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SQL injection attacks involve the construction of application input data that will result in

the execution of malicious SQL statements. Many web applications are prone to SQL

injection attacks. This paper proposes a novel methodology of preventing this kind of

attacks by placing a secure database driver between the application and its underlying

relational database management system. To detect an attack, the driver uses stripped-

down SQL queries and stack traces to create SQL statement signatures that are then used to

distinguish between injected and legitimate queries. The driver depends neither on the

application nor on the RDBMS and can be easily retrofitted to any system. We have

developed a tool, SDriver, that implements our technique and used it on several web

applications with positive results.

ª 2008 Elsevier Ltd. All rights reserved.
1. Introduction the RDBMS. A code injection attack that exploits the vulner-
Traditionally, most programmers have been trained in terms

of writing code that implements the required functionality

without considering its many security aspects (Howard and

LeBlanc, 2003). It is very common, for a programmer, to make

false assumptions about user input (Wassermann and Su,

2004). Classic examples include assuming only numeric

characters will be entered as input, or that the input will never

exceed a certain length.

SQL injection attacks comprise a subset of a wide set of

attacks known as code injection attacks (Kc et al., 2003; Bar-

rantes et al., 2003). Code injection is a technique to introduce

code into a computer program or system by taking advantage

of the unchecked assumptions the system makes about its

inputs (Younan et al., 2005).

Many web applications have interfaces where a user can

input data to interact with the application’s underlying rela-

tional database management system RDBMS. This input

becomes part of an SQL statement, which is then executed on
itropoulos), dds@aueb.gr
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abilities of these interfaces is called an ‘‘SQL injection attack’’

(SQLIA) (CERT, 2007; Su and Wassermann, 2006; Howard and

LeBlanc, 2003; Viega and McGraw, 2001). There are many

forms of SQL injection attacks. The most common involve

taking advantage of:

� incorrectly passed parameters,

� incorrectly filtered quotation characters, or

� incorrect type handling.

With this kind of attacks, a malicious user can view

sensitive information, destroy or modify protected data, or

even crash the entire application (Anley, 2002). Consider

a trivial example that takes advantage of incorrectly filtered

quotation characters. In a login page, besides the user name

and password input fields, there is usually a separate field

where users can input their e-mail address, in case they forget

their password. The statement that is probably executed can

have the following form:
(D. Spinellis).
.
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SELECT * FROM passwords WHERE email¼
’theemailIgave@example.com’;

If an attacker, inputs the string anything’ OR ’x’¼ ’x, she

could conceivably view every item in the table. In a similar

way, the attacker could modify the database’s contents or

schema.

An ‘‘incorrect type handling’’ attack occurs when a user-

supplied field is not strongly typed or is not checked for type

constraints. For example, many websites allow users, to

access their older press releases. A URL for accessing the site’s

fifth press release could look like this (Spett, 2007):

http://www.website.com/pressRelease.jsp?RelID¼5

And the statement that is probably executed is:

SELECT description, issuedate, body FROM pressRel WHERE

RelID¼ 5

If some attackers wished to find out if the application is

vulnerable to SQL injection, they could change the URL into

something like:

http://www.website.com/pressRelease.

jsp?pressReleaseID¼5

If the page displayed is the same page as before, it is clear

that the field RelID is not strongly typed and end users can

manipulate the statement as they choose. Note that, while the

first attack could be countered by filtering out the quotation

characters from the input data, countering the second attack

would require code to ensure that the input data is a single

integer. According to vulnerability databases like CVE

(Common Vulnerabilities and Exposures)1 SQLIA incidents

have increased significantly over the last years.
2. Countering SQL injection attacks

A taxonomy of SQLIA countermeasures appears in Fig. 1.

Static approaches detect or counteract the possibility of an

SQLIA at compile time, while dynamic approaches perform

this task at runtime. Note that both approaches may require

the analysis or modification of an application’s source code.

On the static front an often repeated mantra is the adop-

tion of secure coding practices (Viega and McGraw, 2001; Howard

and LeBlanc, 2003). Most SQL injection attacks can be pre-

vented by passing user data as parameters of previously

prepared SQL statements instead of intermingling user data

directly in the SQL statement. For example, the statement we

examined previously could be passed to the database with

a question mark used as a placeholder for the parameter, and

a separate type-checked API call could be used for setting the

first parameter of the SQL statement to the desired value. In

Java, this would be accomplished by the following method

calls.
1 http://cve.mitre.org/.
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PreparedStatement pstmt¼ con.prepareStatement(

‘‘SELECT description, issuedate, body FROM pressRel’’ þ
"WHERE RelID¼ ?");

pstmt.setInt(1, 5);

These practices can indeed increase the robustness of appli-

cations. However, experience has shown us that the expec-

tation for them to be embraced to the extent of completely

eliminating security vulnerabilities is just wishful thinking.

An alternative approach involves the introduction of type-

safe programming interfaces, like DOM SQL (McClure and Krüger,

2005) and the Safe Query Objects (Cook and Rai, 2005). Both

eliminate the incestuous relationship between untyped

Java strings and SQL statements, but do not address legacy

code, while also requiring programmers to learn a radically

new API.

An approach that deals with existing code and coding

practices involves the static analysis of the application’s source

code to locate SQL statement invocations that are considered

unsafe (Wassermann and Su, 2004; Gould et al., 2004). While

the impact of tools based on these methods on development

and deployment processes is minimal, their accuracy and

scope is reduced by the complexity of modern web-based

application frameworks.

On the dynamic front runtime tainting approaches enforce

security policies by marking untrusted data and tracing its

flow through the program. For instance the system by Xu et al.

(2006) covers applications whose source code or their inter-

preter is written in C, while the work by Haldar et al. (2005)

targets Java code. These approaches generally require signif-

icant changes to a language’s compiler or its runtime system.

Another dynamic approach involves query modification.

Here the modified query is either reconstructed at runtime

using a cryptographic key that is inaccessible to the attacker

(Boyd and Keromytis, 2004), or the user input is tagged with

delimiters that allow an augmented SQL grammar to detect

SQLIAs (Buehrer et al., 2005; Su and Wassermann, 2006). Both

approaches require significant source code modifications.

Training approaches are based on the ideas of Denning’s

original intrusion detection framework (Elizabeth and

Denning, 1987): they record and store valid SQL statements

and thereby detect SQLIAs as outliers from the set of valid

statements. An early approach, DIDAFIT (Lee et al., 2002)

recorded all database transactions. Subsequent refinements

tagged each transaction with the corresponding application

(Valeur et al., 2005). Our system further improves on these

techniques by automatically determining precisely each

query’s location through its stack trace.

Finally, some approaches combine a static analysis with

runtime monitoring. For instance, AMNESIA, associates

a query model with the location of each query in the appli-

cation and then monitors the application to detect when

queries diverge from the expected model (Halfond and Orso,

2005, 2006). A more general hybrid approach involves the

location of SQLIAs using the program query language PQL

(Martin et al., 2005). The PQL queries are evaluated through

both a static analysis and the dynamic monitoring of instru-

mented code. These approaches, although complex to

implement, seem to offer an additional margin of protection

against false positives and negatives.
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SQLIA
countermeasures

Dynamic Static

Runtime tainting
[10,29]

Query modification
[4,5,25]

Learning
[20,26] SDriver

Hybrid
[21,13,12]

Secure coding practices
[27,16]

New APIs
[7,22]

Analysis
[28,9]

Fig. 1 – A taxonomy of SQLIA countermeasures.
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Readers looking for a more detailed survey of SQL injection

attacks and the corresponding countermeasures can turn to

the recently published survey by Halfond et al. (2006).

In this paper we propose a novel technique of preventing

SQLIAs. Our technique incorporates a driver that stands

between the web front-end and the back-end database. The

key property of this driver is that every SQL statement can be

identified using the query’s location and a stripped-down

version of its contents. By analyzing these characteristics

during a training phase, we can build a model of the legitimate

queries.2 Then at runtime our driver checks all queries for

compliance with the trained model and can thus block queries

containing additional maliciously injected elements. The

work reported here builds upon an earlier prototype (Mitro-

poulos and Spinellis, 2007) with a more robust SQL processing

technique, significant performance improvements, and more

extensive validation experiments.
3. A signature-based proxy driver

The architecture of typical tiered web applications consists of

at least an application running on a web server and a back-end

database (Wassermann and Su, 2004). Between these two

tiers, there is in most cases a database connectivity driver

based on protocols like ODBC (Open Database Connectivity) or

JDBC (Java Database Connectivity). The main function of such

a driver is to provide a portability layer by obtaining SQL

statements from the application and forwarding them to the

database. The driver that we propose is also a connectivity

driver that operates, however, as a shim or proxy standing

between the application and the database interface driver (see

Fig. 2). Our driver is transparent: its only role is to prevent

SQLIA, and it depends neither on the application, nor on the

underlying connectivity driver.

To work as a connectivity driver, our driver implements the

complete interface of the connectivity protocol. However,

most of the driver’s methods simply forward the request to
2 From now on we will often use the term ‘‘query’’ to denote all
SQL statements. Although SQL data manipulation, definition, and
control statements are not queries, using the term ‘‘query’’ avoids
confusion between the SQL statements and the statements of the
general purpose programming language where SQL elements are
often embedded.
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the underlying connectivity driver. Only a few methods

capture and process requests in order to prevent SQLIAs. In

this respect our driver acts as a proxy for the underlying driver

working as a firewall between the original driver and the

application.

In order to secure the application from SQLIAs the driver

must go through a training phase. This involves executing all

the SQL queries of the application so that the driver can

identify them in a way we will show in the next section. Then,

the driver’s operation can shift into production mode, where

the driver takes into account all the trained legitimate queries

to prevent SQLIAs by detecting and blocking them.
3.1. Training mode

Every SQL query of an application is identified through

a signature created by combining three of its characteristics.

1. The method invocation stack trace. This includes the

details of all methods and call location, from the method of

the application where the query is executed down to the

target method of the connectivity driver.

2. The SQL keywords.

3. The tables and the fields that the query uses in order to

retrieve its results.

By combining all the fixed elements of each query with its

invocation method’s stack trace, we obtain a unique identifier

- signature - for all the legitimate queries of an application. A

formal representation of the application’s signatures that

should be accepted as legitimate is the following: If during an

application’s normal (non-attacked) run, K is the set of

method stack traces at the point where an SQL statement is

executed; L is the set of the corresponding SQL keyword

names; M the set of the corresponding database table names,

and N the set of the corresponding table field names, the set of

the legitimate query signatures S is defined as follows:

S ¼ fu : u ¼ ðk; a1; a2;.Þ; k in K;an in ðL U M U NÞ (1)

When the system operates in the training mode, each query

signature Q is added to S. In production mode a query with

a signature Q is considered legal iff Q ˛ S. Obviously, a query

cannot be unambiguously identified by using one of the above

characteristics alone.
SDriver: Location-specific signatures prevent SQL injection



Fig. 2 – The architecture of our proposed driver.

c o m p u t e r s & s e c u r i t y x x x ( 2 0 0 8 ) 1 – 94

ARTICLE IN PRESS
To combine these characteristics, when a query is being

sent to the database our driver carries out two actions. First, it

strips down the query, removing all numbers and string

literals. So if the following statement is being executed

SELECT table1.field1 FROM table1 WHERE table1.field2¼ ‘foo’

AND table1.field3> 3

the driver removes ’foo’ and 3 from the query string.

The driver also traverses down the call stack, saving the

details of each method invocation, until it reaches the state-

ment’s origins. The association of stack frame data with each

SQL querydto the best of our knowledge unique to our

approachdis an important defense against maliciously craf-

ted attacks that try to masquerade as legitimate queries.

As an example, consider an application that will send the

password for a forgetful user, Alice, via email by executing

SELECT password from userdata WHERE id¼ ‘Alice’

This same application couldallow users to lock their terminal,

but allow the unlocking either with the user’s password or with

the administrator password (the 4.3 BSD lock command behaved

in this peculiar way). The corresponding query to verify the

password on the locked Alice’s workstation would be as follows.

SELECT password from userdata WHERE id¼ ‘Alice’ OR

id¼ ‘admin’

It is now easy to see that a malicious user, Bob, could obtain

the administrator’s password by email by entering on the

password retrieval form as his user identifier

nosuchuser’ OR id¼ ’admin

Without the differentiating factor of a stack trace, the

preceding query would have the same signature as the one

used for unlocking the terminal, and would therefore escape

a traditional signature-based SQLIA protection system.
Please cite this article in press as: Mitropoulos D, Spinellis D,
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Our initial design had SDriver storing each query’s

keywords, table names, and stack trace into separate tables of

an auxiliary database. During implementation we realized

that, because the only operations we were interested in were

adding a query Q to the set of known queries S and testing

whether Q ˛ S, we could substitute the full signature S with its

hash. This substitution is valid, because SDriver operates

under the premise of best effort rather than absolute

correctness (Henson, 2003). Therefore, the stack trace and the

stripped-down query are concatenated and the driver applies

a hash function on them to form the stored form of the query

signature. When the system is operating in training mode, all

the signatures are saved in an auxiliary database table, so that

when the system operates in production mode the driver can

check whether a query is legal or not. This is done off-line

since an on-line training could lead to disputable signatures.

Specifically, if an attack is attempted the generated signature

is going to be stored as a legitimate one putting the system’s

operation at risk.
3.2. Production mode

The driver’s functionality during the production mode does not

differ significantly from the one in the training mode. The steps

are the same until the driver derives the query’s signature. At

that point, the driver consults the database table of saved query

signatures to verify that the query is legal. This interaction

though, happens in an indirect way as we describe in Section

5.2. If the driver identifies it as a legitimate one then the query

passes through. If it does not, then the application is probably

under attack. In such a case the driver can halt the application

with an exception, it can log an error message, or it can forward

an alarm to an enterprise-wide intrusion detection system.

As an example, consider an attack that takes advantage of

incorrectly filtered quotation characters. The additional

keywords that the malicious user injects will definitely lead to

an unknown signature. In this case the driver becomes aware

of the attack and prevents it.
SDriver: Location-specific signatures prevent SQL injection
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4. Java platform implementation

We have implemented our solution in the Java platform, but

implementations in other operating environments are

certainly feasible. The secure database driver, which we call

SDriver, acts as a JDBC driver wrapped around other drivers

that implement a database’s JDBC protocol (see Fig. 3).
4.1. Proxy interface

JDBC drivers known as ‘‘native-protocol drivers’’3 (or type 4

JDBC drivers) convert JDBC calls directly into the vendor-

specific database protocol. At the client’s (application) side,

a separate driver is needed for each database. SDriver does not

depend on the application or the native driver and it is placed

between them. To accomplish that, the application must be

modified in a single position: in the location where the

application establishes a connection with a driver. For the

application to be secured, the SDriver must establish

a connection with the driver that the application is meant to

use. To achieve that, we pass the driver’s name through the

URL of the original connection (see Fig. 3). For example, if the

application is meant to connect to the Microsoft SQL Server

2000 the source code would look like this:

Class.forName

("com.microsoft.jdbc.sqlserver.SQLServerDriver");

Connection conn¼DriverManager.getConnection(

‘‘jdbc:microsoft:sqlserver://

localhost:1433;databasename¼MyDB’’,

‘‘username’’, "password");

The modified code for using the SDriver would be:
3 http://java.sun.com/products/jdbc/driverdesc.html.

Please cite this article in press as: Mitropoulos D, Spinellis D,
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Class.forName ("org.SDriver");

Connection conn¼DriverManager.getConnection(

‘‘jdbc:com.microsoft.jdbc.sqlserver.SQLServerDriver:’’ þ
‘‘microsoft:sqlserver://

localhost:1433;databasename¼MyDB’’,

‘‘username’’, ‘‘password’’);
4.2. Implementation details

SDriver is not a classic native-protocol RDBMS driver. The

implementation of most of the driver’s methods simply

involves calling the corresponding methods of the underlying

driver. Only a few methods from those that a native-protocol

driver implements pass SQL code through them, and can

therefore be used to launch an SQLIA. These methods are the

various forms of addBatch, execute, executeQuery, and exe-

cuteUpdate. To secure applications against SQLIAs, SDriver

interposes itself in these methods examining the query string

that is about to be executed. For this examination to take place,

SDriver follows the steps of the pseudocode listed in Fig. 4.

Fig. 3 shows that SDriver depends on another database

component called ssql. This works as the signature data store.

One of the tricky parts of the SDriver implementation is the

code that traverses the application’s stack. Perversely, in Java

the way to access the stack frames is to create an object of

type Throwable. The class Throwable is the superclass of all

errors and exceptions in Java. To aid the display and debug-

ging of exceptions Throwable objects support a method called

getStackTrace, which returns an array of stack frames. Each

stack frame provides methods for obtaining the correspond-

ing file name, method name, and line number. The following

listing shows the contents of a stored stack trace:

com.SStatement.getQuerySignature(SStatement.java:

556)
SDriver: Location-specific signatures prevent SQL injection
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Table 2 – Proxy driver baseline cost.

Application database Execution time (ns) Overhead (%)

Original SDriver

SQL Server 175 183 4.7

MySQL 121 126 3.7

manageQuery(String query) {
signature=getQuerySignature(stripQuery(query));
if  (inSignatureTable(signature))

return;

if (inTrainingMode)
// insert signature into tha signature table

else {
// issue an alarm or raise an exception

// write query to a log file

}
}

stripQuery(String query) {
query = removeQuotedStrings(query);
query = removeNumbers(query);
query = removeComments(query);

}

getQuerySignature(Stringquery) {
for (StackTraceElementste:stackTrace)

signature.append(ste);
signature.append(query);
return MD5(signature);

}

Fig. 4 – The operation of SDriver.
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com.SStatement.manageQuery(SStatement.java:489)

com.SStatement.executeQuery(SStatement.java:430)

beans.querybean.selection1(querybean.java:20).

Every stack element contains information about a method

invocation including the method name, the package, the file, and

the line number. The first method will always be getQuer-

ySignature because it is the one that traverses the call stack. The

element that participates more in the diversity of a signature is

typically the fourth one: the application’s method that directs

the connectivity driver to pass the query to the database.
5. Evaluation

The success of any system claiming to improve security

typically depends on the accuracy of its results (often

measured in terms of false positives and negatives) and on its

cost in terms of deployment, operation, and maintenance.
5.1. Accuracy

We evaluated the accuracy of SDriver through three experi-

ments: a synthetic benchmark, a notoriously insecure
Table 1 – SDriver’s precision.

Application Signatures Unsuccessful Successful Prevented

Bookstore 168 288 39 39 (100%)

Classifieds 122 270 37 37 (100%)

Employee

directory

61 207 31 31 (100%)

Events 65 115 29 29 (100%)

Portal 156 312 49 49 (100%)

Synthetic

Benchmark

21 55 29 29 (100%)

Daffodil 72 77 27 27 (100%)

Please cite this article in press as: Mitropoulos D, Spinellis D,
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application, and a bundle of previously evaluated real-world

applications.

Our synthetic benchmark was a JSP application with the

same technical characteristics as those described in reference

(Boyd and Keromytis, 2004). This application allowed a user to

inject SQL into a ‘‘where’’ clause with no input validation, and

retrieve information concerning application data. After

placing SDriver between the application and the database, the

attack was successfully prevented.

We then searched for a real-world web application that

had a record of being vulnerable to SQLIAs. According to the

common vulnerability database CVE and the security bulletin

providers US-CERT,4 Secunia,5 and Armorize Technologies,6

a notoriously vulnerable application is Daffodil CRM 1.5.7 In

Daffodil 1.5, remote attackers could execute arbitrary SQL

commands via unspecified parameters in a login action. In

particular, users wanting to access Daffodil had to fill-in

a simple username and password form. By using a SQLIA

similar to the one we presented in Section 1, an unauthorized

user could access administrator facilities. SDriver recognized

and blocked the attack, without otherwise interfering with

Daffodil’s operation.

Finally, we selected five real-world web applications that

have been used in the literature for previous evaluations 8

(Halfond and Orso, November 2005; Su and Wassermann,

2006). We attempted a wide variety of attacks based on

incorrectly filtered quotation characters, incorrectly passed

parameters, untyped parameters, tautologies, and others

(Anley, 2002; Halfond et al., 2006).

Table 1 shows, for each web application, the number of the

signatures stored in the SDriver database after training, the

number of unsuccessful attacks (attacks that did not get past

the application’s defenses), the number of successful attacks

(attacks that could potentially compromise the application),

and the number of attacks prevented by SDriver, in absolute

terms and as a percentage over the total number of successful

attacks. The table’s columns follow the labeling introduced by

Halfond and Orso (November 2005).

While testing, we realized that the five applications shared

a common feature; in a misguided attempt to avoid SQLIAs,

they scanned user input for single quotation marks and

replaced them with double quotation marks. This technique

masked the SQLIA problem, but introduced a data leakage

vulnerability. For instance, a user input parameter consisting
4 http://www.us-cert.gov/.
5 http://secunia.com.
6 http://www.armorize.com.
7 Daffodil can be obtained from http://www.daffodildb.

com/crm/.
8 The applications can be obtained from http://www.

gotocode.com/.

SDriver: Location-specific signatures prevent SQL injection

http://www.us-cert.gov
http://secunia.com
http://www.armorize.com
http://www.daffodildb.com/crm
http://www.daffodildb.com/crm
http://www.gotocode.com
http://www.gotocode.com


Table 3 – The cost of SQL query processing under SDriver.

Application database Execution time (ms) Overhead (%)

Original Training Production Training Production

SQL Server 605 1221 841 102 39

MySQL 401 1009 613 60 35
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of the string any\’ in the application ‘‘portal’’ would result in

the execution of the following query:

SELECT e.date_start AS e_date_start, e.event_desc AS

e_event_desc,

e.event_name AS e_event_name, e.location AS e_location,

e.presenter AS e_presenter FROM events e WHERE

(e.event_desc e_presenter LIKE ‘%any\"%’ OR e.event_

name LIKE ‘%any\"%’ OR e.presenter LIKE ‘%any\"%’)

ORDER BY e.date_start DESC

The preceding statement would raise an exception

revealing information about the underlying database and its

schema.

Given that our driver works as a wrapper around other

connectivity drivers, we could also instrument it to handle

exceptions when running in production mode. As a result,

critical information like the above would not be revealed.

However, because well-written applications have their own

sophisticated exception handling, we made secure exception

handling an optional configurable feature.

With its secure exception handling activated, our tool

successfully prevented all SQLIAs in this last test without

suffering from false negatives. Furthermore, we did not

encounter false positives (legitimate queries misreported as an

attack) in any of the three experiment classes we performed.
5.2. Operation cost

The acquisition cost of SDriver is minimal, because we are

releasing it as open-source software.9Deploying SDriver is also

relatively straightforward: the only requirement is the ability

to modify the database’s connection string. This can be ach-

ieved by specifying an appropriate application-specific

parameter (Java property), by modifying the source code, or (in

extreme cases) by patching the application’s binary. Further-

more, one must then execute the application in training

mode. An automated test suite that will exercise (ideally all)

the application’s calls to methods containing SQL strings with

user input data, would make this exercise trivial. Otherwise

appropriate scenarios must be devised and executed each

time a new version of the application is installed.

The driver’s architecture allowed us to test its performance

on two RDBMSs: SQL Server 2000 and MySQL (version 5.0.24).

All tests were performed on a Pentium 4 CPU clocked at

2.6 GHz on a machine with 512 MB RAM running Java 1.6.0

under Windows XP Professional. We first measured the

baseline overhead of SDriver by executing a JDBC
9 The software is available at istlab.dmst.aueb.gr/wdimitro/
sdriver
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methoddgetAutoCommit()dthat is passed through directly

to the underlying database driver without further processing.

The results, appearing in Table 2 indicate that the cost of

interposing SDriver is negligible.

Subsequently, we measured the overhead of the SQLIA

detection code by executing the following moderately

complex SQL statement, with and without SDriver.

SELECT d_name, d_SorL, d_year,d_genre, d_cover FROM

artists,

disks, recorded WHERE a_name¼ ‘"þ selectedartist þ"’

AND

d_name¼ rec_d_name AND rec_a_name¼ a_name

The performance overhead for the two RDBMSs was

similar (see Table 3). In training mode the queries take twice

as long to execute. However, this cost is not unreasonable,

because this is an execution mode that will be rarely exer-

cised. In production mode, the operation cost is significantly

lower: below 50% for both RDBMSs. Early versions of our tool,

incurred a significant overhead (with a range from 239% to

279% in both training and production mode). We optimized

away this overhead by streamlining the regular expressions

used for stripping the SQL queries, and by caching the signa-

tures into a static Hashtable when a connection between the

application and the SDriver is first set up in production mode.

We also considered limiting the depth of the stack frame

processing during production mode, by calculating in training

mode a stack frame prefix tree (trie) (Knuth, 1973, p. 481–90),

but the performance improvements were negligible.
6. Conclusions

SDriver is a mechanism and a prototype application that

prevents SQLIAs against web applications. If an SQL injection

happens, the structure of the query, and therefore its signature

will be altered, and SDriver will be able to detect it. By associ-

ating a complete stack trace with the root of each query,

SDriver can correlate queries with their call sites. This

increases the specificity of the stored query signatures and

avoids false negative results. The increased specificity of the

signatures also allows us to discard a large number of the

query’s elements, thereby also reducing false positive results. A

disadvantage of our approach is that when the application is

altered, the new source code structure invalidates existing

query signatures. This necessitates a new training phase.

However, with the increased adoption of test-driven develop-

ment (Jeffries and Melnik, 2007), and use of automated testing

frameworks, like JUnit (Beck and Gamma, 1998), this training

phase can often become part of the application’s testing.
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The main contribution of our approach is the association of

complete stack traces with each query. Although we have

implemented SDriver as a JDBC proxy, the same approach

could also be used for applications written in other languages,

like C and Cþþ. Furthermore, the association of queries with

their stack trace can be used to minimize the extent of source

code modification in other approaches, like AMNESIA (Half-

ond and Orso, 2005; Halfond and Orso, 2006).

Future work on our system involves packaging it in a way

that will allow its straightforward deployment, and experi-

mentation with different approaches for handling the repor-

ted attacks.
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