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a b s t r a c t 

This paper provides a proof of concept for the use of wearable technology, and specifically wearable Electroen- 

cephalography (EEG), in the field of Empirical Software Engineering. Particularly, we investigated the brain activity 

of Software Engineers (SEngs) while performing two distinct but related mental tasks: understanding and inspect- 

ing code for syntax errors. By comparing the emerging EEG patterns of activity and neural synchrony, we identi- 

fied brain signatures that are specific to code comprehension. Moreover, using the programmer’s rating about the 

difficulty of each code snippet shown, we identified neural correlates of subjective difficulty during code compre- 

hension. Finally, we attempted to build a model of subjective difficulty based on the recorded brainwave patterns. 

The reported results show promise towards novel alternatives to programmers ’ training and education. Findings 

of this kind may eventually lead to various technical and methodological improvements in various aspects of 

software development like programming languages, building platforms for teams, and team working schemes. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction 

According to the prolific software engineering researcher Robert

lass, “The most important factor in software work is not the tools

nd the techniques used by the programmers, but rather the quality

f the programmers themselves ” ( Glass, 2002 ). In support to this state-

ent, a significant number of studies advocate that a way to improve

oftware developers ’ productivity and software quality is to focus on

eople ( Boehm, 1988; Google Inc., 2014; Lee and Shneiderman, 1978;

ammet, 1983 ). Having this as common denominator, effort has been

ade to analyze from different perspectives the role of the human factor

n software development. For instance, several empirical studies have

mphasized the impact of the human factor in software engineering

 Capretz et al., 2015; Kosti et al., 2016; Kosti et al., 2014 ). These studies

se psychometric measurements in order to find connections between

actors, such as personality, job attitude and performance on one side,

nd preferences or project outcomes or effects on the other side. Soft-

are developers employ a number of distinct cognitive processes when

ngaged in one of the various tasks of software development, such as

oding, debugging and code comprehension. This has driven a number

f researchers to employ cognitive neuroscience in order to better char-
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cterize and understand programmers’ mental effort ( Parnin, 2011; Fritz

t al., 2014; Nakagawa et al., 2014; Siegmund et al., 2014; Floyd et al.,

017 ). 

Registering brain activity, and subsequently decode it, appears to be

 highly appealing procedure, since it opens the possibility to track the

orkings of the programmer’s brain in action. The opportunities extend

ven further. Such a brain-centered approach may allow the empiri-

al validation of theories regarding the cognitive processes associated

ith programming ( Soloway and Ehrlich, 1984 ), may offer novel al-

ernatives to programmers ’ training and education and can also lead to

echnical and methodological innovations in the field, such as improved

rogramming languages, APIs, or development platforms. If researchers

anage to measure and interpret brainwave patterns in terms of work-

oad induced by the different software development activities, then, it

ould become feasible to detect the types of activities that cause par-

icular stress or to compare alternatives for achieving a given goal in

erms of brain workload. Overall, monitoring the mind of programmers

ould lead to novel or enhanced practices in SE. Taking advantage of

ecent technological advances in mobile EEG scanners, we attempted

o characterize the electrical brain signals, recorded over the head and

n an unobstructed way while programmers were engaged in some of
rgiadis), dadam@mus.auth.gr (D.A. Adamos), laskaris@aiia.csd.auth.gr 
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Fig. 1. A) The employed Brain Computer Interface. B) The overall experimental procedure. 

Fig. 2. A) Emotiv EPOC electrode positions. B) An example of a syntax task as used in the experiment. C) A participant embedded in our BCI. 
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heir usual activities. The signals, known to form brainwaves, have been

xtensively studied for understanding cognition and were expected to

irectly reflect the underlying mental efforts. 

The goal of this study is to demonstrate an inexpensive technology

mobile EEG scanners) as a way to monitor a programmer’s mental ef-

ort. Hence neural correlates of programmers’ workload were sought

s a means to derive brain signatures indicating, in an objective man-

er, that they were experiencing some difficulty in performing the as-

igned task. If this exact sense of difficulty expressed by a programmer

ould be related to the brain signatures, then we could use this informa-

ion to quantify the effectiveness or usability of programming languages,

PIs, and development tools. The particular task we tried to explore was

rogram comprehension, which is an integral part in contemporary SE

ractice, i.e. in the context of code reuse. It requires various cognitive

rocesses, such as working memory and attention. In accordance with a

ecent study ( Siegmund et al., 2014 ) we contrast this task with the task

f inspecting code for syntax errors, which is a simpler one but of similar

ature and hence can provide us with a suitable baseline. More specif-

cally, in our experiment (see Figs. 1–2 ), the subjects performed tasks

hat came in pairs. The execution of a single task is referred to as a trial.
53 
Regarding the choice of these cognitive processes, they are prefer-

ble than other tasks in the software development life cycle or testing,

ith the most critical reason being the inherent technical issues in EEG-

ecordings. A “good-quality ” EEG signal can be obtained only when the

ubject avoids excessive movements (as we discuss in Sections 3.3 and

 ). The incorporation of the selected tasks leads to an experimental pro-

edure, which is easier to be controlled as the programmer fixates on

he screen for a certain amount of time. On the other hand, tasks as

ebugging or testing require physical involvement of the subject and

ncontrolled movements. Other tasks are of great interest as well, but

any steps remain to be taken and problems regarding the experimental

onditions need to be solved before targeting such an ambitious goal. 

During the first trial of the paired tasks, participants had to compre-

end the presented code snippets (comprehension task), while during

he second trial they had to detect the syntax errors injected in one

f the code snippets (syntax task). In a separate session, each partic-

pant provided a description of the code snippets and rated them re-

arding the difficulty in understanding. The signal analysis pipeline in-

luded standard steps leading from the multichannel signals to the detec-

ion of activation and co-activation patterns (see Fig. 3 ) that were then



M.V. Kosti et al. Int. J. Human-Computer Studies 115 (2018) 52–66 

Fig. 3. Exemplifying the signal-analytic procedure leading from the multichannel signal to the detection of activation and coactivation patterns based on a trial from 

a comprehension task. The wiring diagram (left) indicates the 14 sites at which the SP measurements are estimated and the 91 sensor pairs for which functional 

coupling estimates are derived. The traces (middle) correspond to 𝜃-band brainwaves. 
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ompared between tasks. Moreover, we proceed with a multivariate

nalysis, in order to model the relation between neural activity traits

nd task difficulty. 

The contribution of this paper is threefold: 

• It serves as a feasibility study about recording brain activity by

means of a low cost, commercial EEG device and analyzing the brain-

waves for the purpose of understanding and characterizing program-

mers ’ mental effort. 
• It demonstrates that patterns of brain activations and functional con-

nectivity can be used to form biomarkers that reflect the mental

workload induced in a programmer. 
• It introduces a method and a multivariate regression model that can

be used to estimate the programmer’s experienced difficulty during

code comprehension. 

The next section serves as an introduction to EEG, compares it with

ther neuroimaging techniques and discusses their use in the study of

rogrammers’ brain functionality. Section 2 discusses work having a

imilar direction to ours. Section 3 describes the experimental setup,

he adopted signal-analytic methodology and the multivariate regres-

ion prediction model methodology. Section 4 is devoted to results.

ection 5 discusses possible shortcomings of our approach. Section 6 in-

ludes a summary of this study and a discussion about future develop-

ents. 

. Background 

.1. EEG and cognitive load 

Since 1924, when studies of the human electroencephalography

EEG) began, research has mostly focused on clinical settings. Monitor-

ng in epilepsy and sleep disorders constitute the most typical examples

f the usage of this popular neuroimaging technique ( Niedermeyer and

a Silva, 2005 ). 

Surface EEG is usually defined as the electrophysiological, non– inva-

ive, measurement of (the net sum of) electrical activity of the brain. In

 simple EEG setup, tiny electrodes are placed on the scalp, after having

een moisturized with a conductive gel, and detect/measure electrical

ignals that are reflecting brain activity. Some systems though, use caps

r nets into which the aforementioned electrodes are embedded. In any

ase, the basic principle of EEG instrumentation is the transduction of

a net flux of) ionic currents among neurons into voltage fluctuations

falling in the range of microvolts), which are measurable at the elec-

rode positions over the cortex ( Niedermeyer and da Silva, 2005 ). 

The recorded signals present non-stationary oscillatory activity,

hich is usually characterized based on its spectral content (by means
54 
f Fourier transform) and its spatial distribution (reflecting instanta-

eous electrical fields). Even in the absence of any task, the EEG sig-

als reveal a continuously active brain, with a background activity (the

ongoing” EEG) that is accompanied by remarkably reproducible dy-

amic patterns. Due to the inherent EEG dynamics, the recent cognitive

tudies focus on the task induced modulations of background brain ac-

ivity. Conventionally the rhythmic activity (” brainwaves” or ” brain

hythms” ) is studied independently within one of the 6 frequency bands,

agged with a small Greek letter, and isolated by means of band pass

ltering. The following table ( Table 1 ) includes the standard partition

f brainwaves into frequency bands. It also accompanies them with a

typical ” physiological meaning, which only provides a very crude ap-

roximation that hides the true complexity of the underlying neural

rocesses. 

EEG has been widely used to in order to analyze, evaluate and assess

ognitive load (aka mental workload or simply workload) ( Berka et al.,

007; Das et al., 2013; Ferreira et al., 2014; Kumar, N. and Kumar, J.,

016; Lee, 2014; Zarjam et al., 2011; Zarjam et al., 2010 ). Cognitive

oad relates to the load on working memory when performing a mental

ask ( Paas et al., 2003 ). The human brain has limited processing capacity

nd endurance, which means that increased task difficulty will lead in

educed working memory accessibility and elevated cognitive load. 

Direct measures of mental workload with the use of EEG have not

nly been proven to be possible ( Coyne et al., 2009 ) but have also found

ractical application in many scientific areas such as adaptive training,

isualization effectiveness, video game learning rates etc. ( Coyne et al.,

009; Anderson et al., 2011; Mathewson et al., 2012 ). Zarjam et al.,

2010) investigated the possibility of mental workload assessment dur-

ng reading tasks. They suggested simple time-domain features of EEG

ignal that can reliably indicate the level of induced cognitive load. Such

ffirmation was also provided by later studies that employed spectral

eatures of EEG ( Ferreira et al., 2014; Das et al., 2013; Kumar, N. and

umar, J., 2016; Zarjam et al., 2011 ). More recent studies have reported

ore advanced feature engineering techniques towards the efficient and

ffective measurement of cognitive load (e.g. Dimitriadis et al., 2015 ). 

The main advantage of EEG, over the other two popular noninvasive

euroimaging techniques (fMRI: functional magnetic resonance imag-

ng, and fNIRS: functional near infrared spectroscopy) is that it provides

 direct measurement of the processes within the brain instead of an in-

irect measurement of either the blood flow or the metabolic activity.

dditionally, EEG-based methods are found to be more suitable due to

he high sensitivity EEG exhibits to cognitive states and task difficulty al-

ernations ( Antonenko et al., 2010 ). Moreover, it is associated with low

ost and features high temporal resolution ( Michel and Murray, 2012 ).

inally, it is becoming widely accessible as a part of the flow of wearable

echnology products ( Das et al., 2013 ). 
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Table 1 

Description of the standard EEG frequency bands. 

Band (Hz) Description 

Delta ( 𝜹) [1–4] Brainwaves associated with unconsciousness and deep sleep. 

Theta ( 𝜽) [4–8] State of somnolence and reduced consciousness. 

Alpha ( 𝜶) [8–12] Represents the state of physical and mental relaxation, although with awareness of what is happening around us. A bridge between our 

conscious thinking and subconscious mind. 

Beta 
||||
( 𝜷1 )[13−20] 

( 𝜷2 )[20−30] 
High frequency low amplitude brainwaves. Observed when awake. Involved in conscious thought and logical thinking. They tend to 

have a stimulating affect. The right amount of beta waves allows us to focus and complete school or work-based tasks easily. 

Gamma ( 𝜸) [30–100] Involved in higher processing tasks and cognitive functioning. Important for learning, memory and information processing. 
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1 http://emotiv.com. 
.2. Related studies on program comprehension 

A number of studies have adopted techniques for monitoring brain

ctivity in order to explore code understanding and program compre-

ension. A recent work by Siegmund et al. (2014) employed fMRI with

he scope of gaining insights into brain activation during program com-

rehension. fMRI is a neuroimaging procedure which captures brain

ctivity based on the hemodynamic response of the brain, that is the

hange in blood flow related to energy use by brain cells (oxygena-

ion changes in the brain). Particular brain areas, known to be asso-

iated with specific cognitive processes were identified by comparing

he Blood Oxygenation Level Dependent (BOLD) signals in comprehen-

ion and syntax tasks. Additionally, Floyd et al. (in press) performed a

ontrolled experiment involving 29 participants using fMRI. They exam-

ned code comprehension, code review and prose review and concluded

hat neural representations of programming languages are different from

he representation of natural languages. Additionally, they provided ev-

dence that this differentiation is modified with experience. 

Nakagawa et al., (2014) employed fNIRS using a wearable device.

NIRS is also a noninvasive neuroimaging technique that localizes the

emodynamic response to a limited depth from the skull surface. The au-

hors demonstrated high cerebral blood flow while understanding code

nd suggested the use of fNIRS during program development to mea-

ure mental workload. Ikutani and Uwano (2014) also used fNIRS and

dentified significant differences in brain activity, when the participants

ried to understand code snippets that required variable memorization.

he study concludes with the observation that the increased frontal pole

ctivations reflected workload related with short term memory. 

In the study of Kluthe (2014, Master’s Thesis ), EEG was used to ex-

lore the activations in alpha and theta bands with the goal of detect-

ng different levels of expertise in undergraduate students. A later study

f Crk et al. (2016) also used EEG to investigate the role of expertise

n programming language comprehension. The study showed that the

lectrical brain activity was able to reflect prior programming experi-

nce and correlated with the self-reported experience levels. Finally,

ee et al. (2016) , independently confirmed that the EEG activity can

eflect expert ability in program comprehension. 

.3. Related studies on mental workload 

A recent study by Fritz et al. (2014) employed single channel EEG,

mong other physiological measurements, in an attempt to classify, in

 binary way, the difficulty of code comprehension tasks. To achieve

his goal, a Naïve Bayes classifier was trained to predict the difficulty

f code comprehension tasks as reported by the participants. Müller

lso examined the possibility of predicting, by means of a classifier,

hether a given code-comprehension task was perceived as easy or

ifficult using biometric data ( Müller, 2015 ). A year later, Fritz and

üller (2016) trained a Naïve Bayes classifier to predict the perceived

ask difficulty combining biometric data from three sensors (eye tracker,

DA: electro-dermal activity and EEG). Finally, Lee et al. (2017) trained

 Support Vector Machine classifier to predict task difficulty using both

ye-tracker and EEG. 
55 
While our work shares with all the previous ones the goal of pre-

icting the difficulty in a comprehension task, it differs with respect to

he following methodological aspects: To begin with, we attempt to pre-

ict the experienced difficulty, and hence to quantify the involved men-

al workload using more than two discrete levels. To achieve this goal,

e use ordinal regression, which is a discriminative model technique,

nstead of employing generative classifiers. We consider this approach

ore suitable due to the ordinal nature of the dependent variable. Fi-

ally, apart from activation patterns, we also analyze phase synchrony

atterns as these are captured by means of a quite affordable, wireless

nd wearable EEG device. 

. Material and methods 

.1. Outline-Motivation 

Our study was built over the experimental design of an earlier work

 Siegmund et al., 2014 ). However, we recorded EEG instead of fMRI

ctivity (for the reasons discussed in Section 2.1 ); mainly, due to the re-

uced inconvenience imposed by the measurement itself. As an example,

MRI requires subjects to be motionless, which is inconvenient and dif-

cult to achieve. An important contribution of this work is the use of an

ffordable (around $800) consumer-grade EEG device (Emotiv EPOC 

1 ).

 further advantage of this device is the fact that the recorded data

re transmitted wirelessly, giving mobility tolerance to the participants

uring the experiment. This device was used in previous cognitive load

easurement studies ( Anderson et al., 2011 ). Such wearable devices

ay bridge the gap between clinical EEG and activities in a working

nvironment and can also facilitate novel human-computer interactions

or both practical purposes and scientific explorations. Regarding the

eature-engineering step, apart from the conventionally used spectral

eatures, we derived patterns of functional connectivity, which are con-

idered to reflect additional aspects of the neural substrate supporting

uman cognition. Finally, instead of training a classifier, we tried to

uild a prediction model using ordinal regression. Our goal was to pre-

ict experienced difficulty, quantified in more than 2 discrete levels. De-

iating from the relevant studies that employ generative classifiers, here

e used ordinal regression, which is a discriminative model technique

hat takes into account the ordinal nature of the dependent variable. 

.2. Subjects 

Ten volunteers participated in this study. They all had some kind of

onnection with the Aristotle University of Thessaloniki (AUTH), either

s present or past students or as employees. Specifically, 8 of our subjects

ere males and 2 females. Their ages ranged from 25 to 37 years old.

hey all had experience with the C programming language, either from

heir studies or from their professional occupations. 

http://emotiv.com
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.3. Experimental procedure 

Previous to the experiment, participants were carefully instructed

bout the recording scheme and its requirements. Moreover, we pro-

ided them with a printed instruction pamphlet (tutorial), for which

hey were given time to read thoroughly. After reading the pamphlet

nd our oral instructions, the subjects were motivated to make ques-

ions in order to eliminate as much as possible any misunderstandings

r miscomprehensions about the process. Finally, they gave us written

onsent in order to be able to go on with the procedure. The main com-

onents of our procedure are depicted in Fig. 1 . 

Before placing the headset and starting the recording, the subject sat

omfortably in an armchair. We motivated them to try different seat-

ng positions in order to achieve the most comfortable one. Since EEG

easurements are very sensitive to movements, which add noise to the

ecorded signals, we asked the participants to avoid as much as possi-

le excessive body movements, head movements and facial expressions.

hen necessary, they were instructed to confine these activities dur-

ng the resting periods between trials. Furthermore, during the record-

ng session we carefully observed the participants and rated their facial

ovements and expressions in order to use that information later, dur-

ng the data selection (or artifact elimination) step. We operated our ex-

eriments, or recordings, at different time slots of the day. More specifi-

ally we split the days into 3 time slots, namely: morning (8:00 - 12:00),

oon (12:00 - 16:00) and afternoon (16:00 - 20:00). Our subjects were

llowed to choose the time slot where they felt they would perform best.

Finally, at the end of the recording session, each participant was

sked to answer a questionnaire. It is standard practice in EEG-

ecordings to not interrupt the flow of recording for various technical

easons (e.g., the battery exhaustion) and also to ensure that the brain

ctivity data of interest are isolated from rest activations (e.g., those that

ould be invoked during an intermediate reporting of ratings). These

ere the reasons we chose to give the questionnaire to the subjects af-

er the actual experiment. 

This questionnaire specifically contained questions regarding the dif-

culty of each code snippet presented to the subjects. This means that

very subject, after the experiment, had to rate from a [1–5] range all the

ode snippets presented during the comprehension task. The collected

atings were used (1) to correlate the subjective level of difficulty with

he recorded activity and (2) to build a model that can directly translate

he EEG-related measurements into mental workload levels. Apart from

he individual ratings, the participants also provided a short description

bout the purpose and function of each snippet that was presented to

hem during the experiment. These answers were evaluated by an expert

nd used to investigate the correlation between the subjective difficulty

xperienced by the programmer during code comprehension and his or

er final performance in interpreting the code. 

.4. Experimental sessions and tasks 

In a series of pilot experiments (without the use of EEG scanner), we

ad tested various parameters of the experimental set up, such as the

ecessary time interval for completing a task, the minimal sufficient rest

eriod between successive tasks and the independence between com-

rehension and syntax tasks. All parameters were finally set in a way

o keep the whole recoding procedure as quick and simple as possible.

ach individual experiment lasted no more than 60 minutes, with ev-

ry session lasting no longer than 11 minutes. All the recordings were

arried out in the Department of Informatics at AUTH. Exceptional care

as taken to conduct the experiments in a quiet room where no outside

oise could distract the subjects. 

During the experiment, the subjects seated in a typical working desk,

s found in a typical working environment. Before the actual experi-

ent, each participant performed a few pilot trials to familiarize with

he experimental procedure. The tasks presented to the participants

omprised 20 basic algorithms encoded in C, which are widely used
56 
n university classes, such as, least common multiple, matrix multipli-

ation, bubble sort, etc. 

In order to be able to create pairs of comprehension and syntax tasks

e injected syntax errors into these 20 code snippets. Each subject had

o perform either of the two tasks, denoted hereafter as comprehension

nd syntax, which came in pairs. The pairs presented to each subject,

y session and by task, are shown in Table 2 . 

Therefore, our experimentation process was divided into 4 sessions

see Fig. 1 ). Each session of the experiment comprised 5-paired trials,

hat is, 5 pairs of comprehension and syntax tasks. In a nutshell, the

eneral scheme of each experimental round was as follows: (a) Compre-

ension task (60 seconds), (b) Period of rest (20 seconds), (c) Syntax

ask (30 seconds) and (d) Period of rest (20 seconds). Before each task,

n appropriate sign was presented to the subject to reduce the possibil-

ty of confusing the type of upcoming task. The intervals of 60 seconds

nd 30 seconds for the comprehension and syntax task, respectively, had

een set -somehow arbitrarily- to the typical (average) temporal dura-

ion necessary for a programmer to accomplish the employed tasks. This

as a rough estimate derived from our independent preliminary exper-

mentation with the recording protocol. 

.5. Recordings 

EEG signals were recorded using the headset Emotiv EPOC, which

ncludes 14 active electrodes, according to the 10–20 international sys-

em (with a spatial arrangement as shown in Fig. 2 A). The name 10–20

efers to the actual distances between adjacent electrodes. They either

re 10% or 20% of the total front-back distance of the skull or 10% or

0% of the right-left one. In Fig. 2 A, each letter identifies the lobe loca-

ions and each number identifies the hemisphere location. The letters F,

, C, P and O stand for frontal lobe, temporal lobe, central lobe, parietal

obe and occipital lobe respectively. Even numbers refer to the electrode

lacement on the right hemisphere and the odd numbers on the other

and represent those placed on the left hemisphere. The signals were

ecorded with a sampling frequency of 128 Hz and filtered within [0.5–

5] Hz. OpenSesame software ( Mathôt et al., 2012 ) was used for au-

omating the experiment setup. The synchronization procedure (event-

riggering/marking) between OpenSesame and Emotiv’s EEG recording

oftware was implemented as in ( Adamos et al., 2016 ). 

There was an initial recording of subject’s resting state for 70 sec-

nds. Then the recording of the two cyclically repeated tasks was per-

ormed. Different images conveying the comprehension and syntax tasks

ere randomly chosen from separate pools. The images for the compre-

ension task were presented for 60 seconds, while the images for the

yntax task for 30 seconds. There was an interleaved period of rest last-

ng for 20 seconds, during which a counter was indicating the time left

efore the next task and the type of the task. During that period the

ubject was free to blink, shallow, etc. An example of a syntax task is

epicted in Fig. 2 B. When a subject had the feeling that he or she had

lready comprehended the presented snippet or found all the injected

rrors, he/she should press the spacebar. 

In Fig. 2 C we present the setup of the experiment with the subject in

lace, in front of the screen and with the headset attached. 

.6. Data analysis 

EEG Preprocessing: During offline processing the continuously

ecorded signals, from each recording session, were segmented into tri-

ls based on the timestamps associated with the triggers. This step re-

ulted into 1 trial of resting state activity, 20 trials of brain activity dur-

ng the comprehension task and 20 trials of brain activity during the syn-

ax task for each subject. Using an automated procedure ( Laskaris et al.,

997 ), trials contaminated by artifacts (e.g. eye movement) were de-

ected and excluded from further analysis. The standard EEG frequency

ands were defined as shown in Table 1 ). Band-limited brain activity

as derived by applying a third-order Butterworth filter ( Temes and
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Table 2 

Pairs of comprehension and syntax tasks, per session, per trial. 

Session Trial Comprehension Syntax 

1 1 Factorial Least common multiple 

2 Find max in a list of numbers Reverse string 

3 Cross sum, sum of digits Sum from 1 to n 

4 Prime test Double entries of array 

5 Find middle number of three numbers Median on sorted data 

2 6 Power Factorial 

7 Swap Reverse entries of array 

8 Reverse string Greatest common divisor 

9 Decimal to binary Count same characters at same positions in String 

10 Reverse entries of array Binary search 

3 11 Median on sorted data Swap 

12 Count same characters at same positions in String Decimal to binary 

13 Sum from 1 to n Bubble Sort 

14 Check palindrome Prime test 

15 Double entries of array Cross sum, sum of digits 

4 16 Greatest common divisor Check palindrome 

17 Bubble Sort Power 

18 Binary search Find max in a list of numbers 

19 Matrix multiplication Find middle number of three numbers 

20 Least common multiple Matrix multiplication 
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2 http://www.mathworks.com/help/bioinfo/ref/rankfeatures.html. 
aPatra, 1977 ) (in zero-phase mode). With this step, the brain activity

ssociated with each of the 6 distinct brains rhythms was treated inde-

endently. For each brain rhythm, two distinct brainwave patterns were

erived from the multichannel signal, described as follows. 

Signal Power (SP) measurements: At the first stage of analysis we

easured, for each sensor separately, the total signal energy residing

ithin each frequency band during every trial (see Fig. 3 ). By taking

nto account the duration of each trial, we transformed the signal en-

rgy measurements to power estimates. The SP measurements were av-

raged across trials so as to compare the activation between syntax and

omprehension tasks. 

Results, expressed as relative differences in the form: 

SP 𝐴 − SP 𝐵 
SP 𝐵 

, 

 ∶ “comprehension”, B ∶ “syntax” (1) 

ere first computed for each subject independently and then averaged

cross subjects. The SP measurements within a particular frequency

and (or brain rhythm), were additionally treated as activation patterns,

hich reflected globally the neural activity during a trial. These were

4 dimensional (14D) vectors, with each attribute corresponding to the

P at a specific sensor (as indexed in Fig. 3 ). 

Functional Connectivity measurements: At the second stage of

nalysis, we encountered phase synchrony measurements as an ad-

anced way to characterize the cognitive processes that underlie the

erformance to the delivered tasks. Phase synchrony is known to reflect

he coordination among distinct neural subsystems that is necessary for

erforming various cognitive tasks. Its role in cognition is well estab-

ished and various measures have been introduced so as to quantify its

resence. This kind of estimators operates on the multichannel signals

most often by searching for statistical (functional) dependencies among

ensors in pairwise fashion) and detects specific patterns of functional

onnectivity associated with the execution of a particular task. In the

ramework of this study, phase synchrony was examined from the per-

pective of describing the brain network(s) during code comprehension

nd while debugging code. 

For each brain rhythm, the signals from the 14 recording sites were

sed to estimate a connectivity pattern that reflected the neural syn-

hrony among brain areas and characterized the subject’s cognitive per-

ormance for a given set of trials (i.e. from syntax task, comprehension

ask) ( Dimitriadis et al., 2012 ). 
57 
Phase Locking Value (PLV): To detect phase synchrony based on

he bandpass filtered signals from two recording sites, we adopted the

LV estimator ( Lachaux et al., 2000 ). PLV ranges between 0 and 1,

nd quantifies the phase interrelations between rhythmic activities reg-

stered at different sensors. It is applied in pairwise fashion and has

roven efficient for sketching the connectivity pattern of the underly-

ng neural network(s). In our case it was applied to all pairs formed

mong the 14 sensors. Since it is by definition a symmetric mea-

ure (i.e. PLV(sensor 1 ,sensor 2 ) = PLV(sensor 2 ,sensor 1 )), its application

esulted to connectivity patterns residing in a 91-dimensional space

14 ×13/2 = 91; see Fig. 3 ). The pattern formation step was repeated

or each trial independently and the trial dependent patterns were

tored for each task separately. In this way, subject–specific groups of

unctional connectivity patterns were formed for each condition (syn-

ax/comprehension) and for each brain rhythm. These groups of pat-

erns were contrasted in pairwise manner as described below. 

Pattern Analysis: We derived a discriminability score for the at-

ributes included in both types of utilized brainwave patterns, i.e. the

ctivation patterns stemmed from the SP-measurement and the con-

ectivity patterns emerged from the PLV-measurements. To this end

e employed the feature ordering scheme implemented in MATLAB

 MATLAB, 2013 ), i.e., the rankfeatures 2 command using the “Wilcoxon ”

riterion. To facilitate the comparison between the 6 brain rhythms, we

resented the results in direct contrast. In order to gain some insights

nto the neural mechanisms, the results were also presented topograph-

cally. 

From brainwave patterns to workload estimates: At this point

e will present and explain the methodology (see Fig. 4 ) followed in

rder to build a model that can predict the difficulty ratings provided by

ur subjects. These are based on the EEG derived measurements, which

eflect the workload of a programmer trying to comprehend code. 

In a nutshell, the steps shown in Fig. 4 are as follows: 

• Step 1. Use LASSO (as implemented in Matlab) to derive a subset of

possible predictors. 
• Step 2. Use PLUM (Ordinal Regression procedure in IBM Statistics)

with the subset given from LASSO. 
• Step 3. Check predictors ’ statistical significance. 

http://www.mathworks.com/help/bioinfo/ref/rankfeatures.html


M.V. Kosti et al. Int. J. Human-Computer Studies 115 (2018) 52–66 

Fig. 4. Model construction and improvement cycle. 
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Table 3 

Number of predictors per used dataset. 

Measurements used No. of predictors 

SP 84 

PLV 546 
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• Step 4. Exclude one by one the less significant predictors from the

model until a trade-off is achieved between the significance of the

predictors and the final predictive power of the model. (Model eval-

uation) 
• Step 5. Repeat 1, 2, 3 and 4 until the optimal model is achieved. 

The dependent variable of the model, derived by the answers given

y the subjects and related to the difficulty of each comprehension task,

s of ordinal nature and has values from 1 to 5, with 1 meaning "Very

asy" and 5 "Very Difficult". The collected ratings are shown in Figs. 10 a

nd 10 b and explained in Section 4.3 . This was the reason of opting for

rdinal Regression (OR) to model the desired relation. 

The OR method is a generalization of the Linear Regression (LR)

ethod. The OR method is used to model the relationship between an

rdinal (dependent variable) and a set of predictors variables, either cat-

gorical or continuous. The categorical values of an ordinal variable are

epresented by sequential integers, with the lowest one representing the

rst category and so on. The procedure builds a separate equation for

ach category and each equation provides us with a predicted probabil-

ty for each category. The cumulative probability of the first category

s always 1, therefore there is no need for a prediction equation for the

ast category. The set of prediction equations of the OR technique are of

he form: 

𝑖𝑛𝑘 ( 𝛾𝑗 ) = 𝜃𝑗 − 

𝑘 ∑
𝑖 =1 

𝛽𝑖 𝑥 𝑖 , (2)

here 𝛾 j is the cumulative probability for the jth category, 𝜃j is the

hreshold for the jth category, 𝛽1 ... 𝛽k are the regression coefficients,

 1 ... x k are the predictor variables and k is the number of predictors.

he left side of Eq. 2 represents the link function of the model. The link

unction is the function of the probabilities that results in a linear model

n the parameters. It defines what goes on the left side of the equation

nd it is the link between the random component on the left side of the

quation and the systematic component on the right. The component

n the right side determines the location of the model (different from
58 
he lobe location described in other parts of the paper). In our study we

sed the Logit function, ln ( 𝛾

1− 𝛾 ) , as a link one ( Harrell, 2015 ). 

More precisely, we used IBM’s statistics PLUM, which is the equiva-

ent procedure for running OR. This procedure makes use of a general

lass of models and can analyze the relations between a polytomous

rdinal dependent variable and a set of predictors ( IBM Corp., 2013 ). 

Experimentations were carried out using the SP and PLV measure-

ents described above. Table 3 shows the number of predictors per each

ype of EEG measurements. In the former case (SP: ‘‘brain activation ”),

s it can be seen in Table 3 , 84 independent variables were used. Ev-

ry one of them related to the signal power measurement at every brain

ensor (out of 14) and for every frequency band (6 in total). In the lat-

er case (PLV: ‘‘functional connectivity ’ ’ ), 91 measurements per fre-

uency band were used (a number resulting by the possible pairwise

ombinations of the 14 sensors attached to the subjects ’ head. Since or-

inal regression itself does not provide an automatic predictor selection

ethod, e.g., similar to stepwise regression, we had to choose a method

hat would operate separately from ordinal regression so as to signifi-

antly decrease the number of possible predictors. To serve this scope,

e exploited LASSO ( Tibshirani, 1996 ). The LASSO step precedes that

f PLUM application and that of the exclusion of those PLUM predictors

hat had significance levels under the adopted baseline of p < 0. LASSO

s a regularization technique that, in addition to minimizing the sum

f the squared errors accomplished by a SLR (Standard Linear Regres-

ion), also introduces an additional term to the minimization problem.

amely, instead of solely minimizing the sum of squared errors, it also

inimizes the sum of the absolute value of the regression coefficients,
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Fig. 5. Topographical representation of Wilcoxon score contrasting the SP measurements between comprehension and syntax task. 

Fig. 6. Top: Tabular representation of Wilcoxon score contrasting the phase synchrony between comprehension and syntax task. Bottom: Topographical arrangement 

of the top 20 links. 
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3 https://www.nitrc.org/projects/bnv/. 
hich are multiplied by a weight parameter, known as 𝜆 (lambda). Pa-

ameter 𝜆 can take values from zero to one. As the LASSO procedure

rogresses, the 𝜆 parameter increases in size while the regression coef-

cients shrink towards zero. We applied LASSO using the homonymous

unction in Matlab. 

Finally, we evaluated our models comparing the actual difficulty rat-

ngs to the predicted ones primarily by using the Spearman correlation

nd, additionally, Mean Absolute Error (MAE). We believe that 

Spearman rho provides a more appropriate prediction power eval-

ation metric because of the nature of our dependent variable. As our

ubjects used ordered ranks to express the difficulty of the comprehen-

ion process, our aim is to check if our model continues to respect that

anking. Moreover, we used cross tabulation to check the relationship

etween the actual and predicted difficulties along with a Chi-Square

tatistic. More specifically, by applying cross tabulation, we actually

ssess the percentages of the predicted difficulties that were classified

n the correct difficulty category. To make the notion of this evalua-

ion metric simpler, it can be paralleled with the adjusted R squared of

he SLR (Simple Linear Regression). In Table 3 this evaluation measure,

amely the classification percentage, is presented in the third column

f the table under the name Class . 

. Results 

.1. Comprehension vs. Syntax task 

The comparison of SP measurements indicated that Comprehension

s in general a more demanding task. Brain activity is heightened over

rontal areas, mainly in the 𝛽2 band. Fig. 5 (see above) includes the to-

ographical representation of the discriminability score, which reflects

he existence of consistent statistical differences between trials of Com-

rehension and Syntax task (the higher the score the more different the

evel of activation between the two tasks). 

The comparison between the synchrony patterns leads to an even

ore clear distinction between the Comprehension and Syntax tasks.

ased on the connectivity patterns (91D vectors or equivalently
59 
14 ×14] matrices) corresponding to the trials of either task, we derived

 [14 ×14] matrix tabulating the discriminability scores for all sensor-

airs (for each subject independently). The top row of Fig. 6 depicts the

btained matrices, after across-subjects averaging, for all 6 frequency

ands. It is important to notice that the maximum entry reaches the

alue 2.4 for the Wilcoxon score, which is significantly higher than the

aximum reached through the SP measurements (shown in Fig. 5 ). 

To bring these results in a more neuroscientific context, we identified

he 20 strongest entries (across all frequency bands) and drew them

s links between the corresponding sensors over the scalp. The bottom

ow of Fig. 6 clearly indicates that the aspects of phase synchrony that

istinguish mostly the processes of Comprehension and Syntax include

nterhemispheric interactions within 𝜃 and 𝛽2 bands. 

Finally, to further facilitate insightful observations about the func-

ional organization of the brain, we adopted a novel topographical rep-

esentation that was based on the idea to “bring all rhythms ” in a com-

on topography and exploited BrainNet Viewer. 3 Fig. 7 includes all the

elected links, color-coded according to the band in which they were

ormed. Interestingly, between the 2 concurrent pairs, there is a pair of

and 𝛽2 links corresponding to interhemispheric interactions. Consid-

ring that the activity in 𝜃-band is often interpreted as a signature of

orking memory ( Jensen and Tesche, 2002 ) and the activity of 𝛽-band

s usually associated with concentration and increased mental effort, it

ecomes clear that there is a difference between the level of efforts re-

uired for the comprehension and syntax task. This difference is clearer

n the pattern of neural synchrony than in the pattern of neural activa-

ions. 

By using PLV measurements we were able to extract richer informa-

ion regarding the activity of the brain when a SEng performs these two

asks. This empirical finding reflects, at the neural level, that the syntax

ask, being actually a search for rule violation, is executed more easily

han the code comprehension task, which calls for the mental simulation

f code execution. 

https://www.nitrc.org/projects/bnv/
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Fig. 7. Comprehension vs. Syntax task: Topographical representation of the 20 

most discriminative pairwise phase interactions. 
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.2. Neural correlates of programmer’s workload 

Prior to the presentation and report of our model it is interesting to

emonstrate that the programmer’s workload (as registered during the

riefing after each experiment) correlates with the pattern of brain’s

ctivation (i.e. SP measurements) and the pattern of functional connec-

ivity (i.e. PLV measurements). 

Observing Fig. 8 we can clearly see in the heat map that the ‘‘gen-

ral trend ’ ’ is a strong correlation between brain activation in the higher

ands ( 𝛽1, 𝛽2 and gamma) and a programmer’s workload. Fig. 9 , on the

ther hand indicates a more complex relation between connectivity and
ig. 8. Spearman’s RHO correlation between SP (at a sensor and frequency band) 

ctivations (P < 0.001; Bonferroni corrected) are shown. 

60 
orkload. There are positive correlations between couplings and work-

oad within the two lowest bands and within 𝛽2. There are also signifi-

ant negative correlations between coupling within the 4 lowest bands

nd the programmer’s workload. These observations indicate that dur-

ng code comprehension, the coordination between distinct brain areas

ollows a more composite scheme with only few of them engaged to-

ether through phase synchrony. 

.3. Predicting workload 

The primary goal of our study was to model the relation of the sub-

ective sense of difficulty (regarding a delivered comprehension task)

ith brain activity signatures reflecting the mental workload (induced

hile accomplishing this task). The subjective sense of difficulty was

uantified by asking each participant to rate the comprehension tasks

n a range from 1 to 5. The collected ratings for each subject are shown

n Figs. 10 a and 10 b below. As we can observe form the two figures,

ubjects 1, 3 and 4 were those that found the tasks easier than the oth-

rs. 

In order to provide more information and additional statistics on the

ay our subjects responded regarding the difficulty of the comprehen-

ion tasks presented to them during the experimentation sessions, we

resent two extra figures representing the ratings of the task difficulties

cross subjects (see Fig. 11 ) and the task difficulty ratings across tasks

see Fig. 12 ). The red, blue and green lines represent the maximum,

edian and minimum rating values respectively in each figure. From

ig. 11 we understand that the most difficult tasks of our experiment,

s rated by the subjects based on Median > 3.5, were Task 11, 17, 19

nd 20 corresponding to the median on sorted data, bubble sort, matrix

ultiplication and the least common multiple respectively (see Table 2 for

umber-tasks associations) . Moreover, from Fig. 12 and examining all

hree lines we can conclude that the Subjects having more difficulties in

he comprehension of the tasks were Subjects 6, 7, 8, 9 and 10. 

Furthermore, with the aim of accomplishing the abovementioned

odeling, we experimented thoroughly using distinct types of brain ac-

ivity measurements (SP and PLV). These measurements have been al-

eady presented and explained in Section 3.5 . Moreover, we used an

dditional predictor in our models. We added a categorical variable
and programmer’s reported difficulty in code understanding. Only significant 
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Fig. 9. Spearman’s RHO correlation between PLV (at every sensor-pair) and programmer’s reported difficulty in code understanding. Only significant couplings 

(P < 0.01; Bonferroni corrected) are shown. 

Fig. 10. a) The ratings of subjects 1–5 for the 20 given comprehension tasks and b) The ratings of subjects 6–10 for the same tasks. 

r  

t  

w  

j

 

c  

(

 

6  

i  

s  

c  

s

 

t  

p  

v  

o  

d  

s

 

i

l

f

w

𝜃

epresenting every subject with values from 1–10. The reason we used

his extra variable was our need to ensure that the developed model

ould be a global one (working independently, regardless of the sub-

ects participated in the experiment). 

Table 4 shows the best models attained by the aforementioned pro-

edure for the two datasets used. All models were statistically significant

 p ≪ 0.0001 ). 

The predictor coefficients for each model are shown in Tables 5 and

 , under the Estimate column. The abbreviations used for the predictors

n Tables 5 and 6 refer to the band of the estimator using the corre-

ponding letter (see the mapping on Table 1 ) followed by a parenthesis

ontaining the sensor number (see Fig. 2 ) or the sensor pair (sensor i ,

ensor j ) , for the SP and PLV models respectively. 

Since the predictors in the case of the SP model were logarithmically

ransformed, using the natural logarithm log e ( x ), the abbreviations of

redictors in this model are preceded by an (ln_) part, i.e. the ln_ 𝛾(4)

ariable corresponds to the logarithmically transformed Signal Powers

f the gamma band in sensor 4 . Moreover, as shown in both tables, un-

er the Sig. column, all the participating predictors were statistically

ignificant ( p ≤ 0.05). 
61 
Based on the Threshold and Location the equation of the SP model

s: 

ink ( 𝛾𝑗 ) = 𝜃𝑗 − (−0 . 42 ∗ ln _ 𝛾(4) + 0 . 41 ∗ ln _ α(7) − 0 . 36 ∗ ln _ α(4) 

+ ... + 0 . 1 ∗ ln _ δ(8) + subjec t n ) , (3) 

or j = 1, 2, 3, 4 and n = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 

here, 

𝑗 = 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

−4 . 042 if 𝑗 = 1 
−2 . 611 if 𝑗 = 2 
−1 . 088 if 𝑗 = 3 
0 . 092 if 𝑗 = 4 

⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭ 
and subject 𝑛 = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

−2 . 01 if 𝑛 = 1 
−1 . 78 if 𝑛 = 2 
−2 . 39 if 𝑛 = 3 
−2 . 42 if 𝑛 = 4 
−0 . 33 if 𝑛 = 5 
−0 . 77 if 𝑛 = 6 
−0 . 14 if 𝑛 = 7 
0 . 37 if 𝑛 = 8 
−0 . 32 if 𝑛 = 9 
0 if 𝑛 = 10 

⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ 
Likewise, the PLV model is reflected in the following equation: 
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Table 4 

Evaluation of the three best models for each dataset, the values of each column (Spear- 

man rho, Classification percentage (Class.), MAE (Mean Absolute Error)) were calcu- 

lated comparing the actual difficulty values with the ones predicted by each prediction 

model. 

Spearman rho ( p ≪ 0.0001) Class. MAE Nr. of predictors 

SP model 0.76 44% 0.58 28/85 

PLV model 0.78 55% 0.51 17/547 

Table 5 

Parameter estimates of the SP model (Diff = rated Difficulty). 

62 
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Table 6 

Parameter estimates of the PLV model (Diff = rated Difficulty). 

Fig. 11. Comprehension task ratings across subjects. 

l

f

Fig. 12. The ratings given by the subjects across tasks. 
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ink ( 𝛾𝑗 ) = 𝜃𝑗 − (−8 . 86 ∗ 𝛿(3 , 7) + 10 ∗ 𝛽2(5 , 6) − 13 . 84 ∗ 𝛽1(11 , 14) 

+ 13 . 91 ∗ 𝛾(4 , 6) + ... − 0 . 42 ∗ 𝛿(9 , 11) , (4) 

or j = 1, 2, 3, 4, where 𝜃𝑗 = 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

−10 . 67 if 𝑗 = 1 
−8 . 600 if 𝑗 = 2 
−6 . 21 if 𝑗 = 3 
−4 . 34 if 𝑗 = 4 

⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭ 

63 
Positive coefficients of the predictors ’ coefficients ( 𝛽-values) show

hat, as the values of the independent variables increase, the likelihood

f larger scores of the dependent variable increases as well. Examining

he predictors that participate in both models, SP and PLV, we cannot

ump to conclusions on whether a specific band affects more the total

ssessed workload, either positively or negatively, or whether a specific

obe participates more than the others in the estimation of mental effort
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ased on code comprehension. This is because we have predictors in the

odel from a variety of bands and brain location. 

The PLV-related model, in contrast to the SP-based one, did not in-

lude the subject category variable as a predictor, which in addition to

ts predictive power is appointed as the preferred model achieved in our

tudy, as it assesses mental workload independently of the subjects ’ par-

icipation in the experiment. From Table 4 it is clear that the use of the

LV measurements expresses better the relation between the difficulty

f a comprehension task and the workload of a software engineer. 

Finally, it is important to mention here the results from correlating

he reported difficulty levels with the evaluation of the code descrip-

ions, both provided during the briefing session after the recordings

see Section 3.3 ). We found a strong and statistically significant cor-

elation between the two measurements. These results are important as

hey practically indicate that the subjects ’ perception of difficulty corre-

ponded to their concrete level of understanding about each presented

ode snippet. Moreover, this shows that the use of their ratings in the

odel had a sound basis and showed the true difficulty, which reflected

n their code snippets. 

. Threats to validity 

In studies involving measurements of human processes and perfor-

ance, limitations are inevitable. Our study is no exception and some

otes are in order regarding some practical issues that relate to the sen-

itivity of EEG in its ” mobile” version. EEG is sensitive to head/body

ovements and even face expressions. Such activity, whenever present,

s translated into noise that contaminates the brain signal. A real-time

e-noising algorithm (e.g. Hsu et al., 2016 ) should therefore precede the

stimation of workload. 

Furthermore, one of the advantages of using an off-the-shelf wireless

EG device is the provided mobility and flexibility it offers to the par-

icipants and the researchers regarding the place it will be used and the

anner it will be managed by the participants. The whole idea of such a

etting is to faithfully represent a programmer’s working environment.

his benefit of working under normal conditions was somewhat com-

romised when we asked our participants to constrain their movements

nd facial expressions. However, this is the standard practice in EEG

tudies for registering brain activity reflecting mainly the cognitive task

nder investigation. 

Moreover, regarding the device chosen for the experiment, despite

ts low cost and provided flexibility, it cannot replace the high accuracy

iven from ambulatory EEG or other ambulatory devices, which on the

ther hand are much more expensive for academic use. 

The generalizability of the obtained results is also difficult to as-

ertain. Consequently, although it would be tempting to infer that the

rocess can be used to evaluate the mental workload associated with

rbitrary software development tasks, more studies are needed in order

o be able to make this claim. 

. Discussion and conclusions 

In this paper we report results from one of the few attempts to asso-

iate brainwaves with the cognitive process during the mental activities

f a programmer using EEG. Our study showed that the estimates of

unctional connectivity could be used to form a biomarker that relates

irectly with the mental workload induced in a programmer. Although

here is recent literature that examines EEG functional connectivity in

elation to mental workload ( Dimitriadis et al., 2015; Dimitriadis et al.,

012; Dimitriadis et al., 2010 ;), this is the first study that addresses this

ssue in the field of software engineering and presents a methodology

o model the relation of brainwaves with the mental workload of a pro-

rammer in the course of code comprehension. 

After analyzing the workload of a programmer during code compre-

ension versus that of trying to find syntax errors, we found clear dif-

erences between the observed effort levels required for the comprehen-
64 
ion and syntax task respectively. Fig. 5 illustrates this contrast show-

ng higher brain activation (red area) during comprehension in 𝜃-and

2-bands. In practice, this means that a search for rule violation (syn-

ax task) is executed more easily than code comprehension, which calls

or the mental simulation of code execution. Consequently, we demon-

trated that our method could be used for assessing and comparing the

ental effort associated with programming tasks. 

By means of SP contrasts (see Fig. 6 ) we found significant brain acti-

ation in 𝛽 and 𝛾 rhythms. It is important to stress here that functional

onnectivity measurements were found superior to the conventional sig-

al power related ones (which have already been encountered in the

eld ( Fritz et al., 2014; Ikutani and Uwano, 2014 ). 

We concluded our analysis proposing a statistically significant re-

ression model to predict task difficulty during comprehension by means

f brain activity measurements. We applied a discriminative technique

ordinal regression) to build our model (see Table 4 ) in which the as-

umptions made are weaker than in generative ones (i.e. Naïve Bayes),

hich overall leads to lower bias. Naïve Bayes for example assume

hat the features are conditionally independent, which is not acceptable

hen talking about real data. This limitation is not met in the case of

rdinal regression, which works better in the case of inter-feature cor-

elations ( Ng and Jordan, 2002; Vapnik, V. N. and Vapnik, V., 1998 ). 

The ability to monitor and estimate mental workload in a software

evelopment setting can be useful in a number of ways. First, it can

e used to identify tasks that required a high-level of mental effort,

.g., by appropriately annotating the relevant resulting artifacts, such

s code, designs, requirements, test cases, or documentation. Based on

his markup, software development processes can be devised to direct

dditional scrutiny to these artifacts, for example through peer reviews,

ore comprehensive testing, prototyping, or static analysis and thus pre-

ent faults ( Lee et al., 2017; Müller, 2015 ). Mental effort measurements

an be used by scientists to compare software development tools, pro-

esses, formalisms in order to find those that can be used to achieve the

ame task with less developer stress. 

Moreover, as human computer interaction (HCI) systems are becom-

ng omnipresent and being used to achieve significant tasks in a plethora

f domains, the need of being able to estimate the instigated cognitive

oad by such systems turns out to be important before putting them at

se ( Berka et al., 2007; Kumar N. and Kumar, J., 2016 ). Thus, these

ata may prove invaluable for studying a wide variety of issues related

o human factors in software engineering, to improve both the quality

f the software and the working conditions of the people who develop

t. In addition they can be used also to evaluate the interactive (devel-

ped) systems themselves, in order to measure their cognitive load on

he users with respect to ease of use, efficiency, effectiveness, learnabil-

ty, memorability and user satisfaction. 

Finally we would like to emphasize that, while this study may be a

estimony that the use of consumer-grade brain activity monitoring de-

ices might be useful in assessing efficiency of processes or the level of

xpertise of a programmer (derived from the fact that it can potentially

rovide indications regarding the workload of their brain), this message

hould not be taken without the necessary precaution. As pointed out

arlier, we envisage that this technology could be used as a neuroer-

onomics tool in order to improve the quality of programmers ’ working

onditions and reduce their stress. It is also important to notice that such

 technology also unwraps scenarios that we would considered uneth-

cal, e.g. using brain scanners in the context of a recruitment process

r as a means of employee re-evaluation. Hence, it is important that a

areful ethical framework is put in place to define the boundaries of

cceptable use of these technologies. 
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