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ABSTRACT
Context: Software development projects increasingly adopt unit
testing as a way to identify and correct program faults early in the
construction process. Code that is unit tested should therefore have
fewer failures associated with it.
Objective: Compare the number of field failures arising in unit tested
code against those arising in code that has not been unit tested.
Method: We retrieved 2 083 979 crash incident reports associated
with the Eclipse integrated development environment project, and
processed them to obtain a set of 126 026 unique program failure
stack traces associated with a specific popular release. We then
run the JaCoCo code test coverage analysis on the same release,
obtaining results on the line, instruction, and branch-level coverage
of 216 392 methods. We also extracted from the source code the
classes that are linked to a corresponding test class so as to limit
test code coverage results to 1 263 classes with actual tests. Finally,
we correlated unit tests with failures at the level of 9 523 failing
tested methods.
Results: Unit-tested code does not appear to be associated with
fewer failures.
Conclusion: Unit testing on its own may not be a sufficient method
for preventing program failures.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging.

∗Chioteli collected the unit testing results and performed the qualitative analysis. Batas
performed the quantitative analysis. All authors contributed equally to the paper’s
writing.
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1 INTRODUCTION
The rising size and complexity of softwaremultiply the demands put
on adequate software testing [16]. Consequently, software develop-
ment projects increasingly adopt unit testing [5] or even test-driven
development [4] as a way to identify and correct program faults
early in the construction process. However, the development of
testing code does not come for free. Researchers have identified
that one of the key reasons for the limited adoption of test-driven
development is the increased development time [6]. It is therefore
natural to wonder whether the investment in testing a program’s
code pays back through fewer faults or failures.

To examine how test code coverage relates to software quality,
numerous methods can be employed. In this study we investigate
the relationship between unit testing and failures by examining
the usage of unit testing on code that is associated with failures
in the field. We do this in three conceptual steps. First, we run
software tests under code coverage analysis to determine which
methods have been unit tested and to what extent. We triangulate
these results with heuristics regarding the naming of classes for
which unit test code actually exists. Then, we analyze the stack
traces associated with software failure reports to determine which
methods were associated with a specific failure. Finally, we combine
the two result sets and analyze how unit-tested methods relate to
observed failures.

We frame our investigation in this context through the following
research questions.
RQ1 How does the testing of methods relate to observed failures?
RQ2 Why do unit-tested methods fail?

A finding of fewer failures associated with tested code would
support the theory that unit testing is effective in improving soft-
ware reliability. Failing to see such a relationship would mean that
further research is required in the areas of unit test effectiveness

260

https://orcid.org/0000-0003-4231-1897
https://doi.org/10.1145/3503823.3503872
https://doi.org/10.1145/3503823.3503872
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3503823.3503872&domain=pdf&date_stamp=2022-02-22


PCI ’21, November 26–28, 2021, Volos, Greece Chioteli, Batas, Spinellis

Unit test 
and no 
code 
coverage

Unit test 
and code 
coverage

No unit 
test and 
code 
coverage

No unit test and no code coverage

Figure 1: Relationship between test code coverage at the
level methods and existence of unit tests at the level of
classes. The pie areas correspond to the colored areas of the
Venn diagram depicted on the right.

Table 1: Crashes of Tested Methods

Unit tested
Crashed No Yes Total
No 7816 (82.1%) 541 (5.7%) 8357 (87.8%)
Yes 1097 (11.5%) 69 (0.7%) 1166 (12.2%)
Total 8913 (93.6%) 610 (6.4%) 9523

(why were specific faults not caught by unit tests) and test coverage
analysis (how can coverage criteria be improved to expose untested
faults).

The main contributions of our study are the following:

• a method for investigating the effectiveness of unit testing,
• an empirical evaluation between unit test coverage and fail-
ure reports, and

• an open science data set and replication package providing
empirical backing and replicability for our findings.

2 METHOD
An overview of the method is depicted in an extended version of
this paper1. We based our study on the popular Eclipse open source
integrated development environment [8]. In brief, to answer our re-
search questions we obtained data regarding failures of the Eclipse
IDE, we determined the most popular software version associated
with the failures, we built this specific software version, we run
the provided tests under a code coverage analysis tool, we com-
bined the results with heuristics regarding the naming of test code,
we joined the analyzed software failures with the corresponding
code coverage analysis results, and we analyzed the results through
statistics and a qualitative study. Following published recommenda-
tions [10], the code and data associated with this endeavor (AERI
JSON data, code coverage analysis, stack traces analyzed, analysis
scripts, and combined results) are openly available online.2.

3 RESULTS
Here we answer our two research questions by means of statistical
(RQ1) and qualitative (RQ2) analysis.
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Figure 2: Relationship between code coverage and methods
of JaCoCo report.

Tested
and not 
crashed

Tested
and 

crashed

Not tested 
and 
crashed

Not tested and not crashed

Figure 3: Relationship between strictly tested and strictly
crashed methods. The pie areas correspond to the colored
areas of the Venn diagram.

3.1 Statistical Analysis
To answer RQ1 regarding the association between unit tests and
crashes we classified the 9 523 methods as unit tested and crashed
according to the criteria we specified in Section 2.7 of the extended
version of this paper1. This resulted in their categorization depicted
in Figure 3 and and summarized in Table 1.

Our question is whether testing a piece of code is associated
with a lower chance of it crashing. Applying Fisher’s exact test for
count data, results in a p-value of 0.278 and an odds ratio based
on the conditional maximum likelihood estimate of 0.915 in a 95%
confidence interval of 0–1.146. Consequently, we cannot reject the
null hypothesis, and conclude that our data set does not provide
statistical evidence supporting the hypothesis that the pres-
ence of unit tests is associated with fewer crash incidents.

3.2 Qualitative Analysis
To answer RQ2 onwhy do unit-testedmethods still fail, we analyzed
the 69 methods that are strictly unit-tested and crashed. This may
sound like a small number, but those methods appeared in 10 617
stack traces.

By examining the stack traces and their relevant methods in the
Eclipse source code, we classified crashes of unit tested methods
into three categories.

1. The method contains a developer-introduced fault. These faults
stem from programmer errors, such as algorithmic, logic, ordering,
dependency, or consistency errors [14]. They mainly involve code
parts that are missing error-handling mechanisms for code that can
potentially throw exceptions, thus causing the application to crash
with an uncaught exception error.
110.5281/zenodo.5572888
210.5281/zenodo.3610822
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2. The method intentionally raises an exception. There are meth-
ods that intentionally lead to crashes due to internal errors, wrong
configuration settings, or unanticipated user behavior, rather than
faults introduced through a developer oversight. Developers under-
stood that these failures could potentially happen under unforeseen
circumstances or in ways that could not be appropriately handled.
As a backstop measure they intentionally throw exceptions with
appropriate messages in order to log the failure and collect data
that might help them to correct it in the future.

There are methods in the topmost stack position that simply
report a failure associated with a fault in another method. These
methods are the non-faulty (debugging) methods we described in
category 4 of Section 2.6 of the extended version of this paper1.

Having analyzed the crashes, we worked on understanding why
those crashes occurredwhile therewas (apparently) unit tested code.
Unit testing would not help alleviate cases 2 and 3, and therefore we
did not investigate further. On the other hand, methods belonging
to the first case are much more interesting, so we dug deeper to
understand the types of faults, failures, and their relationship to
unit testing, and categorized them into the following areas.

1.a Method is not called by the class’s tests. Themethod’s test class
does not call the specific method in any of the tests. The method
may have been incidentally called by tests of other classes.

1.b Method is not tested by the class’s tests. The method’s test
class calls this method to setup or validate other tests, but does not
explicitly test the given method.

1.c Specific case is not tested. The method has a unit test, but some
specific cases are not tested. Ideally, all cases should be tested to
ensure that the discrete unit of functionality performs as specified
under all circumstances.

4 DISCUSSION
In isolation and at first glance, the results we obtained are startling.
It seems that unit tested code is not significantly less likely to be
involved in crashes. However, one should keep in mind that absence
of evidence is not evidence of absence.We have definitely not shown
that unit tests fail to reduce crashes.

Regarding the result, we should remember that our data come
from a production-quality widely used version of Eclipse. It is pos-
sible and quite likely that the numerous faults resulting in failures
were found through the unit tests we tallied in earlier development,
alpha-testing, beta-testing, and production releases. As a result, the
tests served their purpose by the time the particular version got
released, eliminating faults whose failures do not appear in our
data set.

Building on this, we must appreciate that not all methods are
unit tested and not all methods are unit tested with the same thor-
oughness. Figure 1 shows that fewer than half of the methods and
lines are unit tested. Furthermore, Figure 2 shows that code cover-
age within a method’s body also varies a lot. This may mean that
developers selectively apply unit testing mostly in areas of the code
where they believe it is required.

Consequently, an explanation for our results can be that unit
tests are preferentially added in complex and fault-prone code in
order to weed out implementation bugs. Due to its complexity, such

code is likely to contain further undetected faults, which are are in
turn likely to be involved in field failures manifesting themselves
as reported crashes.

One may still wonder how can unit-tested methods with a 100%
code coverage be involved in crashes. Apart from the reasons we
identified in Section 3.2, one must appreciate that test coverage is a
complex and elusive concept. Test coverage metrics involve state-
ments, decision-to-decision paths (predicate outcomes), predicate-
to-predicate outcomes, loops, dependent path pairs, multiple condi-
tions, loop repetitions, and execution paths [12, pp. 142–145], [3].
In contrast, JaCoCo analyses coverage at the level of instructions,
lines, and branches. While this functionality is impressive by in-
dustry standards, predicate outcome coverage can catch only about
85% of revealed faults [12, p. 143]. It is therefore not surprising that
failures still occur in unit tested code.

An important factor associated with our results is that failures
manifested themselves exclusively through exceptions. Given that
we examined failure incidents through Java stack traces, the fault
reporting mechanism is unhandled Java exceptions. By the defini-
tion of an unhandled exception stack trace, all methods appearing
in our data set passed an exception through them without handling
it internally. This is important, for two reasons. First, unit tests
rarely examine a method’s exception processing; they typically do
so only when the method under test is explicitly raising or han-
dling exceptions. Second, most test coverage analysis tools fail to
report coverage of exception handling, which offers an additional,
inconspicuous, branching path.

It would be imprudent to use our findings as an excuse to avoid
unit testing. Instead, practitioners should note that unit testing on
its own is not enough to guarantee a high level of software reliability.
In addition, tool builders can improve test coverage analysis systems
to examine and report exception handling. Finally, researchers can
further build on our results to recommend efficient testing methods
that can catch the faults that appeared in unit tested code and test
coverage analysis processes to pinpoint corresponding risks.

5 THREATS TO VALIDITY
Regarding external validity, the generalizability of our findings is
threatened by our choice of the analyzed project. Although Eclipse
is a very large and sophisticated project, serving many different
application areas, we cannot claim that our choice represents ade-
quately all software development. For example, our findings may
not be applicable to small software projects, projects in other appli-
cation domains, software written in other programming languages,
or multi-language projects. Finally, we cannot exclude the possibil-
ity that the selection of a specific Eclipse product and release may
have biased our results. If anything, we believe additional research
should look at failures associated with less mature releases.

Regarding internal validity we see four potential problems. First,
the code coverage metrics we employed have room for improve-
ment, by incorporating e.g. branch coverage or mutation testing
data. Second, employing JaCoCo on an old release which may have
some deprecated code and archived repos, caused some unit test
failures, resulting in a lower code coverage. Third, we excluded from
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the JaCoCo report non-Java code that is processor architecture spe-
cific. Fourth, noise in some meaningless stack frames appearing in
our stack trace dataset may have biased the results.

6 RELATEDWORK
Among past studies researching the relationship between unit test
coverage and software defects, the most related to our work are
the ones that examine actual software faults. Surprisingly, these
studies do not reach a widespread agreement when it comes to the
relationship between the two. More specifically existing findings
diverge regarding the hypothesis that a high test coverage leads to
fewer defects. Mockus et al. [18], who studied two different indus-
trial software products, agreed with the hypothesis and concluded
that code coverage has a negative correlation with the number of
defects. On the other hand, Gren and Antinyan’s work [9] suggests
that unit testing coverage is not related to fewer defects and there
is no strong relationship between unit testing and code quality. A
more recent study by the same primary author [2], investigated an
industrial software product, and also found a negligible decrease in
defects when coverage increases, concluding that test unit coverage
is not a useful metric for test effectiveness.

Furthermore, in a study of seven Java open source projects, Petric
et al. found that the majority of methods with defects had not been
covered by unit tests [21], deducing that the absence of unit tests
is risky and can lead to failures. On the other hand, Kochhar et
al. in another study of one hundred Java projects, did not find a
significant correlation between code coverage and defects [15].

The above mentioned studies cover only fixed faults. In our
research, we work with stack traces, which enable us to analyze
field-reported failures associated with crashes. The associated faults
include those that have not been fixed, but exclude other faults that
are not associated with crashes, such as divergence from the ex-
pected functionality or program freezes. Furthermore, through the
crash reports we were unable to know the faulty method associated
with the crash. However, by placing our matched crash methods
in three groups according to their respective position in the stack
trace (in the very first stack frame, within the top-6 and the top-10
stack frames) we could obtain useful bounds backed by empirical
evidence [23] regarding the coverage of methods that were likely
to be defective.

Considerable research associating testing with defects has been
performed on the relationship between test-driven development
and software defects. Test-driven development (TDD) is centered
around rapid iterations of writing test cases for specifications and
then the corresponding code [4]. As a practice it obviously entails
more than implementing unit tests, but absence of evidence of
TDD benefits should also translate to corresponding absence of
benefits through simple unit testing, though the benefits of TDD
will not necessarily translate into benefits of unit testing. In a review
of the industry’s and academia’s empirical studies, Mäkinen and
Münch [17] found that TDD has positive effects in the reduction
of defects a result also mirrored in an earlier meta-analysis [22]
and a contemporary viewpoint [19]. In industry, an IBM case study
found that test-driven development led to 40% fewer defects [25].
In academia, classroom experiment results showed that students
produce code with 45% fewer defects using TDD [7]. On the other

hand, experimental results by Wikerson and Mercer failed to show
significant positive effects [24].

The study by Jia and Harman [11] shows clear evidence that
mutation testing has gained a lot popularity during the past years.
The majority of researchers concluded that high mutation score
improves fault detection [20]. Furthermore, mutation testing can
reveal additional defect cases beyond real faults [1]. However, mu-
tants can only be considered substitute of real faults under specific
circumstances [13].

Apart from Schroter and his colleagues [23], a number of re-
searchers have studied the Eclipse IDE and most of them have
focused on predicting defects. Most notably, Zimmermann and his
colleagues provided a dataset mapping defects from the Eclipse
database to specific source code locations annotated with common
complexity metrics [27], while Zhang [26] based on Eclipse data,
yet again, suggested lines of code as a simple but good predictor of
defects.

7 CONCLUSIONS
Software testing contributes to code quality assurance and helps
developers detect and correct program defects and prevent failures.
Being an important and expensive software process activity it has
to be efficient. In our empirical study on the Eclipse project we
used the JaCoCo tool and a class source code matching procedure
to measure the test coverage, and we analyzed field failure stack
traces to assess the effectiveness of testing. Our results indicate
that unit testing on its own may not be a sufficient method for
preventing program failures. Many methods that were covered
by unit tests were involved in crashes, which may mean that the
corresponding unit tests were not sufficient for uncovering the
corresponding faults. However, it is worth keeping in mind that
failures manifested themselves through exceptions whose branch
coverage JaCoCo is not reporting. Research building on ours can
profitably study the faults that led to the failures we examined in
order to propose how unit testing can be improved to uncover them,
and how test coverage analysis can be extended to suggest these
tests.
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