
0 7 4 0 - 7 4 5 9 / 0 5 / $ 2 0 . 0 0 © 2 0 0 5 I E E E J u l y / A u g u s t 2 0 0 5 I E E E S O F T W A R E 9

tools of the trade
E d i t o r : D i o m i d i s S p i n e l l i s ■ A t h e n s U n i v e r s i t y o f E c o n o m i c s a n d B u s i n e s s ■ d d s @ a u e b . g r

I
n 1994, Shyam Chidamber and Chris Ke-
merer defined a set of six simple metrics for
object-oriented programs. Although this
number swelled to above 300 in the years
that followed, I had a case where I pre-
ferred to use the original classic metrics for

clarity, consistency, and simplicity. Surprisingly,
none of the six open source tools I found for col-

lecting metrics fit the bill. Most
calculated only a subset of the
metrics, had specific dependen-
cies on other software, required
tweaking to make them compile,
or were horrendously inefficient.
Although none of the tools cor-
rectly calculated the classic Chi-
damber and Kemerer metrics in
a straightforward way most in-
cluded numerous bells and whis-

tles, such as graphical interfaces, XML output,
and bindings to tools such as Ant and Eclipse.

As an experiment, I decided to create a tool
to fit my needs. In the process, I discovered
something important: writing stand-alone tools
that you can combine efficiently with others to
handle more demanding tasks appears to be be-
coming a forgotten art.

Going the Unix way
For my design ideal, I chose the filter inter-

face found in most Unix-based tools. Unix tools
are built following a set of simple design princi-
ples (see Brian W. Kernighan and Rob Pike’s The
Unix Programming Environment [Prentice Hall,

1984] and Eric Raymond’s The Art of Unix Pro-
gramming [Addison-Wesley, 2003]):

■ Each tool is each responsible for doing a
single job well.

■ Functionality should be placed where it will
do the most good.

■ Tools generate textual output that other tools
can use—for example, the program output
won’t contain decorative headers and trailing
information.

■ Tools can accept input generated by other
tools.

■ The tools are capable of performing stand-
alone execution, without user intervention.

Tried and true
In general, these principles are easy to adopt.

The 1979, Seventh Edition Unix cat command
is only 62 lines long; the corresponding echo
command is just 22 lines long. Despite their Spar-
tan implementation, tools designed following
these principles easily become perennial classics,
which we can combine with others in powerful
ways. For example, you can still use the 9-line,
30-year-old version of the Sixth Edition Unix
echo command as a drop-in replacement in
5,705 places in the 2005 version of the FreeBSD
operating system source code. You’d need the 26-
year-old, slightly more powerful Seventh Edition
version in another 249 instances. Nowadays, a
suite of Unix tools is also widely available in
open source implementations for systems such as
Linux, Windows, BSD, and Mac OS X.

Tool Writing:
A Forgotten Art?

Diomidis Spinellis

Merely adding features does not make it easier for users to do things—it just makes the
manual thicker. The right solution in the right place is always more effective than hap-
hazard hacking. —Brian W. Kernighan and Rob Pike

1 0 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

TOOLS OF THE TRADE

Something new
I created my metric tool, named ckjm

(Chidamber and Kemerer Java Metrics),
using the design principles I outlined ear-
lier (see www.spinellis.gr/sw/ckjm). The
tool operates on a list of compiled Java
classes (or pairs consisting of an archive
name followed by a Java class) specified
as arguments or read from its standard
input. It then prints to its standard out-
put a single line for each class, contain-
ing the class name and the six metrics’
values. This design lets you use pipelines
and external tools to select the classes to
process or to format the output (have a
look at the tool’s Web site for specific ex-
amples). Given ckjm’s simplicity and
minimal features (for example, I ignored
irrelevant interfacing requirements), I
wasn’t surprised to find it both more sta-
ble and more efficient than the other
tools I’d tried.

Temptation calls
A month after I put the tool on the

Web, I received an email from a brilliant

young Dutch programmer. He’d en-
hanced my tool, integrating it with the
Ant Java-based build tool and adding an
XML output option. He’d also provided
a couple of XSL (Extensible Style Sheet
Language) scripts that transformed the
XML output into nicely set HTML. Al-
though the code was well written and the
new facilities appeared alluring, my ini-
tial reply wasn’t exactly welcoming.

The perils of tool-specific integration
Integrating ckjm with Ant sounds

like a good idea until you consider the
dependencies this type of integration
creates. With the proposed enhance-
ments, the tool’s source code imports
six different Ant classes, creating a de-
pendency between one general-purpose
tool and another. What would happen
if we also integrated ckjm with Eclipse
and a third graphics-drawing software
package? Through these dependencies,
ckjm would become highly unstable:
any interface change in any of the three
tools would require a change in ckjm.

The functionality
provided by the im-
ported Ant classes is
certainly useful; it
gives us a general-
ized and portable
way to specify sets
of files. However,
providing it in one
tool violates the
principle of adding
functionality where
it would do the most
good. Many other
tools would benefit
from this facility, so
it makes sense to put
Ant’s Directory-
Scanner class into
a more general tool
or facility.

Ant interfaces
usually provide ser-
vices for performing
tasks that most
modern operating
systems already sup-
port as general-pur-
pose abstractions.
These abstractions

include a process’s execution, specifica-
tion of its arguments, and redirection of
its output. Creating a different, incom-
patible interface for these facilities is not
only gratuitous, it also relegates venera-
ble tools developed over the last 30 years
to second-class citizens. This approach
simply doesn’t scale. We can’t require
each tool to support every other tool’s
peculiar interfaces, especially when there
are existing conventions and interfaces
that have withstood the test of time. We
gain a lot if the tools we implement—no
matter if we implement them in C, Java,
C#, or Pearl—follow the conventions
and principles I outlined earlier.

The problems of XML output
Adapting a tool for XML output is

less troublesome because XML solves
some real problems. Unix tools’ typeless,
textual output can become a source of er-
rors. If a tool’s output format changes,
tools further down the pipeline will con-
tinue to happily accept and process their
input assuming that it follows the earlier
format. We’ll only realize that something
is amiss if we see that the final results
don’t match our expectations. Addition-
ally, we can represent only so much using
space-separated fields and line-oriented
records. XML lets us represent more
complex data structures in a generalized
and portable way. XML also lets us use
powerful, general-purpose verification,
data query, and data manipulation tools.

However, because XML intermixes
data with metadata and abandons the
simple, textual, line-oriented format, it
shuts out most tools in a Unix program-
mer’s tool bench. XSL transformations
might be powerful, but because they’re
implemented within monolithic all-en-
compassing tools, any nonsupported op-
eration becomes exceedingly difficult to
implement. Using Unix tools, if we want
to perform a topological sort on our
data to order a list of dependencies,
tsort lets us do exactly that; if we want
to spell check a tool’s output, we can eas-
ily do it by adding the appropriate com-
mands to our pipeline.

Moreover, the implementation of
XML-based operations appears to be or-
ders of magnitude more verbose than the
corresponding Unix commands. As an

Call for participation
13th IEEE Int. Requirements Engineering Conference

http://www.re05.org

August 29th – September 2nd 2005, Paris, La Sorbonne, France

Engineering Successful Products
Steering Committee Chair:

Roel Wieringa
U. Twente, Netherlands

General Chair:
Colette Rolland
U. Paris 1-Panthéon Sorbonne, France

Program Chair:
Joanne Atlee

U. of Waterloo, Canada

RE’05 will emphasize the crucial role that requirements play in the

successful development and delivery of systems, products, and services.

Technical and Industrial program: The main conference will run from

August 31 to September 2 and will feature parallel sessions of technical

papers, mini-tutorials, and research-tool demonstrations.

Workshops, Tutorials and a Doctoral Symposium will be held August

29-30.

The list of the twelve workshops and nine tutorials is available at the

RE’05 web site : http://www.re05.org/

Deadlines for workshop papers range from end of May to mid-June.
See the conference web site for details.

Keynote speakers:

Jean-Pierre Corniou, CIO at Renault, author of “The Knowledge Society”,

Hermès, 2002, 1999 IT Manager of the Year award from the French press, president

of the CIGREF (Club Informatique des Grandes Entreprises Françaises)

Daniel Jackson, Professor of Computer Science at MIT, Chair of The National

Academies study on “Sufficient Evidence? Building Certifiably Dependable Systems”

Suzanne Robertson, Independent consultent, author of ‘Mastering the

Requirement Process’ (Addison-Wesley, 1999) and Requirement-Led project

Management (Addison-Wesley, 2005), co-founder of the Atlantic Systems Guild

RE’05 Organizing Committee hopes to meet you in Paris to share

experiences in requirement engineering, as well as to appreciate our

famous French cooking and good wine.

Register at www.re05.org Early bid until July 31st 2005

TOOLS OF THE TRADE

experiment, I asked an experienced col-
league to rewrite an awk one-liner I used
for finding Java packages with a low ab-
stractness and instability value into XSL.
The 13-line code snippet he wrote was
certainly less cryptic and more robust
than my one-liner. However, in the con-
text of tools we use to simplify our
everyday tasks, I consider the XSL ap-
proach unsuitable. We can write a one-
liner as a prototype and then gradually
explore how to enhance it. Writing 13
lines of XSL isn’t a similarly lightweight
task.

Although adding XML output to a
tool might seem enticing, it’s the first
step down a slippery slope. If we did add
direct XML output (ckjm’s documenta-
tion already listed a 13-line sed script to
transform its output into XML), why
not allow the tool to write its results into
a relational database via Java Database
Connectivity (JDBC)—surely we’d end
up with a more robust and efficient re-
sult than by combining existing tools.
After that, what about adding a data-
base configuration interface, chart out-
put, a GUI environment, a report de-
signer, a scripting language, and, who
knows, maybe the ability to share the re-
sults over a peer-to-peer network?

Realpolitik
With all that said, the Ant integra-

tion and XML output will be part of
ckjm by the time you read these lines—
probably as optional components.
Ralph Waldo Emerson famously wrote
that “A foolish consistency is the hob-
goblin of little minds.” Spreading ideol-
ogy by alienating users and restricting a
tool’s appeal sounds counterproductive
to me. Nevertheless, the next time you
ask for tighter integration or a richer
I/O format for a tool, consider if you
can accomplish what you’re asking for
in a more general fashion and what this
new feature will cost your environment
in terms of stability, interoperability,
and orthogonality.

Diomidis Spinellis is an associate professor in the De-
partment of Management Science and Technology at the Athens
University of Economics and Business and the author of Code
Reading: The Open Source Perspective (Addison-Wesley, 2003).
Contact him at dds@aueb.gr.

ISBN 0-321-17935-8

Essentials
Software Engineering

ISBN 0-321-30549-3

ISBN 0-321-26797-4 ISBN 0-321-32131-6

Turn to Addison-Wesley for trusted guidance on software
engineering best practices including these just published,
not-to-miss titles.

For details on special discounts, more recommended titles,
and a sneak peek at sample chapters, visit

www.awprofessional.com/ieeesoftware

We’d like
to hear
from you

SEND US EMAIL AT

@computer.org

