells.

26



Table 8: Smell Detection Methods and supported smells

R
ef

er
en

ce
s

Detection Method G
o
d

cl
as

s

F
ea

tu
re

en
v
y

S
h
ot

gu
n

su
rg

er
y

D
at

a
cl

as
s

L
on

g
m

et
h
o
d

F
u
n
ct

io
n
al

d
ec

om
p

os
it

io
n

R
ef

u
se

d
b

eq
u
es

t

S
p
ag

h
et

ti
co

d
e

D
iv

er
ge

n
t

C
h
an

ge

L
on

g
P

ar
am

et
er

L
is

t

O
th

er
sm

el
ls

T
o
ta

l
sm

e
ll
s

[75] Metrics-based X X X X X X 4 10
[83] Metrics-based 2 2
[107] Metrics-based X X X X X 0 5
[130] Metrics-based 2 2
[34] Rule/Heuristic-based X 0 1
[127] Rule/Heuristic-based 1 1
[57] Machine learning-based X 0 1
[28] Rule/Heuristic-based 8 8
[88] Metrics-based X X 0 2
[17] Machine learning-based X 0 1
[79] Rule/Heuristic-based X X X 1 4
[85] Metrics-based X 0 1
[102] Rule/Heuristic-based X X 3 5
[89] Metrics-based X 0 1
[69] Metrics-based 11 11

27



Table 8: Smell Detection Methods and supported smells

R
ef

er
en

ce
s

Detection Method G
o
d

cl
as

s

F
ea

tu
re

en
v
y

S
h
ot

gu
n

su
rg

er
y

D
at

a
cl

as
s

L
on

g
m

et
h
o
d

F
u
n
ct

io
n
al

d
ec

om
p

os
it

io
n

R
ef

u
se

d
b

eq
u
es

t

S
p
ag

h
et

ti
co

d
e

D
iv

er
ge

n
t

C
h
an

ge

L
on

g
P

ar
am

et
er

L
is

t

O
th

er
sm

el
ls

T
o
ta

l
sm

e
ll
s

[21] Rule/Heuristic-based 4 4
[128] Rule/Heuristic-based X 0 1
[58] Machine learning-based X X X 0 3
[14] Metrics-based 7 7
[37] Metrics-based X X X 2 5
[126] Rule/Heuristic-based 6 6
[1] Rule/Heuristic-based 8 8
[70] Machine learning-based X X X 1 4
[30] Metrics-based X X X 10 13
[113] Metrics-based X 2 3
[9] Rule/Heuristic-based 17 17
[27] Metrics-based X 0 1
[64] Rule/Heuristic-based X 0 1
[133] Metrics-based X X X X X 5 10
[106] Optimization-based X X X X X X 1 7

28



Table 8: Smell Detection Methods and supported smells

R
ef

er
en

ce
s

Detection Method G
o
d

cl
as

s

F
ea

tu
re

en
v
y

S
h
ot

gu
n

su
rg

er
y

D
at

a
cl

as
s

L
on

g
m

et
h
o
d

F
u
n
ct

io
n
al

d
ec

om
p

os
it

io
n

R
ef

u
se

d
b

eq
u
es

t

S
p
ag

h
et

ti
co

d
e

D
iv

er
ge

n
t

C
h
an

ge

L
on

g
P

ar
am

et
er

L
is

t

O
th

er
sm

el
ls

T
o
ta

l
sm

e
ll
s

[91] Metrics-based X X X 0 3
[53] Optimization-based X X X X X X X 0 7
[92] Rule/Heuristic-based 8 8
[2] Metrics-based X X X 0 3
[43] Optimization-based X X X 0 3
[23] Machine learning-based X 0 1
[95] History-based X X X X 1 5
[31] Metrics-based X 0 1
[40] History-based X X 1 3
[90] Optimization-based 5 5
[87] Metrics-based X 0 1
[7] Rule/Heuristic-based X 0 1
[99] Rule/Heuristic-based X X X 2 5
[132] Metrics-based X X X X X 5 10
[110] Rule/Heuristic-based X X X X X X X 23 30

29



Table 8: Smell Detection Methods and supported smells

R
ef

er
en

ce
s

Detection Method G
o
d

cl
as

s

F
ea

tu
re

en
v
y

S
h
ot

gu
n

su
rg

er
y

D
at

a
cl

as
s

L
on

g
m

et
h
o
d

F
u
n
ct

io
n
al

d
ec

om
p

os
it

io
n

R
ef

u
se

d
b

eq
u
es

t

S
p
ag

h
et

ti
co

d
e

D
iv

er
ge

n
t

C
h
an

ge

L
on

g
P

ar
am

et
er

L
is

t

O
th

er
sm

el
ls

T
o
ta

l
sm

e
ll
s

[71] Machine learning-based X X X X X 0 5

30



Figure 4 shows number of studies detecting a specific smell sorted by
the number of studies detecting the smells (the top 20 most frequently
detected smells). The figure shows that god class smell has been de-
tected the most in the smells literature. On the other hand, some of the
smells have been detected only by one study; these smells include par-
allel inheritance hierarchy [95], closure smells [30], isp violation [75],
hub-like modularization [110], and cyclic hierarchy [110]. Obviously,
there are many other smells that have not been detected by any study.
The importance and relevance of a smell cannot be determined by its
popularity. Hence, the research community also needs to explore the
relatively less commonly detected smells and strengthen the quality
analysis.

25

14

9 9 9
8

7
6

5
4

3 3 2 2 2 2 2 2 2 2

Go
d	
cl
as
s\
bl
ob

Fe
at
ur
e	
en
vy

Sh
ot
gu
n	
su
rg
er
y

Da
ta
	cl
as
s

Lo
ng
	m

et
ho
d

Fu
nc
tio

na
l	d

ec
om

po
sit
io
n

Re
fu
se
d	
be
qu
es
t

Sp
ag
he
tti
	c
od
e

Di
ve
rg
en
t	C

ha
ng
e

Lo
ng
	P
ar
am

et
er
	Li
st

Br
ai
n	
m
et
ho
d

La
zy
	cl
as
s

Br
ai
n	
cl
as
s

Di
sp
er
se
	co

up
lin
g

In
te
ns
iv
e	
co
up
lin
g

Tr
ad
iti
on
	b
re
ak
er

Sw
iss
	a
rm

y	k
ni
fe

La
va
	fl
ow

Em
pt
y	
Ca

tc
h

Ex
ce
ss
iv
e	
gl
ob
al
	va

ria
bl
es

Nu
m
be

r	o
f	s
tu
di
es

Smells

Figure 4: The number of studies detecting a specific smell

Further, academic researchers have concentrated heavily on a single
programming language, namely Java [103]. The 46 smell detection
methods for source code shown in Table 8 have their targets distributed
as follows: 31 for Java, six for models, two for C, two for C++, two
for JavaScript, one for C#, and one each for XML and REST APIs.

31



Expanding the smell detection tools to support a wide range of known
smells and diverse programming languages and platforms is another
open opportunity.

3 Inconsistent smell definitions and detection methods: The abun-
dance of the smell literature has produced inconsistencies in the defi-
nition of smells and their detection methods. For example, god class is
one of the most commonly researched smells; however, researchers have
defined it differently. Riel et al. [104] has defined it as the class that
tend to centralize the knowledge in the system. On the other hand,
Gabriela et al. [23] defined it as a class that has too many methods
and Mazeiar et al. [107] specified it as the class which is used more
extensively than others.

Similarly, based on their description and interpretation, their detection
methods also differ significantly and they detect smells inconsistently.
Furthermore, in some cases, identical interpretation of smells may also
produce different results due to the variation in chosen thresholds of
employed metrics.

Even further, metrics tools show inconsistent results even for well-
known metrics such as lcom, cc, and loc. For example, one tool
might implement one variation of lcom and another tool may realize
another or custom variation of the metric while both the tools refer the
metric with the same name. Such inconsistencies in smell definition
and their detection methods have been identified by the community
[103, 8, 41].

It is, therefore, important and relevant to establish a standard with
respect to smell definition, their implementation, as well as commonly
used metrics.

4 Impact of smells on productivity: In Section 3.3, we present the avail-
able literature that discusses the impact of smells on software quality
as well as processes and people. It is believed that smells affect mainly
maintainability and poor maintainability in turn impacts productivity
of the development team. As shown in Section 3.3, the current liter-
ature draws connection between impact of smells and maintainability.
However, the impact of smells on productivity is not yet explored to a
sufficient detail. Other researchers [140] have also identified the need

32



to better understand the impact of smells. We believe that establishing
an explicit and concrete relation between smells and productivity will
enhance the adoption of the concepts concerning smells among practi-
tioners.

3.5.1. Implications

In the above discussion, we elaborated on the inherent deficiencies in the
present set of smell detection methods. These deficiencies include lack of
context and a small number of detectable smells on a very small number of
platforms. This analysis clearly calls for effective and widely-applicable smell
detection tools and techniques. Inconsistent smell definitions and detection
methods indicate the need to set up a standard for smell definitions as well
as a verified dataset of smells.

4. Conclusions

This survey presents a synthesized and consolidated overview of the cur-
rent knowledge in the domain of software smells. We extensively searched
a wide range of conferences and journals for the relevant studies published
from year 1999 to 2016. The studies selected in all the phases of the selection,
an exhaustive smell catalog, as well as the program that generates the smell
catalog are made available online.2

Our study has explored and identified the following dimensions concerning
software smells in the literature.

• We reveal five defining characteristics of software smells: indicator, poor
solution, violates best practices, impacts quality, and recurrence.

• We identify and catalog a wide range of smells (close to 200 at the time
of writing this paper) that we made available online and classify them
based on 14 focus areas.

• We classify existing smells classifications into four categories: effect-
based, principle-based, artifact characteristic-based, and granularity-
based.

• We curate ten factors that cause smells to occur in a software system.
We also classify these causes based on their actors.

2https://github.com/tushartushar/smells, http://www.tusharma.in/smells/

33

https://github.com/tushartushar/smells
http://www.tusharma.in/smells/


• We categorize existing smell detection methods into five groups: metrics-
based, rules/heuristic-based, history-based, machine learning-based, and
optimization-based.

In addition to this, we identify the following gaps and research opportu-
nities in the present set of tools and techniques.

• Existing literature does not differentiate between a smell (as an indi-
cator) and a definite quality problem.

• The community believes that the existing smell detection methods suf-
fer from high false-positive rates. Also, existing methods cannot define,
specify, and capture the context of a smell.

• The currently available tools can detect only a very small number of
smells. Further, most of the tools largely only support the Java pro-
gramming language.

• Existing literature has produced inconsistent smell definitions. Simi-
larly, smell detection methods and the corresponding produced results
are highly inconsistent.

• The current literature does not establish an explicit connection be-
tween smells and their impact on productivity of a software develop-
ment team.

5. Acknowledgements

The authors would like to thank Vasiliki Efstathiou, Marios Fragkoulis,
Stefanos Georgiou, and Theodore Stassinopoulos from the Athens University
of Economics and Business for reviewing the early version of the paper and
providing useful improvement suggestions. We also would like to convey our
sincere thanks to the reviewers of the paper who provided very insightful
suggestions to improve the paper.

This work is partially funded by the seneca project, which is part of
the Marie Sk lodowska-Curie Innovative Training Networks (itn-eid). Grant
agreement number 642954.

34



References

[1] Abebe, S. L., Haiduc, S., Tonella, P., Marcus, A., Nov. 2011. The effect
of lexicon bad smells on concept location in source code. In: Proceed-
ings - 11th IEEE International Working Conference on Source Code
Analysis and Manipulation, SCAM 2011. Fondazione Bruno Kessler,
Trento, Italy, IEEE, pp. 125–134.

[2] Ab́ılio, R., Padilha, J., Figueiredo, E., Costa, H., Apr. 2015. Detecting
Code Smells in Software Product Lines – An Exploratory Study. In:
ITNG ’15: Proceedings of the 2015 12th International Conference on
Information Technology - New Generations. IEEE Computer Society,
pp. 433–438.

[3] Acuña, S. T., Gómez, M., Juristo, N., Aug. 2008. Towards under-
standing the relationship between team climate and software quality–a
quasi-experimental study. Empirical Software Engineering 13 (4), 339–
342.

[4] Al Dallal, J., Jan. 2015. Identifying refactoring opportunities in object-
oriented code: A systematic literature review. Information and Soft-
ware Technology 58, 231–249.

[5] Almeida, D., Campos, J. C., Saraiva, J., Silva, J. C., Apr. 2015. To-
wards a catalog of usability smells. In: SAC ’15: Proceedings of the
30th Annual ACM Symposium on Applied Computing. University of
Minho, ACM, pp. 175–181.

[6] Alves, P., Figueiredo, E., Ferrari, F., 2014. Avoiding Code Pitfalls
in Aspect-Oriented Programming. In: Computational Science and Its
Applications – ICCSA 2012. Springer International Publishing, pp. 31–
46.

[7] Arcelli, D., Berardinelli, L., Trubiani, C., Jan. 2015. Performance An-
tipattern Detection through fUML Model Library. In: WOSP ’15: Pro-
ceedings of the 2015 Workshop on Challenges in Performance Methods
for Software Development. University of L’Aquila, ACM, pp. 23–28.

[8] Arcelli Fontana, F., Braione, P., Zanoni, M., 2012. Automatic detection
of bad smells in code: An experimental assessment. The Journal of
Object Technology 11 (2), 5:1–38.

35



[9] Arnaoudova, V., Di Penta, M., Antoniol, G., Guéhéneuc, Y.-G.,
Mar. 2013. A New Family of Software Anti-patterns: Linguistic Anti-
patterns. In: CSMR ’13: Proceedings of the 2013 17th European Con-
ference on Software Maintenance and Reengineering. IEEE Computer
Society, pp. 187–196.

[10] Bailey, K. D., 1994. Typologies and taxonomies: an introduction to
classification techniques. Vol. 102. Sage.

[11] Bavota, G., Qusef, A., Oliveto, R., De Lucia, A., Binkley, D., Dec. 2012.
An empirical analysis of the distribution of unit test smells and their
impact on software maintenance. In: IEEE International Conference
on Software Maintenance, ICSM. Universita di Salerno, Salerno, Italy,
IEEE, pp. 56–65.

[12] Bavota, G., Qusef, A., Oliveto, R., De Lucia, A., Binkley, D., May
2014. Are test smells really harmful? An empirical study. Empirical
Software Engineering 20 (4), 1052–1094.

[13] Beck, K., 2002. Test Driven Development: By Example, 1st Edition.
Addison-Wesley Professional.

[14] Bertran, I. M., Garcia, A., von Staa, A., Mar. 2011. An exploratory
study of code smells in evolving aspect-oriented systems. In: AOSD ’11:
Proceedings of the tenth international conference on Aspect-oriented
software development. Pontifical Catholic University of Rio de Janeiro,
ACM, p. 203.

[15] Binkley, D., Gold, N., Harman, M., Li, Z., Mahdavi, K., Wegener,
J., Dec. 2008. Dependence Anti Patterns. In: Aramis 2008 - 1st In-
ternational Workshop on Automated engineeRing of Autonomous and
runtiMe evolvIng Systems, and ASE2008 the 23rd IEEE/ACM Int.
Conf. Automated Software Engineering. King’s College London, Lon-
don, United Kingdom, IEEE, pp. 25–34.

[16] Brown, W. H., Malveau, R. C., McCormick, H. W. S., Mowbray, T. J.,
1998. AntiPatterns: Refactoring Software, Architectures, and Projects
in Crisis, 1st Edition. John Wiley & Sons, Inc.

[17] Bryton, S., Brito E Abreu, F., Monteiro, M., Dec. 2010. Reducing
subjectivity in code smells detection: Experimenting with the Long

36



Method. In: Proceedings - 7th International Conference on the Quality
of Information and Communications Technology, QUATIC 2010. Fac-
uldade de Ciencias e Tecnologia, New University of Lisbon, Caparica,
Portugal, IEEE, pp. 337–342.

[18] Chen, T.-H., Shang, W., Jiang, Z. M., Hassan, A. E., Nasser, M., Flora,
P., May 2014. Detecting performance anti-patterns for applications de-
veloped using object-relational mapping. In: ICSE 2014: Proceedings
of the 36th International Conference on Software Engineering. Queen’s
University, Kingston, ACM, pp. 1001–1012.

[19] Chidamber, S. R., Kemerer, C. F., Jun. 1994. A metrics suite for object
oriented design. IEEE Transaction of Software Engineering 20 (6), 476–
493.

[20] Cortellessa, V., Di Marco, A., Trubiani, C., Feb. 2014. An approach
for modeling and detecting software performance antipatterns based
on first-order logics. Software and Systems Modeling (SoSyM) 13 (1),
391–432.

[21] Cortellessa, V., Martens, A., Reussner, R., Trubiani, C., Apr. 2010.
A process to effectively identify ”guilty” performance antipatterns. In:
Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics). Univer-
sita degli Studi dell’Aquila, L’Aquila, Italy, Springer Berlin Heidelberg,
pp. 368–382.

[22] Curcio, K., Malucelli, A., Reinehr, S., Paludo, M. A., Nov. 2016. An
analysis of the factors determining software product quality: A com-
parative study. Computer Standards & Interfaces 48, 10–18.

[23] Czibula, G., Marian, Z., Czibula, I. G., Mar. 2015. Detecting software
design defects using relational association rule mining. Knowledge and
Information Systems 42 (3), 545–577.

[24] da Silva Sousa, L., May 2016. Spotting design problems with smell
agglomerations. In: ICSE ’16: Proceedings of the 38th International
Conference on Software Engineering Companion. Pontifical Catholic
University of Rio de Janeiro, ACM, pp. 863–866.

37



[25] Das, T. K., Dingel, J., Jul. 2016. Model development guidelines for
UML-RT: conventions, patterns and antipatterns. Software & Systems
Modeling, 1–36.

[26] Deursen, A. V., Moonen, L., Bergh, A. V. D., Kok, G., 2001. Refac-
toring test code. In: Marchesi, M. (Ed.), Proceedings of the 2nd Inter-
national Conference on Extreme Programming and Flexible Processes
(XP2001). University of Cagliari, pp. 92–95.

[27] Dexun, J., Peijun, M., Xiaohong, S., Tiantian, W., Sep. 2013. Detection
and Refactoring of Bad Smell Caused by Large Scale. International
Journal of Software Engineering & Applications 4 (5), 1–13.

[28] El-Attar, M., Miller, J., Feb. 2009. Improving the quality of use case
models using antipatterns. Software & Systems Modeling 9 (2), 141–
160.

[29] Fard, A. M., Mesbah, A., Jan. 2013. JSNOSE: Detecting javascript
code smells. In: IEEE 13th International Working Conference on
Source Code Analysis and Manipulation, SCAM 2013. The University
of British Columbia, Vancouver, Canada, IEEE, pp. 116–125.

[30] Fard, A. M., Mesbah, A., Jan. 2013. JSNOSE: Detecting javascript
code smells. In: IEEE 13th International Working Conference on
Source Code Analysis and Manipulation, SCAM 2013. The University
of British Columbia, Vancouver, Canada, IEEE, pp. 116–125.

[31] Fenske, W., Schulze, S., Meyer, D., Saake, G., Nov. 2015. When
code smells twice as much: Metric-based detection of variability-aware
code smells. In: 2015 IEEE 15th International Working Conference on
Source Code Analysis and Manipulation, SCAM 2015 - Proceedings.
Otto von Guericke University of Magdeburg, Magdeburg, Germany,
IEEE, pp. 171–180.

[32] Fernandes, E., Oliveira, J., Vale, G., Paiva, T., Figueiredo, E., Jun.
2016. A review-based comparative study of bad smell detection tools.
In: EASE ’16: Proceedings of the 20th International Conference on
Evaluation and Assessment in Software Engineering. Federal University
of Minas Gerais, ACM, pp. 18–12.

38



[33] Ferreira, K. A. M., Bigonha, M. A. S., Bigonha, R. S., Mendes, L. F. O.,
Almeida, H. C., Feb. 2012. Identifying thresholds for object-oriented
software metrics. Journal of Systems and Software 85 (2), 244–257.

[34] Fokaefs, M., Tsantalis, N., Chatzigeorgiou, A., 2007. JDeodorant: Iden-
tification and Removal of Feature Envy Bad Smells. In: 2007 IEEE In-
ternational Conference on Software Maintenance. Panepistimion Make-
donias, Thessaloniki, Greece, IEEE, pp. 519–520.

[35] Fontana, F. A., Dietrich, J., Walter, B., Yamashita, A., Zanoni,
M., 2016. Antipattern and Code Smell False Positives: Preliminary
Conceptualization and Classification. In: 2016 IEEE 23rd Interna-
tional Conference on Software Analysis, Evolution, and Reengineering
(SANER). IEEE, pp. 609–613.

[36] Fontana, F. A., Ferme, V., Zanoni, M., Yamashita, A., May 2015. Auto-
matic metric thresholds derivation for code smell detection. In: WET-
SoM ’15: Proceedings of the Sixth International Workshop on Emerg-
ing Trends in Software Metrics. University of Lugano, IEEE Press, pp.
44–53.

[37] Fourati, R., Bouassida, N., Abdallah, H. B., 2011. A Metric-Based
Approach for Anti-pattern Detection in UML Designs. In: Computer
and Information Science 2011. Springer Berlin Heidelberg, pp. 17–33.

[38] Fowler, M., 1999. Refactoring: Improving the Design of Existing Pro-
grams, 1st Edition. Addison-Wesley Professional.

[39] Fowler, M., 2002. Patterns of Enterprise Application Architecture, 1st
Edition. Addison-Wesley Professional.

[40] Fu, S., Shen, B., Nov. 2015. Code Bad Smell Detection through Evo-
lutionary Data Mining. In: International Symposium on Empirical
Software Engineering and Measurement. Shanghai Jiaotong University,
Shanghai, China, IEEE, pp. 41–49.

[41] Ganesh, S., Sharma, T., Suryanarayana, G., Jun. 2013. Towards a
principle-based classification of structural design smells. Journal of Ob-
ject Technology 12 (2), 1:1–29.

39



[42] Garcia, J., Popescu, D., Edwards, G., Medvidovic, N., 2009. Toward
a catalogue of architectural bad smells. In: Proceedings of the 5th In-
ternational Conference on the Quality of Software Architectures: Ar-
chitectures for Adaptive Software Systems. QoSA ’09. Springer-Verlag,
pp. 146–162.

[43] Ghannem, A., El Boussaidi, G., Kessentini, M., Mar. 2015. On the use
of design defect examples to detect model refactoring opportunities.
Software Quality Journal, 1–19.

[44] Gil, J. Y., Lalouche, G., 2016. When do Software Complexity Metrics
Mean Nothing? – When Examined out of Context. The Journal of
Object Technology 15 (1), 2:1.

[45] Greiler, M., van Deursen, A., Storey, M.-A., Jan. 2013. Automated
Detection of Test Fixture Strategies and Smells. In: 2013 IEEE Sixth
International Conference on Software Testing, Verification and Valida-
tion (ICST). IEEE, pp. 322–331.

[46] Guerrouj, L., Kermansaravi, Z., Arnaoudova, V., Fung, B. C. M.,
Khomh, F., Antoniol, G., Guéhéneuc, Y.-G., May 2016. Investigating
the relation between lexical smells and change- and fault-proneness: an
empirical study. Software Quality Journal, 1–30.

[47] Hall, T., Zhang, M., Bowes, D., Sun, Y., Sep. 2014. Some Code Smells
Have a Significant but Small Effect on Faults. ACM Transactions on
Software Engineering and Methodology (TOSEM) 23 (4), 33–39.

[48] Hallal, H. H., Alikacem, E., Tunney, W. P., Boroday, S., Petrenko, A.,
Sep. 2004. Antipattern-Based Detection of Deficiencies in Java Multi-
threaded Software. In: QSIC ’04: Proceedings of the Quality Software,
Fourth International Conference. Cent de Recherche Informatique de
Montreal, IEEE Computer Society, pp. 258–267.

[49] Hauptmann, B., Junker, M., Eder, S., Heinemann, L., Vaas, R., Braun,
P., May 2013. Hunting for smells in natural language tests. In: ICSE
’13: Proceedings of the 2013 International Conference on Software En-
gineering. Technical University of Munich, IEEE Press, pp. 1217–1220.

[50] Hecht, G., Moha, N., Rouvoy, R., May 2016. An empirical study of
the performance impacts of Android code smells. In: MOBILESoft

40



’16: Proceedings of the International Workshop on Mobile Software
Engineering and Systems. Universite Lille 2 Droit et Sante, ACM.

[51] Jaafar, F., Guéhéneuc, Y.-G., Hamel, S., Khomh, F., 2013. Mining the
relationship between anti-patterns dependencies and fault-proneness.
In: Proceedings - Working Conference on Reverse Engineering, WCRE.
Ecole Polytechnique de Montreal, Montreal, Canada, IEEE, pp. 351–
360.

[52] Karwin, B., 2010. SQL Antipatterns: Avoiding the Pitfalls of Database
Programming, 1st Edition. Pragmatic Bookshelf.

[53] Kessentini, W., Kessentini, M., Sahraoui, H., Bechikh, S., Ouni, A.,
2014. A Cooperative Parallel Search-Based Software Engineering Ap-
proach for Code-Smells Detection. IEEE Transactions on Software En-
gineering 40 (9), 841–861.

[54] Khan, Y. A., El-Attar, M., 2016. Using model transformation to refac-
tor use case models based on antipatterns. Information Systems Fron-
tiers 18 (1), 171–204.

[55] Khomh, F., Di Penta, M., Guéhéneuc, Y.-G., Dec. 2009. An Ex-
ploratory Study of the Impact of Code Smells on Software Change-
proneness. In: 2009 16th Working Conference on Reverse Engineering.
Ecole Polytechnique de Montreal, Montreal, Canada, IEEE, pp. 75–84.

[56] Khomh, F., Di Penta, M., Guéhéneuc, Y.-G., Antoniol, G., Jun. 2012.
An exploratory study of the impact of antipatterns on class change-
and fault-proneness. Empirical Software Engineering 17 (3), 243–275.

[57] Khomh, F., Vaucher, S., Guéhéneuc, Y.-G., Sahraoui, H., Aug. 2009.
A Bayesian Approach for the Detection of Code and Design Smells. In:
QSIC ’09: Proceedings of the 2009 Ninth International Conference on
Quality Software. IEEE Computer Society, pp. 305–314.

[58] Khomh, F., Vaucher, S., Guéhéneuc, Y.-G., Sahraoui, H., 2011. BD-
TEX: A GQM-based Bayesian approach for the detection of antipat-
terns. In: Journal of Systems and Software. Ecole Polytechnique de
Montreal, Montreal, Canada, pp. 559–572.

41



[59] Kleinschmager, S., Hanenberg, S., Robbes, R., Stefik, A., 2012. Do
static type systems improve the maintainability of software systems?
An empirical study. In: 2012 IEEE 20th International Conference on
Program Comprehension (ICPC). Universitat Duisburg-Essen, Essen,
Germany, IEEE, pp. 153–162.

[60] Koenig, A., 1995. Patterns and antipatterns. JOOP 8 (1), 46–48.

[61] Král, J., Žemlička, M., Dec. 2007. The most important service-oriented
antipatterns. In: 2nd International Conference on Software Engineering
Advances - ICSEA 2007. Charles University in Prague, Prague, Czech
Republic, IEEE, pp. 29–29.

[62] Lauder, A., Kent, S., 2000. Legacy System Anti-Patterns and a
Pattern-Oriented Migration Response. In: Systems Engineering for
Business Process Change. Springer London, pp. 239–250.

[63] Lavallée, M., Robillard, P. N., Aug. 2015. Why good developers write
bad code: An observational case study of the impacts of organizational
factors on software quality. In: Proceedings - International Conference
on Software Engineering. Polytechnique Montréal, Montreal, Canada,
IEEE, pp. 677–687.

[64] Ligu, E., Chatzigeorgiou, A., Chaikalis, T., Ygeionomakis, N., Sept
2013. Identification of refused bequest code smells. In: 2013 IEEE In-
ternational Conference on Software Maintenance. pp. 392–395.

[65] Linares-Vásquez, M., Klock, S., McMillan, C., Sabané, A., Poshy-
vanyk, D., Guéhéneuc, Y.-G., Jun. 2014. Domain matters: bringing
further evidence of the relationships among anti-patterns, application
domains, and quality-related metrics in Java mobile apps. In: ICPC
2014: Proceedings of the 22nd International Conference on Program
Comprehension. The College of William and Mary, ACM, pp. 232–243.

[66] Liu, H., Liu, Q., Niu, Z., Liu, Y., Jun. 2016. Dynamic and Automatic
Feedback-Based Threshold Adaptation for Code Smell Detection. IEEE
Transactions on Software Engineering 42 (6), 544–558.

[67] Long, J., Jul. 2001. Software reuse antipatterns. ACM SIGSOFT Soft-
ware Engineering Notes 26 (4), 68–76.

42



[68] MacCormack, A., Sturtevant, D. J., 2016. Technical debt and system
architecture: The impact of coupling on defect-related activity. Journal
of Systems and Software 120, 170 – 182.

[69] Macia, I., Garcia, A., von Staa, A., Dec. 2010. Defining and applying
detection strategies for aspect-oriented code smells. In: Proceedings -
24th Brazilian Symposium on Software Engineering, SBES 2010. Pon-
tificia Universidade Catolica do Rio de Janeiro, Rio de Janeiro, Brazil,
IEEE, pp. 60–69.

[70] Maiga, A., Ali, N., Bhattacharya, N., Sabané, A., Guéhéneuc, Y.-G.,
Antoniol, G., Aı̈meur, E., Sep. 2012. Support vector machines for anti-
pattern detection. In: ASE 2012: Proceedings of the 27th IEEE/ACM
International Conference on Automated Software Engineering. Poly-
technic School of Montreal, ACM, pp. 278–281.

[71] Mansoor, U., Kessentini, M., Maxim, B. R., Deb, K., Feb. 2016. Multi-
objective code-smells detection using good and bad design examples.
Software Quality Journal, 1–24.

[72] Mäntylä, M., Vanhanen, J., Lassenius, C., Sep. 2003. A Taxonomy
and an Initial Empirical Study of Bad Smells in Code. In: ICSM ’03:
Proceedings of the International Conference on Software Maintenance.
IEEE Computer Society.

[73] Mäntylä, M. V., Lassenius, C., Sep. 2006. Subjective evaluation of
software evolvability using code smells: An empirical study. Empirical
Software Engineering 11 (3), 395–431.

[74] Marinescu, R., 2004. Detection strategies: Metrics-based rules for de-
tecting design flaws. In: Proceedings of the 20th IEEE International
Conference on Software Maintenance. ICSM ’04. IEEE Computer So-
ciety, pp. 350–359.

[75] Marinescu, R., Dec. 2005. Measurement and quality in object-oriented
design. In: 21st IEEE International Conference on Software Mainte-
nance (ICSM’05). Universitatea Politehnica din Timisoara, Timisoara,
Romania, IEEE, pp. 701–704.

[76] Marquardt, K., 2001. Dependency structuresarchitectural diagnoses
and therapies. In: Proceedings of the EuroPLop.

43



[77] Martini, A., Bosch, J., Chaudron, M., Aug 2014. Architecture techni-
cal debt: Understanding causes and a qualitative model. In: 2014 40th
EUROMICRO Conference on Software Engineering and Advanced Ap-
plications. pp. 85–92.

[78] Mens, T., Tourwé, T., Feb. 2004. A Survey of Software Refactoring.
IEEE Transactions on Software Engineering 30 (2), 126–139.

[79] Moha, N., Guéhéneuc, Y., Duchien, L., Meur, A. L., 2010. DECOR: A
method for the specification and detection of code and design smells.
IEEE Trans. Software Eng. 36 (1), 20–36.

[80] Moha, N., Guéhéneuc, Y.-G., 2007. Decor: a tool for the detection
of design defects. In: ASE ’07: Proceedings of the twenty-second
IEEE/ACM international conference on Automated software engineer-
ing. University of Montreal, ACM, pp. 527–528.

[81] Monden, A., Nakae, D., Kamiya, T., Sato, S.-i., Matsumoto, K.-i., Jun.
2002. Software Quality Analysis by Code Clones in Industrial Legacy
Software. In: METRICS ’02: Proceedings of the 8th International Sym-
posium on Software Metrics. IEEE Computer Society, p. 87.

[82] Moonen, L., Yamashita, A., Sep. 2012. Do code smells reflect impor-
tant maintainability aspects? In: ICSM ’12: Proceedings of the 2012
IEEE International Conference on Software Maintenance (ICSM). Sim-
ula Research Laboratory, IEEE Computer Society.

[83] Munro, M. J., Sep. 2005. Product Metrics for Automatic Identification
of ”Bad Smell” Design Problems in Java Source-Code. In: METRICS
’05: Proceedings of the 11th IEEE International Software Metrics Sym-
posium (METRICS’05). University of Strathclyde, IEEE Computer So-
ciety, pp. 15–15.

[84] Murphy-Hill, E., Black, A. P., 2008. Seven habits of a highly effective
smell detector. In: the 2008 international workshop. Portland State
University, Portland, United States, ACM Press, pp. 36–40.

[85] Murphy-Hill, E., Black, A. P., Oct. 2010. An interactive ambient visu-
alization for code smells. In: SOFTVIS ’10: Proceedings of the 5th in-
ternational symposium on Software visualization. North Carolina State
University, ACM.

44



[86] Nguyen, H. V., Nguyen, H. A., Nguyen, T. T., Nguyen, A. T., Nguyen,
T. N., Sep. 2012. Detection of embedded code smells in dynamic web
applications. In: ASE 2012: Proceedings of the 27th IEEE/ACM Inter-
national Conference on Automated Software Engineering. Iowa State
University, ACM, pp. 282–285.

[87] Nongpong, K., Jan. 2015. Feature envy factor: A metric for automatic
feature envy detection. In: Proceedings of the 2015-7th International
Conference on Knowledge and Smart Technology, KST 2015. Assump-
tion University, Bangkok, Bangkok, Thailand, IEEE, pp. 7–12.

[88] Olbrich, S., Cruzes, D. S., Basili, V., Zazworka, N., Aug. 2009. The
evolution and impact of code smells: A case study of two open source
systems. In: 2009 3rd International Symposium on Empirical Software
Engineering and Measurement (ESEM). IEEE, pp. 390–400.

[89] Oliveto, R., Khomh, F., Antoniol, G., Guéhéneuc, Y.-G., Mar. 2010.
Numerical Signatures of Antipatterns: An Approach Based on B-
Splines. In: CSMR ’10: Proceedings of the 2010 14th European Con-
ference on Software Maintenance and Reengineering. IEEE Computer
Society, pp. 248–251.

[90] Ouni, A., Kula, R. G., Kessentini, M., Inoue, K., Jul. 2015. Web Ser-
vice Antipatterns Detection Using Genetic Programming. In: GECCO
’15: Proceedings of the 2015 Annual Conference on Genetic and Evo-
lutionary Computation. Osaka University, ACM, pp. 1351–1358.

[91] Padilha, J., Pereira, J., Figueiredo, E., Almeida, J., Garcia, A.,
Sant’Anna, C., Jan. 2014. On the effectiveness of concern metrics to
detect code smells: An empirical study. In: Lecture Notes in Com-
puter Science (including subseries Lecture Notes in Artificial Intelli-
gence and Lecture Notes in Bioinformatics). Universidade Federal de
Minas Gerais, Belo Horizonte, Brazil, Springer International Publish-
ing, pp. 656–671.

[92] Palma, F., Dubois, J., Moha, N., Guéhéneuc, Y.-G., Jan. 2014. Detec-
tion of REST patterns and antipatterns: A heuristics-based approach.
In: Franch, X., Ghose, A. K., Lewis, G. A., Bhiri, S. (Eds.), Lecture
Notes in Computer Science (including subseries Lecture Notes in Arti-
ficial Intelligence and Lecture Notes in Bioinformatics). Universite du

45



Quebec a Montreal, Montreal, Canada, Springer Berlin Heidelberg, pp.
230–244.

[93] Palma, F., Moha, N., Guéhéneuc, Y.-G., Jan. 2013. Detection of pro-
cess antipatterns: A BPEL perspective. In: Proceedings - IEEE Inter-
national Enterprise Distributed Object Computing Workshop, EDOC.
Eŕcole Polytechnique, Canada, IEEE, pp. 173–177.

[94] Palma, F., Mohay, N., Jan. 2015. A study on the taxonomy of service
antipatterns. In: 2015 IEEE 2nd International Workshop on Patterns
Promotion and Anti-Patterns Prevention, PPAP 2015 - Proceedings.
Ecole Polytechnique de Montreal, Montreal, Canada, IEEE, pp. 5–8.

[95] Palomba, F., Bavota, G., Di Penta, M., Oliveto, R., Poshyvanyk, D.,
De Lucia, A., May 2015. Mining version histories for detecting code
smells. IEEE Transactions on Software Engineering 41 (5), 462–489.

[96] Palomba, F., Bavota, G., Penta, M. D., Oliveto, R., Lucia, A. D., Jul.
2014. Do They Really Smell Bad? A Study on Developers’ Percep-
tion of Bad Code Smells. In: 2014 IEEE International Conference on
Software Maintenance and Evolution (ICSME). IEEE, pp. 101–110.

[97] Palomba, F., De Lucia, A., Bavota, G., Oliveto, R., 2014. Anti-Pattern
Detection. In: Anti-pattern detection: Methods, challenges, and open
issues. Elsevier, pp. 201–238.

[98] Palomba, F., Nucci, D. D., Tufano, M., Bavota, G., Oliveto, R., Poshy-
vanyk, D., De Lucia, A., 2015. Landfill: An open dataset of code smells
with public evaluation. In: Proceedings of the 12th Working Conference
on Mining Software Repositories. MSR ’15. IEEE Press, pp. 482–485.

[99] Palomba, F., Panichella, A., De Lucia, A., Oliveto, R., Zaidman, A.,
2016. A textual-based technique for Smell Detection. In: 2016 IEEE
24th International Conference on Program Comprehension (ICPC).
Universita di Salerno, Salerno, Italy, IEEE, pp. 1–10.

[100] Perepletchikov, M., Ryan, C., Aug. 2011. A controlled experiment for
evaluating the impact of coupling on the maintainability of service-
oriented software. IEEE Transactions on Software Engineering 37 (4),
449–465.

46



[101] Peters, R., Zaidman, A., 2012. Evaluating the lifespan of code smells us-
ing software repository mining. In: Proceedings of the 2012 16th Euro-
pean Conference on Software Maintenance and Reengineering. CSMR
’12. IEEE Computer Society, pp. 411–416.

[102] Rama, G. M., Feb. 2010. A desiderata for refactoring-based software
modularity improvement. In: ISEC ’10: Proceedings of the 3rd India
software engineering conference. Infosys Technologies Limited India,
ACM, pp. 93–102.

[103] Rasool, G., Arshad, Z., Nov. 2015. A review of code smell mining
techniques. Journal of Software: Evolution and Process 27 (11), 867–
895.

[104] Riel, A. J., 1996. Object-Oriented Design Heuristics, 1st Edition.
Addison-Wesley.

[105] Sabané, A., Di Penta, M., Antoniol, G., Guéhéneuc, Y.-G., Mar. 2013.
A Study on the Relation between Antipatterns and the Cost of Class
Unit Testing. In: CSMR ’13: Proceedings of the 2013 17th European
Conference on Software Maintenance and Reengineering. IEEE Com-
puter Society, pp. 167–176.

[106] Sahin, D., Kessentini, M., Bechikh, S., Deb, K., Oct. 2014. Code-Smell
Detection as a Bilevel Problem. ACM Transactions on Software Engi-
neering and Methodology (TOSEM) 24 (1), 6–44.

[107] Salehie, M., Li, S., Tahvildari, L., Jun. 2006. A Metric-Based Heuristic
Framework to Detect Object-Oriented Design Flaws. In: ICPC ’06:
Proceedings of the 14th IEEE International Conference on Program
Comprehension (ICPC’06). University of Waterloo, IEEE Computer
Society, pp. 159–168.

[108] Sharma, T., Nov. 2017. Detailed overview of software smells.
URL https://doi.org/10.5281/zenodo.1066043

[109] Sharma, T., Fragkoulis, M., Spinellis, D., 2016. Does your configuration
code smell? In: Proceedings of the 13th International Workshop on
Mining Software Repositories. MSR’16. pp. 189–200.

47

https://doi.org/10.5281/zenodo.1066043


[110] Sharma, T., Mishra, P., Tiwari, R., 2016. Designite — A Software
Design Quality Assessment Tool. In: Proceedings of the First Interna-
tional Workshop on Bringing Architecture Design Thinking into De-
velopers’ Daily Activities. BRIDGE ’16. ACM.

[111] Sharma, T., Spinellis, D., Nov. 2017. Definitions of a software smell.
URL https://doi.org/10.5281/zenodo.1066135

[112] Sharma, T., Spinellis, D., Nov. 2017. Selected Resources for a Litera-
ture Survey on Software Smells.
URL https://doi.org/10.5281/zenodo.1069330

[113] Sharma, V. S., Anwer, S., Dec. 2013. Detecting Performance Antipat-
terns before Migrating to the Cloud. In: CLOUDCOM ’13: Proceed-
ings of the 2013 IEEE International Conference on Cloud Computing
Technology and Science - Volume 01. IEEE Computer Society, pp. 148–
151.

[114] Sharma, V. S., Anwer, S., Jan. 2014. Performance antipatterns: De-
tection and evaluation of their effects in the cloud. In: Proceedings
- 2014 IEEE International Conference on Services Computing, SCC
2014. Accenture Services Pvt Ltd., India, Bangalore, India, IEEE, pp.
758–765.

[115] Silva, M. C. O., Valente, M. T., Terra, R., 2016. Does technical debt
lead to the rejection of pull requests? CoRR abs/1604.01450.

[116] Singh, S., Kaur, S., 2017. A systematic literature review: Refactoring
for disclosing code smells in object oriented software. Ain Shams
Engineering Journal.
URL http://www.sciencedirect.com/science/article/pii/

S2090447917300412

[117] Sjoberg, D. I. K., Yamashita, A., Anda, B., Mockus, A., Dyba, T., Aug.
2013. Quantifying the Effect of Code Smells on Maintenance Effort.
IEEE Transactions on Software Engineering 39 (8), 1144–1156.

[118] Smith, C., Dec. 2000. Software performance antipatterns. In: Pro-
ceedings Second International Workshop on Software and Performance
WOSP 2000. Performance Engineering Services, Santa Fe, United
States, pp. 127–136a.

48

https://doi.org/10.5281/zenodo.1066135
https://doi.org/10.5281/zenodo.1069330
http://www.sciencedirect.com/science/article/pii/S2090447917300412
http://www.sciencedirect.com/science/article/pii/S2090447917300412


[119] Soh, Z., Yamashita, A., Khomh, F., Guéhéneuc, Y.-G., 2016. Do Code
Smells Impact the Effort of Different Maintenance Programming Ac-
tivities? In: 2016 IEEE 23rd International Conference on Software
Analysis, Evolution, and Reengineering (SANER). IEEE, pp. 393–402.

[120] Sṕınola, R. O., Zazworka, N., Vetrò, A., Seaman, C., Shull, F., 2013.
Investigating technical debt folklore: Shedding some light on technical
debt opinion. In: Proceedings of the 4th International Workshop on
Managing Technical Debt. MTD ’13. IEEE Press, pp. 1–7.

[121] Stella, L. F. F., Jarzabek, S., Wadhwa, B., Dec. 2008. A comparative
study of maintainability of web applications on J2EE, .NET and ruby
on rails. In: Proceedings - 10th IEEE International Symposium on Web
Site Evolution, WSE 2008. National University of Singapore, Singapore
City, Singapore, IEEE, pp. 93–99.

[122] Stribrny, S., Mackin, F. B., Sep. 2006. When politics overshadow soft-
ware quality. IEEE Software 23 (5), 72–73.

[123] Suryanarayana, G., Samarthyam, G., Sharma, T., 2014. Refactoring
for Software Design Smells: Managing Technical Debt, 1st Edition.
Morgan Kaufmann.

[124] Suryanarayana, G., Sharma, T., Samarthyam, G., 2015. Software Pro-
cess versus Design Quality: Tug of War? IEEE Software 32 (4), 7–11.

[125] Tom, E., Aurum, A., Vidgen, R., 2013. An exploration of technical
debt. Journal of Systems and Software 86 (6), 1498 – 1516.

[126] Trubiani, C., Koziolek, A., Mar. 2011. Detection and solution of soft-
ware performance antipatterns in palladio architectural models. In:
ICPE ’11: Proceedings of the 2nd ACM/SPEC International Confer-
ence on Performance engineering. Karlsruhe Institute of Technology,
ACM, pp. 11–11.

[127] Tsantalis, N., Chaikalis, T., Chatzigeorgiou, A., Apr. 2008. JDeodor-
ant: Identification and Removal of Type-Checking Bad Smells. In:
CSMR ’08: Proceedings of the 2008 12th European Conference on Soft-
ware Maintenance and Reengineering. University of Macedonia, IEEE
Computer Society, pp. 329–331.

49



[128] Tsantalis, N., Chatzigeorgiou, A., Oct. 2011. Identification of extract
method refactoring opportunities for the decomposition of methods.
Journal of Systems & Software 84 (10), 1757–1782.

[129] Van Emden, E., Moonen, L., 2002. Java quality assurance by detecting
code smells. Ninth Working Conference on Reverse Engineering, 97–
106.

[130] Van Rompaey, B., Du Bois, B., Demeyer, S., Rieger, M., Dec. 2007. On
The Detection of Test Smells: A Metrics-Based Approach for General
Fixture and Eager Test. IEEE Transactions on Software Engineering
33 (12), 800–817.

[131] Vetr, A., Ardito, L., Procaccianti, G., Morisio, M., 2013. Definition,
implementation and validation of energy code smells: an exploratory
study on an embedded system. ThinkMind, pp. 34–39.

[132] Vidal, S., Vazquez, H., Dı́az-Pace, J. A., Marcos, C., Garcia, A.,
Oizumi, W., Feb. 2016. JSpIRIT: A flexible tool for the analysis of
code smells. In: Proceedings - International Conference of the Chilean
Computer Science Society, SCCC. Universidad Nacional del Centro de
la Provincia de Buenos Aires, Tandil, Argentina, IEEE, pp. 1–6.

[133] Vidal, S. A., Marcos, C., Dı́az-Pace, J. A., 2014. An approach to pri-
oritize code smells for refactoring. Automated Software Engineering
23 (3), 501–532.

[134] Wake, W. C., 2003. Refactoring Workbook, 1st Edition. Addison-
Wesley Longman Publishing Co., Inc.

[135] Wang, C., Hirasawa, S., Takizawa, H., Kobayashi, H., May 2014. A
Platform-Specific Code Smell Alert System for High Performance Com-
puting Applications. In: IPDPSW ’14: Proceedings of the 2014 IEEE
International Parallel & Distributed Processing Symposium Work-
shops. IEEE Computer Society, pp. 652–661.

[136] Yamashita, A., 2014. Assessing the capability of code smells to explain
maintenance problems: an empirical study combining quantitative and
qualitative data. Empirical Software Engineering 19 (4), 1111–1143.

50



[137] Yamashita, A., Moonen, L., 2013. Exploring the impact of inter-smell
relations on software maintainability: An empirical study. In: Pro-
ceedings of the 2013 International Conference on Software Engineering.
ICSE ’13. IEEE Press, pp. 682–691.

[138] Yamashita, A., Moonen, L., Dec. 2013. To what extent can mainte-
nance problems be predicted by code smell detection? - an empirical
study. Information and Software Technology 55 (12), 2223–2242.

[139] Zazworka, N., Shaw, M. A., Shull, F., Seaman, C., May 2011. Inves-
tigating the impact of design debt on software quality. In: MTD ’11:
Proceedings of the 2nd Workshop on Managing Technical Debt. Fraun-
hofer USA, Inc., ACM, pp. 17–23.

[140] Zhang, M., Hall, T., Baddoo, N., Apr. 2011. Code Bad Smells: A review
of current knowledge. Journal of Software Maintenance and Evolution
23 (3), 179–202.

51


	Introduction
	Contributions of this study

	Methodology
	Research objectives and questions
	Literature search protocol
	Literature search – Phase 1
	Literature search – Phase 2
	Literature search – Phase 3


	Results and Discussion
	RQ1: What is the definition of a software smell?
	RQ1.1: What are the defining characteristics of a software smell?
	RQ1.2: What are the types of smells?
	RQ1.3: How are the smells classified?
	Are smells and antipatterns considered synonyms?
	Implications

	RQ2: How do smells get introduced in software systems?
	Implications

	RQ3: How do smells affect the software development processes, artifacts, or people?
	Implications

	RQ4: How do smells get detected?
	Implications

	RQ5: What are the open research questions?
	Implications


	Conclusions
	Acknowledgements

