
0 74 0 - 74 5 9 / 0 9 / $ 2 5 . 0 0 © 2 0 0 9 I E E E July/August 2009 I E E E S o f t w a r E 15

focus

T he landscape of software engineering is littered with languages that were
supposedly the next great thing but failed to take the development world by
storm. In contrast, many tools actually have changed the technical space in
which certain domains expect to operate. Simulink and LabView are touch-

stones for designers in signal processing and in control. SolidWorks is the lingua franca
of mechanical engineers and roboticists building physical devices. Embedded-hardware
developers passionately support either VHDL (VHSIC Hardware Description Language)

Jonathan Sprinkle, University of Arizona

Marjan Mernik, University of Maribor

Juha-Pekka Tolvanen, MetaCase

Diomidis Spinellis, Athens University of Economics and Business

gue s t e d i t or s ’ i n t r o duc t i on

What Kinds of Nails
Need a Domain-
Specific Hammer?

16 I E E E S o f t w a r E w w w . c o m p u t e r . o r g / s o f t w a r e

or Verilog. Some of these tools use textual lan-
guages, whereas others follow graphical notations.

Most of us outside these domains have never
used these tools or languages, and more than a few
of us might never have heard of them. Yet these
tools are successful in their niches because each one

satisfies its domain’s requirements and ■

streamlines development by restricting user ■

input to parameters within the domain while
providing easy access to artifacts (for example,
files, plots, and generated code) that help users
design or implement these systems.

Domain-specific techniques, languages, tools,
and models aren’t new: Fortran and Cobol can
easily be viewed as domain-specific languages for
scientific and business computing, respectively.
Their domain is just very wide. What has changed
is the technology for creating domain-specific lan-
guages (DSLs). Now it’s easier to define languages
and get tool support for narrower domains—for
example, specifying insurance products or devel-
oping home automation systems. Such focus of-
fers increased abstraction, making development
faster and easier.

In domain-specific approaches, developers con-
struct solutions from concepts representing things
in the problem domain, not concepts of a given
general-purpose programming language. Ideally, a
DSL follows the domain abstractions and seman-
tics as closely as possible, letting developers per-
ceive themselves as working directly with domain
concepts. The created specifications might then
represent simultaneously the design, implementa-
tion, and documentation of the system, which can
be generated directly from them. The mapping
from the high-level domain concepts to implemen-
tation is possible because of the domain specificity:
the language and code generators fit the require-
ments of a narrowly defined domain.

Characteristics of Problems
Deserving a DSL&M Approach
Here’s a checklist for determining whether a prob-
lem merits a DSL&M (domain-specific languages
and modeling) approach:

The domain is well defined. ■

The domain has repetitive elements or patterns, ■

such as multiple products, features, or targets.
The developer community is growing (which ■

usually means a maturing business area and the
need for domain-specific notations).
A clear path exists from requirements analysis ■

and specification to execution.
Accuracy; expert involvement; and flexibility of ■

the specification, verification, and validation of
design are important.
An intuitive or well-accepted representation is ■

already defined.
The implementation or specification must serve ■

as documentation.
The implementation details might be subject to ■

change, but the specification semantics is clear.
Use by a domain expert (not necessarily a soft- ■

ware expert) is intended.
Amortization of effort justifies investment in ■

DSL&M creation.

The more of these characteristics the problem ex-
hibits, the more likely it will merit a DSL&M solu-
tion. However, in some cases, only one characteris-
tic might apply to a problem, but that characteristic
is significant enough for the problem to merit a
DSL&M solution. Such a trade-off must be care-
fully considered.

Amortization of Effort
DSL&M allows raising the level of abstraction to
hide today’s programming languages, in the same
way that today’s programming languages hide an
assembler. Two issues, though, are how much ef-
fort goes into developing the domain-specific in-
frastructure and how long you can use it with
your domain.

When amortizing the effort of using DSL&M
solutions, you must consider the entire life cycle:

the effort to create and maintain the language ■

and related code generators,
the effort and cost to obtain and maintain tool ■

support for the language, and
the effort for domain experts to learn the ■

language.

You must also weigh that entire effort against these
issues:

productivity increase compared to general- ■

purpose solutions,
quality improvement compared to general- ■

purpose solutions, and
the number of expected users or imple men- ■

tations.

If you determine that DSL&M is an appropri-
ate choice, you’re ready to select from the various
tools to make your design and implementation
plan concrete.

The key way
to leverage
the benefits
of DSL&M

approaches
is to look for
opportunities

to employ them.

 July/August 2009 I E E E S o f t w a r E 17

How to Leverage Benefits
The key way to leverage the benefits of DSL&M
approaches is to look for opportunities to employ
them. Refuse the bland conformity of a general-
purpose language, and always search for a better
way to code a specific requirement. If you find that
the general-purpose language’s abstractions can’t
provide the expressiveness you need, it’s prob-
ably because a DSL is trying to get your attention.
Similarly, if you find that you frequently describe
your designs using visualizations that are clear to
implementers but aren’t part of the UML stan-
dard, you’re itching for a form of domain-specific
modeling.

Common DSL&M tools include

GME (Generic Modeling Environment), www. ■

isis.vanderbilt.edu/projects/gme;
GMF (Graphical Modeling Framework), www. ■

eclipse.org/gmf;
LISA (■ Language Implementation System Based
on Attribute Grammars), marcel.uni-mb.si/lisa;
MetaEdit+, www.metacase.com; ■

the Meta-Environment (ASF + SDF [algebraic ■

specification formalism and syntax definition
formalism]), www.meta-environment.org; and
Microsoft DSL tools, code.msdn.microsoft. ■

com/DSLToolsLab.

Designing and implementing a small DSL
from scratch is often quite easy. Scripting lan-
guages make it straightforward to parse a sim-
ple line or XML–based format into a general-
purpose language (or another DSL) for existing
compilers. In the right hands, this approach can
be extremely powerful.

Are DSL&M Technologies Ready
for Large-Scale Problems?
Talking about how good a technology could be is
nothing compared to showing results. DSL&M
solutions have produced many significant re-
sults in various domains, including automotive
manufacturing, digital signal processing, mobile
devices, telecommunications, home automation,
and electrical utilities. In terms of quantifiable
improvements, Nokia has reported 10× produc-
tivity improvement from coding to DSM,1 Pa-
nasonic has reported 5× improvement,2 Lucent
has reported 5× to 10× improvement depending
on the domain,3 and empirical studies have re-
ported 3× improvement—with a significance
level of 99 percent.4

DSL&M technologies are also qualitatively
improving design and implementation by reduc-

ing development resources, increasing capability,
and changing how systems interact. This rec ord
extends past academic problems to include large-
scale US government acquisitions,5 automotive6,7
and avionics8 software, command and control sys-
tems,4 secure networks,9 information-integrated
education,10 medical treatment,11 autonomous-
vehicle development,12 and many other domains
(for examples, see www.dsmforum.org/cases.
html). This extends the information technol-
ogy impact of DSL&M approaches, which has
spawned innovations in software product lines.

Not Every Nail
Needs This Hammer, ...
... but when DSL&M approaches are applicable,
they can greatly decrease the cost of develop-
ing software and systems. DSL&M technologies
aren’t a panacea, and in many cases the initial ef-
fort required to create a DSL&M solution might
exceed the effort to apply the general-purpose so-
lution. However, the effort that goes beyond the
code’s development, including maintenance and

About the Authors
Jonathan Sprinkle is an assistant professor of electrical and computer engineering
at the University of Arizona. In 2009, he received the university’s Ed and Joan Biggers
Faculty Support Grant for work in autonomous systems. He previously was the executive
director of the Center for Hybrid and Embedded Software Systems at the University of
California, Berkeley. His research interests and experience are in systems control and engi-
neering, through modeling and metamodeling. Sprinkle has a PhD in electrical engineering
from Vanderbilt University and is a member of the IEEE, ACM, and American Institute of
Aeronautics and Astronautics. Contact him at sprinkle@ece.arizona.edu.

Juha-Pekka Tolvanen is the CEO of MetaCase. He has been involved in domain-
specific approaches, notably metamodeling and modeling tools, since 1991. He has acted
as a consultant worldwide for modeling-language and code generation development and
coauthored Domain-Specific Modeling: Enabling Full Code Generation (John Wiley & Sons,
2008). Tolvanen has a PhD in computer science from the University of Jyväskylä. Contact
him at jpt@metacase.com.

Marjan Mernik is a professor in the University of Maribor’s Department of Computer
Science, where he leads the Programming Methodologies Group. His research interests in-
clude programming languages, compilers, grammar-based systems, grammatical inference,
and evolutionary computation. Mernik has a PhD in computer science from the University of
Maribor and is a member of the IEEE and ACM. Contact him at marjan.mernik@uni-mb.si.

Diomidis Spinellis is an associate professor in the Athens University of Economics
and Business’s Department of Management Science and Technology. His research interests
include software engineering tools, programming languages, and computer security. He’s
the author of Code Reading: The Open Source Perspective (Addison-Wesley, 2003) and editor
of IEEE Software’s Tools of the Trade column. Spinellis has a PhD in computer science from
Imperial College, University of London. Contact him at dsl@istlab.dmst.aueb.gr.

18 I E E E S o f t w a r E w w w . c o m p u t e r . o r g / s o f t w a r e

C a l l f o r a r t i C l e s

documentation, often outweighs initial cost es-
timates. When calculating a DSL&M solution’s
costs, you must consider the whole development
lifetime. Such issues need careful examination, to
determine whether the DSL&M infrastructure’s
contributions can be amortized past the initial
development.

A s new application areas embrace the
impact of software, the need exists for
more and different kinds of nails. This

opens the door to different kinds of languages,
models, and tools that can make an immedi-
ate impact in the area. Given the low overhead
needed to create DSL&M solutions, they can
enable innovative designers to rapidly develop
high-impact solutions.

References
 1. Nokia Mobile Phones Case Study, MetaCase, 2007;

www.metacase.com/papers/MetaEdit_in_Nokia.pdf.
 2. L. Safa, “The Making of User-Interface Designer, A

Pro prietary DSM Tool,” Proc. 7th OOPSLA Workshop
Domain-Specific Modeling, tech. report TR-38, Univ.
of Jyväskylä, 2007; www.dsmforum.org/events/
DSM07/papers/safa.pdf.

 3. D. Weiss and C.T.R. Lai, Software Product-Line Engi-

neering, Addison Wesley Longman, 1999.
 4. R. Kieburtz et al., “A Software Engineering Experiment

in Software Component Generation,” Proc. 18th Int’l
Conf. Software Eng. (ICSE 96), IEEE CS Press, 1996,
pp. 542–552.

 5. “Future Combat Systems Program Completes Integrated
Mission Test-1,” press release, Boeing, 26 Feb. 2009;
www.boeing.com/news/releases/2009/q1/090226b_nr.
html.

 6. “The MathWorks and Vector Integrate Tools for Model-
Based Design and Autosar Applications,” press release,
25 Mar. 2009; www.mathworks.com/company/
pressroom/articles/article33724.html.

 7. G. Karsai, Automotive Software: A Challenge and Op -
portunity for Model-Based Software Development,
LNCS 4147, Springer, 2006.

 8. M. Schulte, “Model-Based Integration of Reusable
Component-Based Avionics Systems—a Case Study,”
Proc. 8th IEEE Int’l Symp. Object-Oriented Real-Time
Distributed Computing (ISORC 05), IEEE CS Press,
2005, pp. 62–71.

 9. EADS Case Study, MetaCase, 2007; www.metacase.
com/papers/MetaEdit_in_EADS.pdf.

 10. R.J. Roselli et al., “Integration of an Intelligent Tutor-
ing System with a Web-Based Authoring System to De-
velop Online Homework Assignments with Formative
Feedback,” Proc. Am. Soc. for Eng. Education Ann.
Conf., Am. Soc. for Eng. Education, 2008.

 11. J.L. Mathe et al., “A Model-Integrated, Guideline-
Driven, Clinical Decision-Support System,” IEEE
Software, vol. 26, no. 4, 2009, pp. 54–61.

 12. J. Sprinkle et al., “Model-Based Design: A Report from
the Trenches of the DARPA Urban Challenge,” Soft-
ware and Systems Modeling, Online First, 2009; http://
springerlink.metapress.com/content/r4jg67t1177q76w7/
fulltext.pdf.

A
n increasing number of organizations are taking their
software-intensive product production to the next level by
adopting software product line practices. These practices coor-

dinate the software engineering, technical management, and organi-
zational management activities necessary for the efficient production
of a set of similar products. The growing body of experience needs
to be communicated to those considering adopting the approach.

This special issue of IEEE Software will focus on successful software
product line practices. We solicit articles on topics within this scope,
including these topics:

• How to systematically manage safety (or any other quality attribute)
in a product line context

• How to engineer product lines in a complex organizational network
of OEMs and suppliers including COTS or open source components

• How to center a product line approach around a given reference archi-
tecture in a certain domain or market segment (for example, Autosar
for the automotive industry)

• How to combine agile approaches with product line practices
• How to combine SOA with product line practices

Publication: May/June 2010
SubmiSSion deadline: 17 November 2009
GueSt editorS:

• John D. McGregor, Clemson University, johnmc@cs.clemson.edu
• Dirk Muthig, Fraunhofer Institute for Experimental

Software Engineering, dirk.muthig@iese.fraunhofer.de
• Paul Jensen, Textron, pjensen@overwatch.textron.com
• Kentaro Yoshimura, Hitachi Research Laboratory,

kentaro.yoshimura.jr@hitachi.com

For a full call for papers, see www.computer.org/software/cfp3.htm.
For IEEE Software author guidelines and submission details, visit www.
computer.org/software/author.htm or contact the publications coordinator
(software@computer.org). Submit your article via the Computer Society’s
Electronic Submission System (http://mc.manuscriptcentral.com/cs-ieee).

Successful Practices in Software Product Lines

