
Empirical Software Engieering
10.1007/s10664-016-9445-5

A Repository of Unix History and Evolution

Diomidis Spinellis

Abstract The history and evolution of the Unix operating system is made avail-
able as a revision management repository, covering the period from its inception
in 1972 as a five thousand line kernel, to 2016 as a widely-used 27 million line
system. The 1.1gb repository contains 496 thousand commits and 2,523 branch
merges. The repository employs the commonly used Git version control system
for its storage, and is hosted on the popular GitHub archive. It has been created
by synthesizing with custom software 24 snapshots of systems developed at Bell
Labs, the University of California at Berkeley, and the 386bsd team, two legacy
repositories, and the modern repository of the open source Freebsd system. In
total, 973 individual contributors are identified, the early ones through primary
research. The data set can be used for empirical research in software engineering,
information systems, and software archaeology.

Keywords Software archeology · Unix · configuration management · Git

1 Introduction

The Unix operating system stands out as a major engineering breakthrough due to
its exemplary design, its numerous technical contributions, its impact, its develop-
ment model, and its widespread use (Gehani 2003, pp. 27–29). The design of the
Unix programming environment has been characterized as one offering unusual

The work has been partially funded by the Research Centre of the Athens University of Eco-
nomics and Business, under the Original Scientific Publications framework (project code EP-
2279-01) and supported by computational time granted from the Greek Research & Technology
Network (grnet) in the National hpc facility — aris — under project id pa003005-cdolpot.

D. Spinellis, Department of Management Science and Technology, Athens University of Eco-
nomics and Business. E-mail: dds@aueb.gr

Diomidis Spinellis. A Repository of Unix History and Evolution. Empirical Software En-
gineering, 2017 (available online; to appear in print).

This is a machine-readable rendering of a working paper draft that led to a publication.
The publication should always be cited in preference to this draft using the reference in the
previous footnote. The final publication is available at Springer via http://dx.doi.org/10.
1007/s10664-016-9445-5.

2 Diomidis Spinellis

simplicity, power, and elegance (McIlroy et al 1978; Pike and Kernighan 1984).
On the technical side, features that can be directly attributed to Unix or were
popularized by it include (Ritchie and Thompson 1978; Ritchie 1978; Johnson and
Ritchie 1978):

– the portable implementation of the kernel in a high level language;
– a hierarchical file system;
– compatible file, device, networking, and inter-process i/o;
– the pipes and filters architecture;
– virtual file systems; and
– the shell as a user-selectable regular process.

A large community contributed software to Unix from its early days (Ritchie 1984;
Salus 1994, pp. 65–72). This community grew immensely over time and worked
using what are now termed open source software development methods (Raymond
2003, pp. 440-442; McKusick 1999, p. 46). Unix and its intellectual descendants
have also helped the spread of:

– the C (Ritchie et al 1978; Rosler 1984; Ritchie 1993) and C++ (Stroustrup
1984, 1994) programming languages;

– parser and lexical analyzer generators (Johnson and Lesk 1978) — yacc (John-
son 1975), lex (Lesk 1975);

– software development environments (Dolotta et al 1978),
– document preparation tools (Kernighan et al 1978) and declarative markup

— troff (Ossanna 1979; Kernighan 1982), eqn (Kernighan and Cherry 1974),
tbl (Lesk 1979b), the mm macros (Mashey and Smith 1976);

– scripting languages — awk (Aho et al 1979), sed (McMahon 1979), Perl (Wall
and Schwartz 1990);

– tcp/ip networking (Stevens 1990); and
– configuration management systems — SCCS (Rochkind 1975), RCS (Tichy

1982), Subversion, Git.

Unix systems also form a large part of the modern internet infrastructure and the
web.

The importance of Unix as an engineering artefact motivates the preservation of
its development history, which can then be used for empirical research in software
engineering, information systems, and software archeology.

The availability of Unix source code has changed over the years. In the 1970s,
when Unix came of out Bell Labs and became widely known in the scientific com-
munity (Ritchie and Thompson 1974), AT&T was still operating under a 1956
“consent decree” entered by Judge Thomas F. Meaney (Lewis 1956). This was
the result of a complaint filed by the US Department of Justice Antitrust Di-
vision in 1949 against the Western Electric Company and AT&T, claiming that
the companies were unlawfully restraining and monopolizing trade and commerce
in violation of the Sherman Antitrust Act. Under the terms of the consent de-
cree, Western Electric (a fully owned subsidiary of AT&T and 50% owner of Bell
Labs) was prohibited from manufacturing non-telecommunications equipment, and
AT&T (owner of the other 50% of Bell Labs) was forbidden to engage in busi-
ness other than communication services (Lewis 1956). Consequently, AT&T could
not market or license Unix for profit, and, therefore Unix was initially licensed
royalty-free through simple letter agreements (Salus 1994, p. 60). Later however

A Repository of Unix History and Evolution 3

licenses became more intricate and restrictive, limiting the availability of its source
code (Takahashi and Takamatsu 2013), which was carefully guarded as a trade se-
cret (Libes and Ressler 1989, p. 20).

Luckily, important Unix material of historical importance has survived until
today, often through magnetic tapes preserved in the hands of people realizing their
significance. Also, key parts of the early Unix development, namely the systems
running on the 16-bit pdp-11 and early versions of the 32-bit Unix (excluding
System III, System V, and their successors), were released in 2002 by one of its
right-holders (Caldera International) under a liberal license. The license, which
covers the 16-bit Unix Editions 1–7 and 32-bit Unix 32V, allows the redistribution
and use of the material in source and binary forms, with or without modification,
subject to conditions similar to these of the original bsd license.

Combining these parts with software that was developed or released as open
source software by the University of California at Berkeley and the Freebsd Project
provides coverage of the system’s development over a period ranging from June
20th 1972 until today.

Curating and processing available source code snapshots as well as old and
modern configuration management repositories allows the reconstruction of a new
synthetic Git repository that combines under a single roof most of the available
data. This repository documents in a digital form the detailed history and evolution
of an important digital artefact over a period of 44 years. The contributions of the
work presented here are:

– the release of a 1.1gb Git repository covering the history of Unix from 1972
until the modern time, which can be used for diverse research,

– the documentation of the authorship details of many parts of the early Unix
source code in a machine-readable format,

– the provision of an open source project where additional authorship data and
Unix systems can be added, and

– the development of techniques and tools for converting historical source code
snapshots into a Git repository that can correctly track changes and authorship
across releases.

This work expands on a presentation (Gall et al 2014) and a four-page conference
paper (Spinellis 2015) by including considerably more detailed information on the
data and their generation process. The added material includes an overview of
the code’s licensing, the data set’s key metrics (Table 1), a detailed description of
the available software releases (Section 2.1), an expanded overview of data sources
(Table 2) and available metadata (Section 2.2), GitHub integration (Section 2.3),
known limitations (Section 2.4), the documentation of derived authorship data
(Tables 3 and 4), details on the data import process and tools (Section 3.3),
instructions for contributing to the project (Section 5), and a second example
on using the data set (Figure 13).

The following sections describe the Unix history repository’s structure and
contents (Section 2), the way it was created (Section 3), how it can be used (Sec-
tion 4), and how it can be extended (Section 5). The paper concludes with ideas
for further work (Section 6).

4 Diomidis Spinellis

Table 1 Key Repository Metrics of the Unix and Linux History Repositories

Metric Unix history Linux history
Start date 1972-06-20 1991-09-17
Start files 13 92
Start lines 4768 917,812
End files 63,049 51,396
End lines 27,388,943 21,525,436
Data size (.git) 1.1GB 1.0GB
Number of commits 495,622 611,735
Number of merges 2,523 48,821
Number of authors 973 18,465
Days with activity 13,004 5,126

Fig. 1 Timeline of releases in the repository

2 Data Overview

The 1gb Unix history Git repository is made available for cloning on GitHub.1

Currently2 the repository contains 496 thousand commits and 2,523 merges from
about 973 contributors (measured by counting unique email addresses). The con-
tributors include 29 from the Bell Labs staff, 158 from Berkeley’s Computer Sys-
tems Research Group (csrg), 79 contributors of the 386bsd patch kit, and 691 from
the Freebsd Project. More metrics regarding the Unix history repository are listed
in Table 1. For comparison purposes the table also includes details regarding the
Linux kernel history repository.3 The Unix history repository reported here differs
from the Linux one in three ways: first it covers a significantly longer timespan,
second after 1974 it contains code of a complete system (kernel and tools) rather
than only a kernel, and third it represents the work of four diverse communities.

A Repository of Unix History and Evolution 5

Fig. 2 Representative scanned pages from the 1st Edition Unix

2.1 Available Operating System Releases

The repository starts its life at a tag identified as Epoch, which contains only
licensing information and its modern readme file. Various tag and branch names
identify points of significance. A timeline of these releases based on their repository
timestamps is depicted in Figure 1.

The Research-VX tags correspond to six so-called research editions of Unix
that came out of Bell Labs. These start with Research-V1 (4768 lines of pdp-11
assembly) and end with Research-V7 (1820 mostly C files, 324kloc — lines of
code). Following tradition, the numbers of these releases correspond to the edition
of the manual (Libes and Ressler 1989, p. 5). For example, Research–V7 is variously
called 7th Edition or Version 7 Unix.

The 1st Edition (November 3, 19714 — Research-V1) contains only the kernel;
the 60 user commands that came with it (Salus 1994, p. 41) are no longer avail-
able. Even the kernel, written in pdp-11 assembly language, has not survived in
electronic form. It was derived from a group effort that took a scanned June 1972
280-page printout of 1st Edition UNIX source code and documentation (Bashkow

1 https://github.com/dspinellis/unix-history-repo
2 Updates may add or modify material. To ensure replicability the repository’s users are

encouraged to fork it on GitHub or archive it.
3 https://archive.org/details/git-history-of-linux
4 The dates provided here are given by Salus (1994, p. 43).

6 Diomidis Spinellis

1972), and restored it to an incomplete but running system (Toomey 2010). Two
representative pages of the printout are shown in Figure 2.

The next four editions are also only partially available.

– The 2nd Edition (June 12, 1972) source code has only survived in the form
of fragments. These were manually restored by Warren Toomey, who pieced
together data from a subset of a disk dump’s dectapes, that were extracted
by Dennis Ritchie.5 The fragments comprise the source code for some of the
system’s utilities. In addition, this edition’s manual survives as a printed doc-
ument.

– The 3rd Edition (February 1973 — Research-V3) contains only the Unix kernel:
7609 lines of which just 768 are written in pdp-11 assembly and the rest are
written in C. This was the first Unix version to support pipes (Salus 1994, p.
50).

– The 4th Edition (November 1973 — Research-V4) contains only source markup
for the manual pages: 18975 lines of troff code.

– The 5th Edition (June 1974 — Research-V5) is missing the source markup of
the manual pages. This edition was officially made available to universities for
educational use (Libes and Ressler 1989, p. 8).

The 6th Edition (May 1975 — Research-V6), is the first that appears in the
repository in complete form, and the first that became widely available outside Bell
Labs through licenses to commercial and government users. It was also the last
bearing the names of Thompson and Ritchie on the manuals’ title page. The 6th
Edition is the one John Lions used for teaching two operating systems courses at
the University of New South Wales in Australia. In 1977 Lions produced a booklet
with an indexed 9073-line listing of the entire Unix kernel with an equal amount
of commentary explaining its structure (Lions 1996). Although this was initially
sold by mail order, a year afterwards it was no longer available (Salus 1994, p.
130). Nevertheless, for the next two decades it circulated as multiple-generation
samizdat photocopies (Lions 1996, p. ix), until in late 1995 the lawyers of Santa
Cruz Operation, Inc. gave permission for its official publication.

The 7th Edition (January 1979 — Research-V7), includes many new influential
commands, such as awk (Aho et al 1979), expr, find, lex (Lesk 1975), lint (John-
son 1977), m4 (Kernighan and Ritchie 1979), make (Feldman 1979), refer (Lesk
1979a), sed (McMahon 1979), tar, uucp (Nowitz and Lesk 1979), and the Bourne
shell (Bourne 1979, 1978). It also supports larger file systems and more user ac-
counts. It is the version that was widely ported to other architectures.

Unix 32V (or 32/V — tagged Bell-32V) is the port of the 7th Edition Unix
to the dec/vax architecture. It was created by John Raiser and Tom London,
managed by Charlier Roberts, at Bell Labs in Holmdel in 1978. There seem to
be two reasons why the port was not implemented by the original team. First,
dec’s refusal to support Unix, favouring vms instead, and, second, the complexity
of the vax instruction set, which apparently went against the values of the Unix
patriarchs (Salus 1994, p. 154). The port took about three months to complete by
treating the vax as a large pdp-11 — keeping the existing swapping mechanism
and ignoring the vax’s hardware paging capability (Libes and Ressler 1989, p. 12).
In the fall of 1978 Bell-32V was sent to the University of California at Berkeley
under a “special research agreement” (Salus 1994, p. 154).

5 http://www.tuhs.org/Archive/PDP-11/Distributions/research/1972_stuff/

A Repository of Unix History and Evolution 7

BSD–X tags correspond to 15 snapshots released from Berkeley. Their con-
tents are summarized in the following paragraphs, based on published descrip-
tions (Salus 1994, pp. 142–145; McKusick 1999; McKusick and Neville-Neil 2004,
pp. 3–13) and the manual examination of their contents. The first Berkeley Soft-
ware Distribution (bsd) (tagged BSD-1), released in early 1978, contained the Unix
Pascal System the ex line editor, and a number of tools. The Second Berkeley Soft-
ware Distribution (2bsd, tagged BSD-2), included the full-screen editor vi, the as-
sociated terminal capability database and management library termcap, and many
more tools, such as the csh shell. The 3bsd release (tagged BSD-3), released in
late 1979, extended Unix 32V with support for virtual memory (Babaog̃lu and
Joy 1981) and the 2bsd additions. Subsequent releases (Salus 1994, pp. 164–167)
included in the repository are marked with the following tags.

– BSD-4 (4bsd — October 1980) was developed by the newly established Com-
puter Systems Research Group (csrg) working on a contract for the Defense
Advanced Research Projects Agency (darpa). The contract aimed at standard-
izing at the operating system level through the adoption of Unix the computing
environment used by darpa’s research centers. The release included a 1k block
file system, support for the vax-11/750, enhanced email, job control, and reli-
able signals.

– BSD-4 1 snap (4.1bsd — December 1982), a snapshot of 4.1bsd, probably be-
fore 4.1a, included performance improvements and auto-configuration support.
This release was named 4.1bsd rather than 5bsd in response to objections by
at&t lawyers who feared the 5bsd name might be confused with at&t’s com-
mercial Unix System V release. Subsequent bsd releases followed this numbering
scheme.

– BSD-4 1c 2 (4.1c2bsd — April 1983) was the last intermediary release preceding
4.2bsd. It was used by many hardware vendors to start their 4.2bsd porting
efforts. It included tcp/ip networking, networking tools (ftp, netstat, rlogin,
routed, rsh , rwho, telnet, tftp) from 4.1absd, and filesystem improvements, such
as symbolic links, from 4.1bbsd. Sadly, 4.1absd and 4.1bbsd are not included
in the csrg cd set, which was used for obtaining the bsd snapshots for this
work.

– BSD-4 2 (4.2bsd — September 1983) was a major release of features tested in
4.1absd to 4.1cbsd. Compared to the preceding releases it improved networking
support and added new signal facilities and disk quotas.

– BSD-4 3 (4.3bsd — June 1986) came with performance improvements, a direc-
tory name cache, and the bind internet domain name system server.

– BSD-4 3 Tahoe (4.3bsd Tahoe — June 1988) split the kernel into machine-
dependent and machine-independent parts in order to include support for the
cci Power 6/32 minicomputer (code-named Tahoe). It also included improved
tcp algorithms.

– BSD-4 3 Net 1 (4.3bsd Networking Release — November 1988) is a subset of the
code that does not include material requiring an at&t license. It was released
to help vendors create standalone networking products, without incurring the
at&t binary license costs. It included the bsd networking kernel code and
supporting utilities.

– BSD-4 3 Reno (4.3bsd Reno — June 1990) supported virtual file system im-
plementations through the vnode interface, Hewlett-Packard 9000/300 work-

8 Diomidis Spinellis

stations, and osi networking. It also incorporated a new virtual memory sys-
tem adapted from Carnegie-Mellon’s mach operating system, a Network File
System (nfs) implementation done at the University of Guelph, and an auto-
mounter daemon. Considerable material in this release was released by Berkeley
with a license allowing the easy redistribution and reuse of those parts.

– BSD-4 3 Net 2 (4.3bsd Networking Release 2 — June 1991) came with (what is
now called) an open source reimplementation of almost all important utilities
and libraries that used to require an at&t license. It also included a kernel that
had been cleaned from at&t source code, requiring just six additional files to
make a fully-functioning system. This was the version used by Bill Jolitz to
create a compiled bootable Unix system for the 386-based PCs.

– BSD-4 4 Lite1 (4.4bsd Lite — June 1994) was released following two years of
litigation and settlement talks regarding the alleged use of proprietary at&t

material between: a) Unix System Laboratories (usl — a wholly owned sub-
sidiary of at&t that developed and marketed Unix) and (later) usl’s new
owner, Novell and b) Berkeley Software Design Incorporated (bsdi — a de-
veloper of commercially supported version of bsd Unix) and the University of
California. As a result this release removed three files that were included in the
Net/2 release, added usl copyrights to about 70 files, and made minor changes
to a few others. With these changes and according to the settlement’s terms
usl could not sue third parties basing their code on this release. Consequently,
efforts such as Freebsd and Netbsd rebased their work on this code base. The
release also included additional work done on the system, such as support for
the portal filesystem.

– BSD-4 4, released at the same time as 4.4bsd Lite, was an “encumbered” version
of 4.4bsd-Lite that included the files requiring an at&t license.

– BSD-4 4 Lite2 (4.4bsd-Lite Release 2 — June 1995) was the last release made by
csrg before the group was disbanded. It included bug fixes and enhancements
integrated through funding obtained from the distribution of 4.4bsd.

386BSD–X tags correspond to 386/bsd: version 0.0 (March 1992 — tagged
386BSD-0.0) and version 0.1 (July 1992 — tagged 386BSD-0.1). This was a deriva-
tive of the bsd Networking 2 Release targeting the Intel 386 architecture, developed
by Lynne and William Jolitz, who wrote the six missing kernel files. A description
of this system was published as a series of 18 articles in the Dr. Dobb’s Jour-

nal (Jolitz and Jolitz 1991).

The 386BSD-0.1-patchkit branch contains 171 commits associated with patches
made to 386bsd 0.1 by a group of volunteers from mid-1992 to mid-1993. Patches
contain their changes in Unix “context diff” format, and can therefore be ap-
plied automatically to the 386bsd distribution. Each patch is accompanied by a
metadata file listing its title, author, description, and prerequisites.

FreeBSD–release/X tags and branches mark 69 releases derived from the Freebsd
Project. The names of tags and branches to be imported are obtained by excluding
from the corresponding Freebsd set, names matching one of the following patterns:
projects/, user/, master, or svn head. The Freebsd Project started in early 1993
to address difficulties in maintaining 386/bsd through patches and working with its
author to secure the future of 386/bsd (FreeBSD 2015). The focus of the project
was to support the pc architecture appealing to a large, not necessarily highly
technically sophisticated audience (McKusick and Neville-Neil 2004, p. 11). For

A Repository of Unix History and Evolution 9

legal reasons associated with the settlement of the usl case, while versions up to
1.1.5.1 were derived from the bsd Networking 2 Release, later ones were derived
from the 4.4bsd-Lite Release 2 with 386/bsd additions. Two other bsd Unix de-
scendants that could have been imported in the place of Freebsd or in parallel
with it are Netbsd and Openbsd. Freebsd was chosen, because it appears to be
more popular that the other two as measured by the results obtained by Google
search (17 million results for Freebsd, 366 thousand results for Openbsd, and 350
thousand results for Netbsd).

All branches with a –Snapshot–Development suffix denote commits that have
been synthesized from a time-ordered sequence of a snapshot’s files, while tags
with a –VCS–Development suffix mark the point along an imported version control
history branch where a particular release occurred.

2.2 Available Metadata

The repository’s history includes commits from the earliest days of the system’s
development, such as the ones listed in Figure 3. Commits that have been syn-
thesized from snapshots and author-to-file maps, rather than imported from other
revision control systems, can be recognized by the “Synthetic commit” phrase that
appears in the commit’s comment. Such commit comments follow exactly the pre-
ceding format, identifying the snapshot from which the commit was synthesized
(four Research Editions in this case) and the file corresponding to the commit’s
time stamp.

Note that the commits derived from snapshot data are timestamped with the
modification time of each file in the snapshot (see Figure 3). This means that
they represent only the file’s final change and state in the development of the
given release. Furthermore, the timestamp may be incorrect in cases where the
file’s modification time was changed after it was last written by its author. This
is almost certainly the case in the very early Unix Research Editions.

Merges between releases that happened along the system’s evolution, such as
the development of 3bsd from 2bsd and Unix 32/V, are also correctly represented
in the Git repository as graph nodes with two parents (see Figure 8).

More importantly, the repository is constructed in a way that allows git blame,
which annotates source code lines with the version, date, and author associated
with their first appearance, to produce the expected code provenance results. For
example, checking out the BSD–4 tag, and running git blame -M -M -C -C on the
kernel’s pipe.c file will show lines spanning the 5th, 6th, and the 7th Research Edi-
tion developed at Bell Labs, as well as 4bsd developed at Berkeley (see Figure 4).
These lines are derived from snapshot files (probably) written by Ken Thomp-
son in 1974, 1975, and 1979, and by Bill Joy in 1980. This feature allows the
automatic (though computationally expensive) detection of the code’s provenance
at any point of time. Similarly, the git log command can also trace file changes
across successive Unix releases. An example can be seen in Figure 3, which was
obtained by running git log --follow -M20 -C20 ./usr/sys/sys/nami.c on the
checked out version of Research-V7.

As can be seen in Figure 5, a modern version of Unix (Freebsd 10.2) still
contains visible chunks of code from 4.3bsd, 4.3bsd Net/2, and all releases starting
from Freebsd 2.0. Interestingly, the Figure also shows that code developed during

10 Diomidis Spinellis

commit c4b1db0397c78e91b554e3edff3350a8c80781b1
Author: Ken Thompson <ken@research.uucp>
Date: Mon May 7 01:23:11 1979 -0500

Research V7 development
Work on file usr/sys/sys/nami.c

Synthesized-from: v7
commit 08d62191ab22882194e5f7004b3c00fb39d99193
Author: Ken Thompson <ken@research.uucp>
Date: Fri Jul 18 04:09:14 1975 -0500

Research V6 development
Work on file usr/sys/ken/nami.c

Synthesized-from: v6
commit 90798d6e3caec237bab95d22f0650047c3e9d431
Author: Ken Thompson <ken@research.uucp>
Date: Thu Jan 2 19:25:11 1975 -0500

Research V5 development
Work on file usr/sys/ken/nami.c

Synthesized-from: v5
commit a8c0fddc39968d4669a1f75a5121b4acd8f9c699
Author: Ken Thompson <ken@research.uucp>
Date: Thu Aug 30 19:30:51 1973 -0500

Research V3 development
Work on file sys/ken/nami.c

Synthesized-from: v3

Fig. 3 A log of file changes across Research Unix releases

78a8403693 usr/sys/ken/pipe.c (Ken Thompson 1975-07-17 10:33:37 -0500 48) iput(ip);

78a8403693 usr/sys/ken/pipe.c (Ken Thompson 1975-07-17 10:33:37 -0500 49) return;

78a8403693 usr/sys/ken/pipe.c (Ken Thompson 1975-07-17 10:33:37 -0500 50) }

9dd2619e6d usr/sys/sys/pipe.c (Ken Thompson 1979-01-10 15:19:35 -0500 51) u.u_r.r_val2 = u.u_r.r_val1;

9dd2619e6d usr/sys/sys/pipe.c (Ken Thompson 1979-01-10 15:19:35 -0500 52) u.u_r.r_val1 = r;

2c5a749b29 usr/sys/ken/pipe.c (Ken Thompson 1974-11-26 18:13:21 -0500 53) wf->f_flag = FWRITE|FPIPE;

2c5a749b29 usr/sys/ken/pipe.c (Ken Thompson 1974-11-26 18:13:21 -0500 54) wf->f_inode = ip;

2c5a749b29 usr/sys/ken/pipe.c (Ken Thompson 1974-11-26 18:13:21 -0500 55) rf->f_flag = FREAD|FPIPE;

2c5a749b29 usr/sys/ken/pipe.c (Ken Thompson 1974-11-26 18:13:21 -0500 56) rf->f_inode = ip;

2c5a749b29 usr/sys/ken/pipe.c (Ken Thompson 1974-11-26 18:13:21 -0500 57) ip->i_count = 2;

9dd2619e6d usr/sys/sys/pipe.c (Ken Thompson 1979-01-10 15:19:35 -0500 58) ip->i_mode = IFREG;

7fc472a9e2 usr/src/sys/sys/pipe.c (Bill Joy 1980-11-09 08:01:07 -0800 59) ip->i_flag = IACC|IUPD|ICHG|IPIPE;

Fig. 4 Identification in a single file of commits spanning multiple snapshots

the 18-month dash to create an open source operating system out of the code
released by Berkeley — 386bsd and Freebsd 1.0 — does not seem to have survived.

The oldest significant code in the 2016 version of Freebsd (10.2.0) appears to
be an 18-line sequence in the C library file timezone.c. This was found by running
the git blame command on it, which takes a bit more than two minutes to complete
on a modern pc. The output (see Figure 6) includes code with changes spanning
three decades. The oldest part can also be found in the 7th Edition Unix file with
the same name and a time stamp of January 10th, 1979 — 36 years ago.

A Repository of Unix History and Evolution 11

0

10

20

V6 V7 32V B3 B4 B41 B42 B43 BN2 3B0 3B1 3PK F1 F2 F3 F4 F5 F52 F71 F8 F9 F10 F12
Unix release

Li
ne

s
of

 c
od

e
(m

ill
io

ns
)

Code provenance

F12 — FreeBSD 10.2

F10 — FreeBSD 10.0

F9 — FreeBSD 9.0

F8 — FreeBSD 8.0

F71 — FreeBSD 7.1

F52 — FreeBSD 5.2

F5 — FreeBSD 5.0

F4 — FreeBSD 4.0

F3 — FreeBSD 3.0

F2 — FreeBSD 2.0

F1 — FreeBSD 1.0

3PK— 386BSD patch kit

3B1 — 386BSD 0.1

3B0 — 386BSD 0.0

BN2— BSD 4.3 Net/2

B43 — BSD 4.3

B42 — BSD 4.2

B41 — BSD 4.1

B4 — BSD 4

B3 — BSD 3

V7 — Research Version 7

32V — Bell−32V

V6 — Research Version 6

Fig. 5 Code growth and provenance across representative Unix releases.

lib/libc/gen/timezone.c (Ed Schouten 2009-12-05 19:31:38 +0000 107) _tztab(int zone, int dst)

lib/libc/gen/timezone.c (Rodney Grimes 1994-05-27 05:00:24 +0000 108) {

lib/libc/gen/timezone.c (David E. O’Brien 2002-02-01 01:08:48 +0000 109) struct zone *zp;

lib/libc/gen/timezone.c (David E. O’Brien 2002-02-01 01:08:48 +0000 110) char sign;

usr/src/lib/libc/gen/timezone.c (Bill Joy 1980-12-22 00:40:25 -0800 111)

usr/src/lib/libc/gen/timezone.c (Keith Bostic 1987-03-28 19:27:07 -0800 112) for (zp = zonetab; zp->offset != -1;++zp)

/* static tables */

usr/src/lib/libc/gen/timezone.c (Keith Bostic 1987-03-28 19:27:07 -0800 113) if (zp->offset == zone) {

usr/src/libc/gen/timezone.c (Dennis Ritchie 1979-01-10 14:58:45 -0500 114) if (dst && zp->dlzone)

usr/src/libc/gen/timezone.c (Dennis Ritchie 1979-01-10 14:58:45 -0500 115) return(zp->dlzone);

usr/src/libc/gen/timezone.c (Dennis Ritchie 1979-01-10 14:58:45 -0500 116) if (!dst && zp->stdzone)

usr/src/libc/gen/timezone.c (Dennis Ritchie 1979-01-10 14:58:45 -0500 117) return(zp->stdzone);

usr/src/libc/gen/timezone.c (Dennis Ritchie 1979-01-10 14:58:45 -0500 118) }

Fig. 6 The oldest surviving code in a 2016 version of Freebsd Unix (lines 114–118).

2.3 GitHub Integration

All commits included in the repository are associated with a single internet-
standard (Resnick 2008) email address that can be linked to GitHub accounts.
Old-style uccp addresses (e.g. research!srb) are expressed in domain-name for-
mat (srb@research.uucp). Where more contributors are associated with a commit
these are identified through Co-Authored-By: header-like lines added to the com-
mit’s comment. For example, most unaccounted early commits are attributed as
instructed in the following quote (Ritchie 1984).

The reader will not, on the average, go far wrong if he reads each occurrence

of ‘we’ with unclear antecedent as ‘Thompson, with some assistance from me.’

12 Diomidis Spinellis

Fig. 7 Integration of the repository with current GitHub accounts.

A simple web-based search engine and a process outlined in the project’s
readme file, allow current GitHub users to associate their past commits with
their current GitHub account through the email address listed in the commit.
This can be seen in Figure 7: S. R. Bourne’s commit (top) is not associated with
a GitHub account, Ken Thompson’s commit (second from the bottom) is associ-
ated with his current GitHub account, while the commits by Dennis Ritchie and
J. F. Ossanna are associated with posthumously-created in memoriam accounts.
Through direct emails and a message posted on The Unix Heritage Society mailing
list past authors were encouraged to link their current GitHub accounts to their
past commits. Although some have responded enthusiastically, the response was
not overwhelming.

2.4 Known Limitations

Researchers using the provided data set should note some limitations regarding
its coverage and fidelity. Where applicable these are discussed in detail in other
parts of this work.

Many of the data set’s limitations are associated with releases that are imported
through snapshots (depicted by square boxes in Figure 8). These are the following.

– Only a single commit is associated with each file. This corresponds to the
version of the released file. Other file changes up to the point of the preceding
release have been lost forever.

– The file’s commit time is derived from the file’s modification time. Thus it may
not correspond to the time the file’s author last modified it, but to changes
performed en masse at a later point of time.

– File authorship has been attributed manually as part of the work described
here. It may thus be incorrect or incomplete.

– Commits lack the author’s comment describing the change. The commit com-
ments are automatically generated during the import process, and only detail
metadata associated with each commit.

– Subjective decisions have been made by this work’s author regarding which
snapshot files to include in the repository and which to exclude. For example,

A Repository of Unix History and Evolution 13

binary files and formatted manual pages are excluded. Also excluded are copies
of files that exist both in a source directory and in their installed position (for
example /usr/src/sys/h/param.h and /usr/include/sys/param.h). In this case
only the source code copy of the file is included. These decisions are clear cut;
others, such as the exclusion of the Ingres database because it was deemed to
be a separate project, are arguable.

Other limitations apply to the data set as a whole.

– Numerous evolution branches, such as the Second Research Edition, 2bsd, Sys-
tem iii, Solaris, and Openbsd, are missing, because they appear to have been
permanently lost, or due to licensing restrictions or lack of time to import
them.

– Early imported releases are missing data (e.g. source code or documentation),
as described in Section 2.1.

– In software developed by multiple authors, such as awk, only the first author
is identified in the commit metadata. The other authors are identified through
header-like comment entries. This is a known limitation of Git.

– The same author may be identified in various commits with different email ad-
dresses. For example, rgrimes@cdrom.com and rgrimes@FreeBSD.org (Rodney
Grimes) or torek@ee.lbl.gov and torek@ucbvax.Berkeley.EDU (Chris Torek).
This is a well known problem in email analytics (Bird et al 2006). No attempt
was made to address this issue. However, the problem can be addressed through
side channels, such as authors claiming their old email addresses through
GitHub (see Section 2.3) or by populating and using Git’s mailmap facility.

– There is not easy way to distinguish between branches and tags that have
been created by this project and those that have been imported from the
corresponding systems.

– The processing of git blame when run on Freebsd releases 5.4 to 7.0 (inclusive)
stops at a cvs to Subversion conversion dated April 20th, 2005.

3 Data Collection and Processing

The goal of the work reported here is to consolidate data concerning the history
of Unix in a form that helps the study of the system’s evolution, by entering them
into a modern revision repository. This involves collecting the data, curating them,
and synthesizing them into a single Git repository.

The software and data files that were developed as part of this project, are
available online,6 and, with appropriate network, cpu, and disk resources, they
can be used to recreate the repository from scratch.

3.1 Primary Data

The project is based on three types of data (see Figure 8 and the corresponding
data sources listed in Table 2). First, snapshots of early released versions,
which were obtained from the Unix Heritage Society archive (Toomey 2009), the
cd-rom images containing the full source archives of csrg,7 the OldLinux site, and

6 https://github.com/dspinellis/unix-history-make
7 https://www.mckusick.com/csrg/

14 Diomidis Spinellis

Snapshot
import

VCS
import

V1 V3 V4 V5 V6 V7

BSD 1 Unix 32/V

Bell Labs

BSD 3

Berkeley

BSD 2

BSD SCCS

BSD 4.0 BSD 4.1 BSD 4.2 BSD 4.3 BSD 4.3-Tahoe BSD 4.3-Reno BSD 4.4

BSD 4.4 Lite1

BSD 4.4 Lite2

BSD 4.3 Net/1 BSD 4.3 Net/2

Open source
(including Berkeley)

386BSD 0.0

FreeBSD 1 CVS

386BSD 0.1

386BSD patch kit

FreeBSD Git

Completed
Snapshot N

Move files to
.ref-Snapshot N

Completed
Snapshot N+1

Add file 1

Add file 2

[...]

Add file M

Delete files in
.ref-Snapshot N

PDP-7

Fig. 8 Imported Unix snapshots, repositories, and their mergers. (On the right: a model of
the synthetic commits between any two snapshots.)

Table 2 Data Sources

Tag Data source(s)

Research-V1 http://www.tuhs.org/Archive/PDP-11/Distributions/research/Dennis_v1/svntree-20081216.tar.gz

Research-V3 http://www.tuhs.org/Archive/PDP-11/Distributions/research/Dennis_v3/nsys.tar.gz

Research-V4 http://www.tuhs.org/Archive/PDP-11/Distributions/research/Dennis_v4/v4man.tar.gz

Research-V5 http://www.tuhs.org/Archive/PDP-11/Distributions/research/Dennis_v5/v5root.tar.gz

Research-V6 http://www.tuhs.org/Archive/PDP-11/Distributions/research/Dennis_v6/v6root.tar.gz

http://www.tuhs.org/Archive/PDP-11/Distributions/research/Dennis_v6/v6src.tar.gz

http://www.tuhs.org/Archive/PDP-11/Distributions/research/Dennis_v6/v6doc.tar.gz

BSD-1 http://www.tuhs.org/Archive/PDP-11/Distributions/ucb/1bsd.tar.gz

BSD-2 http://www.tuhs.org/Archive/PDP-11/Distributions/ucb/2bsd.tar.gz

Research-V7 http://www.tuhs.org/Archive/PDP-11/Distributions/research/Henry_Spencer_v7/v7.tar.gz

http://www.tuhs.org/Archive/PDP-11/Distributions/research/Henry_Spencer_v7/v7.patches.tar.gz

Bell-32V http://www.tuhs.org/Archive/VAX/Distributions/32V/32v_usr.tar.gz

BSD-3 http://www.tuhs.org/Archive/4BSD/Distributions/3bsd.tar.gz

BSD-4 file://CSRG-CD-ROMs/cd1/4.0

BSD-4 1 snap file://CSRG-CD-ROMs/cd1/4.1.snap

BSD-4 1c 2 file://CSRG-CD-ROMs/cd1/4.1c.2

BSD-4 2 file://CSRG-CD-ROMs/cd1/4.2

BSD-4 3 file://CSRG-CD-ROMs/cd1/4.3

BSD-4 3 Tahoe file://CSRG-CD-ROMs/cd2/4.3tahoe

BSD-4 3 Net 1 file://CSRG-CD-ROMs/cd2/net.1

BSD-4 3 Reno file://CSRG-CD-ROMs/cd2/4.3reno

BSD-4 3 Net 2 file://CSRG-CD-ROMs/cd2/net.2

BSD-4 4 file://CSRG-CD-ROMs/cd3/4.4

BSD-4 4 Lite1 file://CSRG-CD-ROMs/cd2/4.4BSD-Lite1

BSD-4 4 Lite2 file://CSRG-CD-ROMs/cd3/4.4BSD-Lite2

BSD-SCCS file://CSRG-CD-ROMs/cd4

386BSD-0.0 http://www.oldlinux.org/Linux.old/distributions/386BSD/386bsd-0.0/floppies/3in/src/

386BSD-0.1 http://www.oldlinux.org/Linux.old/distributions/386BSD/0.1/386BSD/

386BSD-0.1-patchkit ftp://www.tuhs.org/BSD/386bsd-patchkits/

FreeBSD-release/1.0 http://ftp-archive.freebsd.org/pub/FreeBSD-Archive/old-releases/i386/ISO-IMAGES/1.0/1.0-disc1.

iso

FreeBSD-release/1.1 http://ftp-archive.freebsd.org/pub/FreeBSD-Archive/old-releases/i386/ISO-IMAGES/FreeBSD-1.

1-RELEASE/cd1.iso

FreeBSD-release/1.1.5 http://ftp-archive.freebsd.org/pub/FreeBSD-Archive/old-releases/i386/ISO-IMAGES/FreeBSD-1.1.5.

1/cd1.iso

FreeBSD-release/2... https://github.com/freebsd/freebsd

A Repository of Unix History and Evolution 15

the Freebsd archive. These data are represented in the Unix history repository as
synthetic commits, based on manually-added and extracted metadata. Second,
past and current repositories, namely the csrg sccs repository, the Freebsd 1
cvs repository, and the Git mirror of modern Freebsd development. These data
were imported into the repository as commits matching the original ones. The
last, and most labour intensive, source of data was primary research, which is
discussed in the next section. Information regarding merges between source code
bases was obtained from a bsd family tree maintained by the Netbsd project.8

3.2 Authorship

The release snapshots do not provide information regarding their ancestors and
the contributors of each file. Therefore, these pieces of information had to be
determined through primary research. The authorship information was mainly
obtained:

– by reading author biographies, research papers, books (Libes and Ressler 1989,
pp. 29–36), internal memos, and old documentation scans;

– by reading and automatically processing source code and manual page markup;
– by communicating via email with people who were there at the time;
– by posting a query on the Unix StackExchange site;9

– by looking at the location of files; in early Research editions the kernel source
code was split into /usr/sys/dmr (Dennis Ritchie) and /usr/sys/ken (Ken
Thompson); and

– by propagating authorship from research papers and manual pages to source
code and from one release to others. (Interestingly, the 1st and 2nd Research
Edition manual pages have an “owner” section, listing the person (e.g. ken)
associated with the corresponding system command, file, system call, or library
function. This section was not there in the 4th Edition, and resurfaced as the
“Author” section in bsd releases.)

Precise details regarding the source of the authorship information are documented
in the project’s files that are used for mapping Unix source code files to their
authors and the corresponding commit messages.

The authorship information for major releases is stored in files under the
project’s author-path directory. These contain lines with a regular expressions
for a file path followed by the identifier of the corresponding author (Figure 9).
Multiple authors can also be specified. The regular expressions are processed se-
quentially, so that a catch-all expression at the end of the file can specify a release’s
default authors.

As an example on how file authorship was collected and processed, consider
the authors of the documentation files comprising Volume 2 of the Unix Program-

mer’s Manual in the 7th Research Edition. These files contain the names of their
authors using the troff markup macro .AU. The path regular expressions for the
corresponding files were obtained through the shell commands shown in Listing 1
lines 4–13. The output were lines similar to what appears on the left column of

8 http://ftp.netbsd.org/pub/NetBSD/NetBSD-current/src/share/misc/
bsd-family-tree

9 http://unix.stackexchange.com/questions/64025/who-are-these-bsd-unix-contributors

16 Diomidis Spinellis

Table 3 Manually-Allocated Contributions in Research Unix Editions

Identifier Name Contributions
aho Alfred V. Aho awk, dbm, egrep, fgrep, libdbm
ark Andrew Koenig varargs
bsb Brenda S. Baker struct
bwk Brian W. Kernighan adv, awk, beg, beginners, ctut, ed, edtut, eqn, eqnchar,

learn, m4, neqn, rat, ratfor, trofftut, uprog
cbh Charles B. Haley regen, setup, tar
csr C. S. Roberts tss
dan D. A. Nowitz uucp
dmr Dennis Ritchie a.out, ar, as, assembler, atan, bcd, c, cacm, cat, cc,

cdb, check, chmod, chown, cmp, core, cp, ctime, ctour,
date, db, dev, df, dir, dmr, dp, dsw, du, ed, exit, exp,
f77, fc, fort, fptrap, getc, getty, glob, goto, hypot, if,
init, iolib, iosys, istat, ld, libc, ln, login, ls, m4, man2,
man3, man4, mesg, mkdir, mount, mv, nm, od, pr, ptx,
putc, regen, rew, rf, rk, rm, rmdir, rp, secur, security,
setup, sh, sin, sort, sqrt, strip, stty, su, switch, tp, tty,
type, umount, unix, uprog, utmp, who, write, wtmp

doug Doug McIlroy diff, echo, graph, join, look, m6, sort, spell, spline, tmg
haight Dick Haight expr, find
jfm J. F. Maranzano adb
jfo Joe Ossanna azel, ed, getty, nroff, ov, roff, s7, stty, troff, wc
ken Ken Thompson ar, atan, atof, bas, bj, bproc, cacm, cal, cat, check,

chess, chmod, chown, core, cp, dc, dd, df, dir, dli,
dp, dsw, dtf, ed, exp, f77, fc, fed, form, fort, fptrap,
getty, grep, hypot, implement, init, itoa, ken, libplot,
ln, log, login, ls, mail, man, man2, man4, mesg, mkdir,
moo, mount, mv, nlist, nm, od, password, plot, pr,
qsort, rew, rf, rk, rm, rmdir, roff, rp, sa, sh, sin, sort,
sqrt, stty, su, sum, switch, sync, sys, tabs, tp, ttt, tty,
umount, uniq, unix, utmp, who, write, wtmp

lem Lee E. McMahon comm, cu, grep, qsort, sed
llc Lorinda Cherry bc, dc, deroff, eqn, eqnchar, fed, form, neqn
mel Michael E. Lesk iolib, learn, lex, ms, msmacros, refer, tbl, tmac, uucp
pjw Peter J. Weinberger awk, f77, libI77, libmp, mp
rhm Robert Morris atan, bc, crypt, dc, exp, factor, fed, form, libm, m6,

man3, password, primes, sky, sqrt
schmidt Eric Schmidt lex
scj Stephen C. Johnson cc, lint, mip, pcc, porttour, yacc
sif S. I. Feldman f77, make
srb S. R. Bourne adb, sh, shell
xtp Greg Chesson mpx, mpxcall, mpxio, pk[01]

Figure 9. Then, the author names were listed with the commands shown in lines
15–18 of Listing 1. The generated output, such as the one appearing in Figure 10,
was then used to fill-in by hand the author identifiers appearing on the right col-
umn of Figure 9. The authorship could then be propagated to the corresponding
source code and Volume 1 manual pages.

To avoid repetition, a separate file with a .au suffix is used to map author
identifiers into their names and emails (Figure 11). One such file has been created
for every community associated with the system’s evolution: Bell Labs (bell.au),
Berkeley (berkeley.au), 386bsd(386bsd.au), and Freebsd (freebsd.au). For the
sake of authenticity, emails for the early Bell Labs releases are listed using the uucp

(Quarterman and Hoskins 1986) top-level pseudo-domain, e.g. ken@research.uucp.

A Repository of Unix History and Evolution 17

Table 4 Manually-Allocated Contributions in BSD Unix Releases

Identifier Name Contributions
arn Rich Newton spice
arnold Ken Arnold curses, fortune, fortunes, libcurses
cbh Charles B. Haley ex, eyacc, mkstr, pascal, pi, public, px
cohen Ellis Cohen where
cvw Chris Van Wyk ideal
dlw David Wasley libI77uc
dop Don O. Pederson spice
eric Eric Allman me, memacros, portlib, sendmail, trek, tset
erics Eric Shienbrood more
frodo T. J. Kowalski fsck
honey Peter Honeyman pathalias
hpk Howard Katseff box, crazy, froc, last, sdb, sess, syswatch, toc, watch
jeff Jeff Schriebman biorhythm, colrm, flt40, linerm, procp, repeat, strip
jfr John Reiser as
jkf John Foderaro lisp
ken Ken Thompson apl, pi, px
kurt Kurt A. Shoens fix, fixit, fleece, fmt, funny, lock, mail, Mail, pq, reset,

rmtree, ucbmail, vpac
lem Lee E. McMahon gres
llc Lorinda Cherry diction
mark Mark Horton banner, chfn, curses, leave, libcurses, rewind, script,

ul, w
mckusick Kirk McKusick gprof, num
mike Mike Tilson tmac, vcat
mja Mike Accetta enet, pty, tty pty
ozalp Ozalp Babaoglu analyze, locore, vm, vmstat, vmunix
peter Peter B. Kessler gprof
presott David Presotto vgrind
rrh Robert R. Henry as
schmidt Eric Schmidt berknet, net, netcp, netlpr, netmail, netq, netrm
sif S. I. Feldman efl
sklower Keith Sklower arff, flcopy, libNS
tbl Tom London liszt
td Tom Duff tmac, vcat
toy Michael Toy 33, libretro, num, rogue, shutdown, termcap, termlib
tuck Richard Tuck arff, flcopy
wnj Bill Joy analyze, apropos, ashell, cat3a, chessclock, chownall,

colcrt, collpr, cptree, cr3, csh, cshms, cxref, dates,
diffdir, double, dribble, edit, ex, ex-1, expand, exre-
cover, exrefm, eyacc, fold, from, glob2, head, htmp,
htmpg, htmps, iul, list, lntree, locore, ls, makeTtyn,
man, manwhere, mkstr, msgs, nm, num, number, os-
ethome, pascal, pascals, pcc, pi, pi0, pi1, pix, print,
Print, puman, px, pxp, pxref, rout, see, sethome, sh,
sidebyside, size, soelim, squash, ssp, strings, strip,
termcap, termlib, tests, tra, transcribe, ttycap, tty-
cap2, Ttyn, ttytype, typeof, ulpr, vgrind, vi, vm, vm-
stat, vmunix, wc, whatis, whereis, whoami, whoison,
xstr

x-br Bill Reeves tmac, vcat
x-clm Colin L. Mc Master ccat, compact, uncompact
x-dl Douglas Lanam apl
x-dw David Willcox indent
x-etc Earl T. Cohen finger
x-im Ivan Maltz ticktock
x-jp Juan Porcar locore, vm, vmunix
x-le Len Edmondson lastcomm
x-or Olivier Roubine dribble
x-rd R. Dowell spice
x-rh Ross Harvey apl
x-rt Robert Toxen tod

18 Diomidis Spinellis

2. http://www.cs.bell-labs.com/who/doug/index.html
"Text- and data-processing utilities:
spell, diff, sort, join, graph, speak, etc."
usr/src/cmd/diff.* doug
usr/src/cmd/graph\.c doug
usr/src/cmd/join\.c doug
usr/src/cmd/spell/.* doug
bin/spell doug

3. [Morris] was also the author of the series of crypt programs
that came with early Unix, including the final one distributed with the
Seventh Edition
http://cm.bell-labs.com/cm/cs/who/dmr/crypt.html
usr/man/man1/crypt\.1 rhm
usr/man/man3/crypt\.3 rhm
usr/src/cmd/crypt\.c rhm
usr/src/libc/gen/crypt\.c rhm

5. Volume 2 of the manual (supplementary documents)
Based on the authors listed in each document
usr/doc/adb/.* jfm,srb
usr/doc/adv.ed/.* bwk
usr/doc/assembler dmr
usr/doc/awk aho,pjw,bwk

Fig. 9 Example specifications of file authorship

Listing 1 Retrieving authorship information from documentation files

1# Location of the Volume 2 documentation
2cd archive/v7/usr/doc
3
4# Find all files
5find . −type f |
6# List those containing the .AU macro
7xargs fgrep .AU |
8# Create path regular expressions
9sed −n ’s/ˆ\.\/\([ˆ−\/:]∗\)\([:/]\).∗/\/usr\/doc\/\1\2\.∗/p’ |
10# Eliminate wildcard for single files
11sed ’s /:\.\∗//; s/\///’ |
12# Remove duplicates
13sort −u
14
15# Find all files
16find . −type f |
17# List two lines of context around the .AU macro
18xargs fgrep −A 2 .AU

The Freebsd author identifier map, required for importing the early cvs repos-
itory, was constructed by extracting the corresponding data from the project’s
modern Git repository, which includes the full names of modern committers. In ad-
dition, the Unix finger command was used on a computer hosting Freebsd Project
developers, to obtain the full names of another 60 contributors. In total the com-
mented authorship files (897 rules) comprise 1215 lines, and there are another 988
lines mapping author identifiers to names.

A Repository of Unix History and Evolution 19

./adb/tut:.AU "MH2F-207" "3816"

./adb/tut-J. F. Maranzano

./adb/tut:.AU "MH2C-512" 7419

./adb/tut-S. R. Bourne

./adb/tut-.AI
--
./adv.ed/ae0:.AU "MH 2C518" 6021
./adv.ed/ae0-Brian W. Kernighan
./adv.ed/ae0-.AI
--
./assembler:.AU
./assembler-Dennis M. Ritchie
./assembler-.AI
--
./awk:.AU "MH 2C-522" 4862
./awk-Alfred V. Aho
./awk:.AU "MH 2C-518" 6021
./awk-Brian W. Kernighan
./awk:.AU "MH 2C-514" 7214
./awk-Peter J. Weinberger
./awk-.AI

Fig. 10 Author names as listed in Unix documentation files

Email address template
%A $@research.uucp

Id (used in path maps):Full name:email
aho:Alfred V. Aho
bsb:Brenda S. Baker
bwk:Brian W. Kernighan
csr:C. S. Roberts
dan:D. A. Nowitz
dmr:Dennis Ritchie
doug:Doug McIlroy
jfm:J. F. Maranzano
jfo:Joe Ossanna
[...]
schmidt:Eric Schmidt:schmidt@ucbvax.Berkeley.EDU

Fig. 11 Specifications of author details

3.3 Processing

The processing of the project’s data sources has been codified into a 190-line
Makefile. The processing involves five steps: data fetching, tool construction, data
unpacking, data cleaning, and repository creation. The following paragraphs sum-
marize how each step is performed.

Data fetching involves copying and cloning about 11gb of images, archives,
and repositories from remote sites. Some of the snapshots used are available as
compressed tar or cpio archives (sometimes split into multiple files), while others
are available as (or can be converted into) cd-rom images.

Under tool construction an archiver required for processing old pdp-11 archives
on modern platforms is compiled from source. The archiver’s code stems from

20 Diomidis Spinellis

2.9bsd. It was subsequently modified to work on non-pdp-11 architectures.10 Fur-
ther modifications introduced as part of the work reported here include changes
to make it preserve the modification time of the extracted files and adjustments
to allow its warning-free compilation under Linux.

The data unpacking of the archives is mainly performed using tar and cpio.
In addition, three 6th Research Edition directories are combined into one and all
1bsd archives are unpacked using the old pdp-11 archiver. Furthermore, the 8 and
62 386bsd floppy disk images are combined into two separate files. Finally, all
cd-rom images are made accessible so that they can be processed as file systems.
This is done by mounting them via a loop-back device, which makes their contents
(read-only) accessible as regular files.

The data cleaning involves tasks required to bring the data into a state suit-
able for the repository import tools. These are:

– restoring the 1st Research Edition kernel source code files, which were obtained
from printouts through optical character recognition, into a format close to
their original state;

– patching some 7th Research Edition source code files;
– removing metadata files and other files that were added after a release, to avoid

obtaining erroneous time stamp information;
– patching corrupted sccs files;11

– creating a Git repository representing the 386/bsd patch kit patches by suc-
cessively applying each patch to 386/bsd 0.1 and committing the result;

– using a custom Perl script to remove cvs symbols assigned to multiple revisions
in the early Freebsd cvs repository;

– deleting cvs Attic files clashing with live ones; and
– converting the early Freebsd cvs repository into a Git one using cvs2svn.

Finally, the synthesis of the various data sources into the single Unix history

Git repository is performed by two scripts: A Perl script to feed Git with data
and a shell script to invoke it for each data set.

The 780-line Perl script (import-dir.pl) can export the (real or synthesized)
commit history from a single data source (snapshot directory, sccs repository, or
Git repository) in the Git fast export format.

The script takes as input a number of obligatory and optional arguments. These
are used to specify:

– whether to import data from a release snapshot directory, an sccs repository,
or a Git repository;

– the directory to import, the corresponding branch and version, and the time-
zone associated with the imported snapshot files;

– the mapping of files to contributors (see Figure 9);
– the mapping between contributor login names and their full names and email

(see Figure 11);
– the Git commit or commits from which the import will appear to be merged;
– a path to prepend to file paths or Git branches being committed — this ho-

mogenizes the imported data;

10 ftp://ftp.tuhs.org.ua/PDP-11/Tools/Tapes/newoldar.c
11 https://github.com/jonathangray/csrg-git-patches/

A Repository of Unix History and Evolution 21

– a leading path to strip from file paths being committed — again, this homog-
enizes the imported data;

– a list of Git identifiers whose files will be incorporated into the import as
reference files (see the right of Figure 8);

– a date specifying that reference files dated before that date are to be deleted
— this will be explained later on;

– lists of files to ignore — this is used to exclude from the import duplicate
files (existing in the source and the installation directory), cd-rom name map
files, sccs directories, binary executables, other installed files, and third-party
packages that were only present in the distributions for a brief period of time
(e.g. Ingres);

– a list of files to ignore during the import, but merge at its end — this is used
to handle sccs files that appeared between two bsd snapshots;

– a cutoff date for the imported commits (this is used to ignore bsd sccs commits
after 1996 — the year following the last imported bsd snapshot);

– the name of a file to write unmatched paths — these are paths matched by a
wildcard in the file to contributor map, and are used for manually improving
the map’s quality;

– a regular expression specifying the files to process — this is used for imple-
menting a fast import test process over a small subset of all data.

The command produces output in the so-called Git fast import format; a simple
text-based stream format that many Git tools use to import and export data. An
excerpt of this format can be seen in Listing 2, though its contents will be explained
later.

An interesting part of the repository representation is how snapshots are im-
ported and linked together in a way that allows git blame to identify old code in
newer file versions. Snapshots are imported into the repository as sequential com-
mits based on the time stamp of each file. When all files have been imported, the
repository is tagged with the name of the corresponding release. At that point
these files could be deleted, and the import of the next snapshot could begin. Note
that the git blame command works by traversing backwards a repository’s history,
and using heuristics to detect code moves and copies within or across files. Con-
sequently, deleted snapshot files would create a discontinuity between snapshots,
and prevent the tracing of code between them.

Instead, before the next snapshot is imported, all the files of the preceding
snapshot are moved into a hidden reference look-aside directory named .ref. (See
the expanded synthetic commit series appearing on the right of Figure 8.) They
remain there, until all files of the next snapshot have been imported, at which
point they are deleted. Because every file in the .ref directory matches exactly an
original file, git blame can determine how source code moves from one version to
the next via the .ref file, without ever displaying the .ref file. To further help the
detection of code provenance, and to increase the representation’s realism, each
release is represented as a merge between the branch with the incremental file
additions (–Development) and the preceding release.

The small example of the Git fast import data seen in Listing 2 demonstrates
the concepts described in the preceding paragraphs. The data stream begins with
the contents of files that will be stored in the repository. These are specified using
the blob command (lines 1–8). For debugging purposes the name and timestamp of

22 Diomidis Spinellis

Listing 2 Example of generated Git fast import data

1# 315830189 ../archive/3bsd/usr/src/cmd/ex/ex addr.c
2blob
3mark :3
4data 5190
5/∗ Copyright (c) 1979 Regents of the University of California ∗/
6#include ”ex.h”
7#include ”ex re.h”
8[...]
9
10# Start development commits from a clean slate
11commit refs/heads/BSD−3−Snapshot−Development
12mark :10
13author Bill Joy <wnj@ucbvax.Berkeley.EDU> 287674317 −0800
14committer Bill Joy <wnj@ucbvax.Berkeley.EDU> 287674317 −0800
15data 99
16Start development on BSD 3
17Create reference copy of all prior development files
18(Synthetic commit)
19merge Bell−32V
20merge BSD−2
21M 100644 1468bde18e292c07e5d30ecbd7fd2b91a60e4626 .ref−Bell−32V/usr/include/stat.h
22M 100644 1468bde18e292c07e5d30ecbd7fd2b91a60e4626 .ref−Bell−32V/usr/include/sys/stat.h
23M 100644 816685f1f60f44dfaed7e673294b9d07a12114e5 .ref−Bell−32V/usr/man/man2/open.2
24[...]
25
26# 315830189 ../archive/3bsd/usr/src/cmd/ex/ex addr.c
27commit refs/heads/BSD−3−Snapshot−Development
28mark :13
29author Bill Joy <wnj@ucbvax.Berkeley.EDU> 315830189 −0800
30committer Bill Joy <wnj@ucbvax.Berkeley.EDU> 315830189 −0800
31data 75
32BSD 3 development
33Work on file usr/src/cmd/ex/ex addr.c
34(Synthetic commit)
35M 100644 :3 usr/src/cmd/ex/ex addr.c
36[...]
37
38# Release
39commit refs/heads/BSD−Release
40mark :3700
41author Bill Joy <wnj@ucbvax.Berkeley.EDU> 315928541 −0800
42committer Bill Joy <wnj@ucbvax.Berkeley.EDU> 315928541 −0800
43data 78
44BSD 3 release
45Snapshot of the completed development branch
46(Synthetic commit)
47from :3699
48merge Bell−32V
49merge BSD−2
50D .ref−Bell−32V
51D .ref−BSD−2
52
53tag BSD−3
54from :3700
55tagger Bill Joy <wnj@ucbvax.Berkeley.EDU> 315928541 −0800
56data 91
57Tagged 3 release snapshot of BSD with 3
58Source directory : ../ archive/3bsd
59(Synthetic tag)
60
61done

A Repository of Unix History and Evolution 23

the file from which the data were taken are first listed as a # line comment (line 1).
The embedded mark command (line 3) associates the number 3 with the contents.
These are specified through the data command (line 4). Its argument specifies the
number of bytes supplied, which follow after a newline (e.g. lines 5–8).

Following the definitions of data elements come the commits associated with
the import in the BSD-3-Snapshot-Development branch. The first commit (lines
10–24) creates a reference copy of the previous snapshot’s files by moving them
to a hidden directory (.ref-Bell-32V) by means of the M — filemodify command
(lines 21–24). This changes the path of the old blob object identified through
its sha-1 hash to the one specified. The number 100644 (an octal representation
similar to the Unix file mode) specifies that this is a normal (non-executable) file.
The associated branch is given as an argument to the commit command (line 11).
The snapshot being imported (in this case BSD-3) is identified as a merge of two
preceding snapshots (Bell-32V and BSD-2) using the merge command (lines 19–
20). The name and email associated with the commit’s author and committer and
the corresponding timestamps (in seconds since 1970 and utc offset) are given in
lines 13–14, while the commit’s message is specified with a data command in lines
15–18.

Then comes a series of commits that add files to the repository. The commits
are ordered according to the timestamps of the corresponding files. The example
listed in lines 26–36 creates the file ex addr.c. This is again specified with an M

— filemodify command, which now refers to the blob (3) with the file’s contents.
The branch, author, committer, file mode, and commit message are specified in
the same way as in the previous commit.

The last commit in a snapshot import (lines 38–51) marks a logical point on
the BSD-Release branch. This is defined as a merge between the last commit in
the BSD-3-Snapshot-Development branch (marked as 3699 and identified with the
from command in line 47) and the two preceding snapshots (Bell-32V and BSD-2

— lines 48–49). At this point two D — filedelete commands remove the refence file
copies that were created at the beginning (lines 50–51).

Finally, a tag command (lines 53–59) associates a symbolic name with the
release, and the done command (line 61) signals the stream’s end.

A 620-line shell script (import.sh) creates the Git repository and calls the
Perl script with appropriate arguments to import each one of the approximately
30 available historical data sources (see Table 2). As an example, consider the
following (slightly simplified) invocation.

perl ../ import−dir.pl $VERBOSE −m Bell−32V,BSD−2 \
−c ../author−path/BSD−3 −n ../berkeley.au −r Bell−32V,BSD−2 \
−i ../ ignore/BSD−3 −u ../unmatched/BSD−3 $ARCHIVE/3bsd \
BSD 3 −0800 |

git fast−import −−stats −−done −−quiet

The preceding shell command runs the import script over the 3bsd snapshot
to create version 3 of the BSD branch. This will appear as a merge between the
tags Bell-32V and BSD-2, whose files will also be retained until all the snapshot’s
files have been imported. The file author-path/BSD-3 specifies the authorship of
each file and berkeley.au the details of the authors. Files listed in ignore/BSD-3

will not be imported and files matched with a wildcard (.*) authorship pattern

24 Diomidis Spinellis

will be listed in unmatched/BSD-3. The command’s output is piped into the git

fast-import command to convert it into actual Git commits.
For a period in the 1980s, only a subset of the files developed at Berkeley were

under sccs version control. During that period the Unix history repository contains
imports of both the sccs commits, and the snapshots’ incremental additions. At
the point of each release, the sccs commit with the nearest time stamp is found
and is marked as a merge with the release’s incremental import branch. These
merges can be seen in the center of Figure 8.

The import shell script also inserts into all imported versions of Unix diverse
licensing files and a file named README.md which, among other things, contains the
Git sha sum of the software that created the repository and a timestamp of the
import process. Provided the data sources are not modified, this allows the Unix
repository to be uniquely identified in a replicable fashion.

The shell script also runs 30 tests that compare the repository at specific tags
against the corresponding data sources, verify the appearance and disappearance
of look-aside directories, and look for regressions in the count of tree branches and
merges and the output of git blame and git log.

Before pushing the created repository to GitHub, git is called to garbage-collect
and compress the repository from its initial 6.1gb size down to the distributed
1.1gb.

4 Data Uses

The Unix history repository can be used for empirical research in software en-
gineering, information systems, and software archeology. Through its unique un-
interrupted coverage of a period of more than 40 years, it can inform work on
software evolution and handovers across generations. With thousandfold increases
in processing speed and million-fold increases in storage capacity during that time,
the data set can also be used to study the co-evolution of software and hardware
technology.

As one concrete example, Figure 12 depicts trend lines of some interesting code
metrics along 36 major releases of Unix. It demonstrates the evolution of code
style and programming language use over very long timescales. This evolution
can be driven by software and hardware technology affordances and requirements,
software construction theory, and even social forces. The Figure was obtained with
R’s local polynomial regression fitting function. The dates in the Figure have been
calculated as the average date of all files appearing in a given release. As can
be seen in it, over the past 40 years the mean length of identifiers has steadily
increased from 4 characters to 7 and mean length of file names has increased
from 6 characters to 11. We can also see less steady increases in the number of
comments and decreases in the use of the goto statement, as well as the virtual
disappearance of the register type modifier. Based on these observations made in an
exploratory study (Spinellis et al 2015) a follow-up work (Spinellis et al 2016) used
the Unix history repository to examine seven concrete hypotheses. By extracting,
aggregating, and synthesizing metrics from 66 snapshots in the period covered by
the repository it was found that over the years developers of the Unix operating
system appear to have evolved their coding style in tandem with advancements
in hardware technology, promoted modularity to tame rising complexity, adopted

A Repository of Unix History and Evolution 25

● ●

●

●

●●

●

●

● ●

●
●

●
●

● ●

●

●
●

●

●●

●

●

● ●
●

●

●

●

●

●

●
●

●

0

3

6

9

1980 1990 2000 2010
Mean date of release's files

V
al

ue
 (

se
e

le
ge

nd
)

● Mean filename length

Mean identifier length

Comments per 100 lines

% of goto statements

"register" keywords per 100 lines

Fig. 12 Code style evolution along Unix releases.

valuable new language features, allowed compilers to allocate registers on their
behalf, and reached broad agreement regarding code formatting. The reported
work also showed that many trends point toward increasing code quality through
adherence to numerous programming guidelines, that some other trends indicate
adoption that has reached maturity, and that in the area of code commenting
progress appears to have stalled.

As a second example, Figure 13 shows the distribution of minimum and max-
imum lifespan estimates of a line of code. The estimates were obtained as follows.
First git blame (with -w -C -C -C parameters) was run on all (1.5 million) source
code files of 71 Unix releases selected in the repository. This task used considerable
computing resources: 9.9 core years cpu time, 3,815 cores, 7.6 tb ram, and 588
gb of disk space. Its execution was made possible by running it, as a set of tasks
scheduled through slurm (Yoo et al 2003), on a supercomputer (ibm NeXtScale
nx360M5, Intel Xeon E5-2680v2 10C 2.8ghz, Infiniband fdr14, 8,520 cores, 170
tflop/s). The run associated, with each line of code of each release, a timestamp
indicating the time the line was last modified. By identifying the first release where
a line of code stopped appearing, it was possible to estimate the minimum and
maximum bounds of that line’s lifespan in its initial form. The line was considered
to “die” (it was removed or modified) sometime between the preceding release and
the one where it stopped appearing. In total, minimum estimates were obtained
for 117 million lines and maximum estimates for 89 million lines. (The minimum
estimates also include lines that survived until the last available release.) Linear

26 Diomidis Spinellis

100

102

104

106

108

0 10 20 30 40
Estimated lifespan (years)

C
od

e
lin

es

Estimate type

●

●

Minimum lifespan

Maximum lifespan

Fig. 13 Exponential decay of Unix source code.

regression on the logarithm of the surviving lines of code l and their lifespan t

indicates (R2 = 0.73; p = 2.2×10−16) that the code’s decay matches the following
exponential model.

l = e−0.26×t

Based on the lifespan’s median value, we can bound the half-life of a line of code
somewhere between 2.4 days and 9 years.

Apart from the preceding two concrete examples, many more areas of research
present themselves. The move of the software’s development from research labs, to
academia, and to the open source community can be used to study the effects of
organizational culture on software development. In that area an additional branch
from Unix 32/V with System iii, System v, and illumos could trace the evolution
of Unix in corporate hands and its transition to another open source community.

The repository can also be used to study how notable individuals, such as
Turing Award winners (Dennis Ritchie and Ken Thompson) and captains of the it

industry (Bill Joy and Eric Schmidt), actually programmed. Another phenomenon
worthy of study concerns the longevity of code, either at the level of individual
lines, or as complete systems that were at times distributed with Unix (Ingres, Lisp,
Pascal, Ratfor, Snobol, tmg), as well as the factors that lead to code’s survival or
demise.

Finally, because the data set stresses Git, the underlying software repository
storage technology, to its limits, it can be used to drive engineering progress in
the field of revision management systems.

A Repository of Unix History and Evolution 27

5 Contributing Extensions

The Unix history repository is managed as an open source project. The project can
benefit from the addition of authorship information and entirely new data sources.
Both can be contributed as changes to the repository containing the creation code;
ideally as GitHub pull requests.

Adding authorship data for code that is imported via snapshots involves adding
the author’s login identifier, full name, and email (if different from the default for
the corresponding community) in the author file associated with the repository:
386bsd.au, bell.au, berkeley.au, or freebsd.au. The fields are colon-separated;
see Figure 11. Then, records must be added in the repository’s authorship data
file, which is located in the author-path directory. Each record consists of a regular
expression that matches one or more files in the repository, followed by the login
identifier of the files’ author (see Figure 9). For example the following two lines
identify Alfred Aho as the author of all files in the libdbm directory and Doug
McIlroy as the author of the file join.c. (Note the escaped “.”). Records are
matched from top to the bottom of the file, so more specific patterns should be
listed before more general ones.

usr/src/libdbm/.* aho

usr/src/cmd/join\.c doug

Both files allow comments starting with a “#” character. The associated com-
ments and commit messages should clearly indicate the attribution’s justification,
e.g. a pointer to a publication or a timestamped excerpt of a personal communi-
cation. Following the change, the consistency of the added data should be verified
by running import.sh -VI, the Unix history repository should be rebuilt, and the
differences in the unmatched directory files should be closely examined to verify
that they match the change made.

Adding a completely new release data source is more involved. First, note that
the corresponding data should be legally available for further redistribution. For
example, although various snapshots of System iii and beyond seem to be floating
around the internet, including them in the repository is not currently possible,
because Caldera’s license explicitly excludes them. In brief, the steps required are
the following.

– Add a Makefile rule that will download the data and expand it in a directory
within archive directory.

– Add the directory’s path as a dependency to the Makefile’s all rule.
– If the data involves a snapshot, add authorship information as detailed in this

section’s preceding paragraphs.
– Add a list of files that should not be imported (e.g. because they are exe-

cutables compiled from the repository’s source code) in the ignore directory.
Alternatively, add in import.sh a command to generate this list.

– Add a statement in import.sh that will graft the data in the appropriate place
of the Unix history repository tree.

– Rebuild the history repository.
– Verify that the checked out version of the new data source from the history

repository matches the original data.

28 Diomidis Spinellis

– Verify through manual inspection that git blame and git log produce the
expected results (especially across releases), and that branches and merges are
correctly represented.

– Add corresponding verification rules in the verify function located in import.sh.

6 Further Work

Many things can be done to increase the repository’s faithfulness and usefulness.
Given that the build process is shared as open source code, it is easy to contribute
additions and fixes through GitHub pull requests. The most useful community
contribution would be to increase the coverage of imported snapshot files that
are attributed to a specific author. Currently, about 81 thousand snapshot com-
mits (10% out of a total of 496 thousand commits) are getting assigned an au-
thor through a default rule. Similarly, there are about 40 authors (primarily early
Freebsd ones, responsible for 4,974 commits — 1.6% of the total) for which only
the identifier is known. Both are listed in the build repository’s unmatched direc-
tory, and contributions are welcomed. Furthermore, the bsd sccs and the Freebsd
cvs commits that share the same author and time-stamp can be coalesced into
a single Git commit. Support can be added for importing the sccs file comment
fields, in order to bring into the repository the corresponding metadata. Finally,
and most importantly, more branches of open source systems can be added, such
as Plan 9 from Bell Labs, Netbsd Openbsd, DragonFlybsd, and illumos. Ideally,
current right holders of other important historical Unix releases, such as System
iii, System V, Nextstep, and Sunos, will release their systems under a license that
would allow their incorporation into this repository for study.

Acknowledgements

The author thanks the many individuals who contributed, directly or indirectly, to
the effort. John Cowan, Brian W. Kernighan, Larry McVoy, Doug McIlroy, Jeremy
C. Reed, Aharon Robbins, and Marc Rochkind helped with Bell Labs login identi-
fiers. Clem Cole, John Cowan, Era Eriksson, Mary Ann Horton, Warner Losh, Kirk
McKusick, Jeremy C. Reed, Ingo Schwarze, Anatole Shaw, and Norman Wilson
helped with bsd login identifiers and code authorship information. The historical
and current material used in the repository was made available thanks to efforts
by the Freebsd Project, Lynne Greer Jolitz, William F. Jolitz, Kirk McKusick,
and the Unix Heritage Society. The early Unix editions were released under an
bsd-style license thanks to the efforts of Bill Broderick, Paul Hatch, Dion L. John-
son II, Ransom Love, and Warren Toomey. The bsd sccs import code is based on
work by H. Merijn Brand and Jonathan Gray. The newoldar program is a result of
work by Brandon Creighton and Dan Frasnelli. The First Research Edition Unix
was restored by Johan Beiser, Tim Bradshaw, Brantley Coile, Christian David,
Alex Garbutt, Hellwig Geisse, Cyrille Lefevre, Ralph Logan, James Markevitch,
Doug Merritt, Tim Newsham, Brad Parker, and Warren Toomey.

A Repository of Unix History and Evolution 29

References

Aho AV, Kernighan BW, Weinberger PJ (1979) Awk—a pattern scanning and processing
language. Software: Practice & Experience 9(4):267–280

Babaog̃lu O, Joy W (1981) Converting a swap-based system to do paging in an architecture
lacking page-referenced bits. In: Proceedings of the Eighth ACM Symposium on Operating
Systems Principles, ACM, New York, NY, USA, SOSP ’81, pp 78–86,

Bashkow TR (1972) Study of UNIX. Bell Laboratories memo MH-8234-TRB-mbh. Avail-
able online at http://bitsavers.informatik.uni-stuttgart.de/pdf/bellLabs/unix/
PreliminaryUnixImplementationDocument_Jun72.pdf. Current September 2015

Bird C, Gourley A, Devanbu P, Gertz M, Swaminathan A (2006) Mining email social networks.
In: Proceedings of the 2006 International Workshop on Mining Software Repositories,
ACM, New York, NY, USA, MSR ’06, pp 137–143,

Bourne SR (1978) The UNIX shell. Bell System Technical Journal 56(6):1971–1990
Bourne SR (1979) An introduction to the UNIX shell. In: Unix Programmer’s Manual (1979)
Dolotta TA, Haight RC, Mashey JR (1978) The programmer’s workbench. Bell System Tech-

nical Journal 56(6):2177–2200
Feldman SI (1979) Make—a program for maintaining computer programs. Software: Practice

& Experience 9(4):255–265
FreeBSD (2015) FreeBSD Handbook. The FreeBSD Documentation Project, revision 47376

edn, available online https://www.freebsd.org/doc/handbook/index.html
Gall H, Menzies T, Williams L, Zimmermann T (2014) Software Development Analytics

(Dagstuhl Seminar 14261). Dagstuhl Reports 4(6):64–83, , URL http://drops.dagstuhl.
de/opus/volltexte/2014/4763

Gehani N (2003) Bell Labs: Life in the Crown Jewel. Silicon Press, Summit, NJ
Johnson SC (1975) Yacc—yet another compiler-compiler. Computer Science Technical Re-

port 32, Bell Laboratories, Murray Hill, NJ
Johnson SC (1977) Lint, a C program checker. Computer Science Technical Report 65, Bell

Laboratories, Murray Hill, NJ
Johnson SC, Lesk ME (1978) Language development tools. Bell System Technical Journal

56(6):2155–2176
Johnson SC, Ritchie DM (1978) Portability of C programs and the UNIX system. The Bell

System Technical Journal 57(6):2021–2048
Jolitz WF, Jolitz LG (1991) Porting UNIX to the 386: A practical approach. Designing a

software specification. Dr Dobb’s Journal 16(1)
Kernighan B, Lesk M, Ossanna JJ (1978) UNIX time-sharing system: Document preparation.

Bell System Technical Journal 57(6):2115–2135
Kernighan BW (1982) A typesetter-independent TROFF. Computer Science Technical Re-

port 97, Bell Laboratories, Murray Hill, NJ, URL http://cm.bell-labs.com/cm/cs/cstr/
97.ps.gz, available online at http://cm.bell-labs.com/cm/cs/cstr/97.ps.gz

Kernighan BW, Cherry LL (1974) A system for typesetting mathematics. Computer Science
Technical Report 17, Bell Laboratories, Murray Hill, NJ

Kernighan BW, Ritchie DM (1979) The M4 macro processor. In: Unix Programmer’s Manual
(1979)

Lesk M (1979a) Some applications of inverted indexes on the Unix system. In: Unix Program-
mer’s Manual (1979)

Lesk ME (1975) Lex—a lexical analyzer generator. Computer Science Technical Report 39,
Bell Laboratories, Murray Hill, NJ

Lesk ME (1979b) TBL—a program to format tables. In: Unix Programmer’s Manual (1979)
Lewis A (1956) AT&T settles antitrust case; shares patents. New York Times pp 1,16
Libes D, Ressler S (1989) Life with UNIX. Prentice Hall, Englewood Cliffs, NJ
Lions J (1996) Lions’ Commentary on Unix 6th Edition with Source Code. Annabooks, Poway,

CA
Mashey JR, Smith DW (1976) Documentation tools and techniques. In: Proceedings of the

2Nd International Conference on Software Engineering, IEEE Computer Society Press,
Los Alamitos, CA, USA, ICSE ’76, pp 177–181

McIlroy MD, Pinson EN, Tague BA (1978) UNIX time-sharing system: Foreword. The Bell
System Technical Journal 57(6):1899–1904

McKusick MK (1999) Twenty years of Berkeley Unix: From AT&T-owned to freely redis-
tributable. In: DiBona C, Ockman S, Stone M (eds) Open Sources: Voices from the Open

30 Diomidis Spinellis

Source Revolution, O’Reilly, pp 31–46
McKusick MK, Neville-Neil GV (2004) The Design and Implementation of the FreeBSD Op-

erating System. Addison-Wesley, Reading, MA
McMahon LE (1979) SED—a non-interactive text editor. In: Unix Programmer’s Manual

(1979)
Nowitz DA, Lesk ME (1979) A dial-up network of UNIX systems. In: Unix Programmer’s

Manual (1979)
Ossanna JF (1979) NROFF/TROFF user’s manual. In: Unix Programmer’s Manual (1979)
Pike R, Kernighan BW (1984) Program design in the UNIX system environment. AT&T Bell

Laboratories Technical Journal 63(8):1595–1606
Quarterman JS, Hoskins JC (1986) Notable computer networks. Communications of the ACM

29(10):932–971
Raymond ES (2003) The Art of Unix Programming. Addison-Wesley
Resnick P (2008) Internet Message Format. RFC 5322, RFC Editor, , URL http://www.

rfc-editor.org/rfc/rfc5322.txt
Ritchie DM (1978) A retrospective. Bell System Technical Journal 56(6):1947–1969
Ritchie DM (1984) The evolution of the UNIX time-sharing system. AT&T Bell Laboratories

Technical Journal 63(8):1577–1593
Ritchie DM (1993) The development of the C language. ACM SIGPLAN Notices 28(3):201–

208, preprints of the History of Programming Languages Conference (HOPL-II)
Ritchie DM, Thompson K (1974) The UNIX time-sharing system. Communications of the

ACM 17(7):365–375
Ritchie DM, Thompson K (1978) The UNIX time-sharing system. Bell System Technical Jour-

nal 57(6):1905–1929
Ritchie DM, Johnson SC, Lesk ME, Kernighan BW (1978) The C programming language. Bell

System Technical Journal 57(6)
Rochkind MJ (1975) The source code control system. IEEE Transactions on Software Engi-

neering SE-1(4):255–265
Rosler L (1984) The evolution of C — past and future. Bell System Technical Journal 63(8)
Salus PH (1994) A Quarter Century of UNIX. Addison-Wesley, Boston, MA
Spinellis D (2015) A repository with 44 years of Unix evolution. In: MSR ’15: Proceedings

of the 12th Working Conference on Mining Software Repositories, IEEE, pp 462–465,
, URL http://www.dmst.aueb.gr/dds/pubs/conf/2015-MSR-Unix-History/html/Spi15c.
html, best Data Showcase Award

Spinellis D, Louridas P, Kechagia M (2015) An exploratory study on the evolution of C pro-
gramming in the Unix operating system. In: Wang Q, Ruhe G (eds) ESEM ’15: 9th Interna-
tional Symposium on Empirical Software Engineering and Measurement, IEEE, pp 54–57, ,
URL http://www.dmst.aueb.gr/dds/pubs/conf/2015-ESEM-CodeStyle/html/SLK15.html

Spinellis D, Louridas P, Kechagia M (2016) The evolution of C programming practices: A
study of the Unix operating system 1973–2015. In: Visser W, Williams L (eds) ICSE ’16:
Proceedings of the 38th International Conference on Software Engineering, Association for
Computing Machinery, New York, , to appear

Stevens WR (1990) UNIX Network Programming. Prentice Hall, Englewood Cliffs, NJ
Stroustrup B (1984) Data abstraction in C. Bell System Technical Journal 63(8):1701–1732
Stroustrup B (1994) The Design and Evolution of C++. Addison-Wesley, Boston, MA
Takahashi N, Takamatsu T (2013) UNIX license makes Linux the last missing piece of the

puzzle. Annals of Business Administrative Science 12:123–137
Tichy WF (1982) Design, implementation, and evaluation of a revision control system,. In:

Proceedings of the 6th International Conference on Software Engineering, IEEE
Toomey W (2009) The restoration of early UNIX artifacts. In: Proceedings of the 2009 USENIX

Annual Technical Conference, USENIX Association, Berkeley, CA, USA, USENIX’09, pp
20–26

Toomey W (2010) First Edition Unix: Its creation and restoration. IEEE Annals of the History
of Computing 32(3):74–82,

Unix Programmer’s Manual (1979) UNIX Programmer’s Manual. Volume 2—Supplementary
Documents, seventh edn. Bell Telephone Laboratories, Murray Hill, NJ

Wall L, Schwartz RL (1990) Programming Perl. O’Reilly and Associates, Sebastopol, CA
Yoo AB, Jette MA, Grondona M (2003) SLURM: Simple Linux utility for resource manage-

ment. In: Feitelson D, Rudolph L, Schwiegelshohn U (eds) JSSPP 03: 9th International
Workshop on Job Scheduling Strategies for Parallel Processing, Springer Berlin Heidelberg,

A Repository of Unix History and Evolution 31

Berlin, Heidelberg, pp 44–60, , lecture Notes in Computer Science Volume 2862

