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Abstract—Is the quality of existing code correlated with the
quality of subsequent changes? According to the (controversial)
broken windows theory, which inspired this study, disorder sets
descriptive norms and signals behavior that further increases
it. From a large code corpus, we examine whether code history
does indeed affect the evolution of code quality. We examine C
code quality metrics and Java code smells in specific files, and see
whether subsequent commits by developers continue on that path.
We check whether developers tailor the quality of their commits
based on the quality of the file they commit to. Our results
show that history matters, that developers behave differently
depending on some aspects of the code quality they encounter,
and that programming style inconsistency is not necessarily
related to structural qualities. These findings have implications
for both software practice and research. Software practitioners
can emphasize current quality practices as these influence the
code that will be developed in the future. Researchers in the field
may replicate and extend the study to improve our understanding
of the theory and its practical implications on artifacts, processes,
and people.

Index Terms—code quality, software evolution, broken win-
dows, mining software repositories, software analytics, empirical
study, software smells

I. INTRODUCTION

In the late 1960s Stanford professor Philip Zimbardo and
his research team ran a fascinating field study demonstrating
the ecological effects of community and anonymity on vandal-
ism [1]. They removed the license plates from two used cars
and abandoned them on the street with the hood slightly raised:
one in leafy Palo Alto, California and one in New York City’s
gritty Bronx. Within two days they recorded 23 instances
where people tore apart or wrecked the Bronx car. In contrast,
in Palo Alto in a five day period the only person who touched
the car was a passerby who on a rainy day caringly closed the
hood to protect the motor. In his description of the experiment
Zimbardo argues that in environments where anonymity and
a lack of community sense are the rule, individuals resort to
vandalism and graffiti to gain personal recognition.

In 1982 the academic George Kelling and James Wilson
used a news report of Zimbardo’s demonstration [2], together
with an evaluation of New Jersey’s police foot-patrol program
and their personal observations of Newark foot-patrol officers,
to discuss policies for maintaining safe communities. In a long,
influential, and somewhat controversial article, titled Broken
Windows [3], they argued that the maintenance of public order
can lead to safer communities.

The views of Kelling and Wilson, termed as the broken
windows theory, have been used to explain the variation of
crime among neighbourhoods [4], support theories linking dis-
order with crime [5, pp. 281-281], and set public policy, most
famously in the 1990s by William Bratton as Rudy Giuliani’s
New York City police commissioner [6, pp. 47-50]. There is
no agreement on the results of the corresponding policies [4],
[71, [6], [5], mainly because it is difficult to perform controlled
studies on the subject. A large carefully-controlled study of
Chicago neighbourhoods found that social cohesion among
neighbors and their willingness to intervene for the common
good is associated with reduced violence [8]. More recently,
six clever field experiments demonstrated that when people are
exposed to the violation of observed (descriptive) social norms
and rules, they are significantly more likely to break prescribed
(injunctive) norms and rules [9]. On the other hand, a study
published in the same decade [5] independently recreated and
examined Kelling and Wilson’s data and attributed the original
attributed New York’s crime reduction to mean reversion. The
same study also examined a randomized social experiment
that moved families to less disorderly neighbourhoods. The
study failed to find a corresponding reduction in those people’s
criminal behavior. Furthermore, a more recent meta-analysis
of 96 studies [10] failed to find consistent evidence that
disorder increases aggression or deteriorated attitudes toward
the neighborhood. Finally, a meta-analysis of 198 studies by
the same authors [11] identified methodological weaknesses
that have inflated evidence for the broken windows theory and
found an association from disorder to lower mental health, but
not to physical health or risky behavior.

Despite these mixed findings in social contexts, the concept
of the broken windows theory has intrigued researchers in
various fields, including software development. The objective
of this study is to investigate the broken windows theory in
the context of software development, i.e., examine whether
developers become more or less diligent regarding their cod-
ing, depending on the internal quality of the code they operate
on. Internal quality comprises the aspects of software quality
that are experienced mainly by its developers rather than its
users. It includes the code’s formatting, structure, and identifier
naming. On the other hand, internal code quality does not
cover the software’s functionality, reliability, or performance;
the things that are often the topics of defect or bug reports. In
an analogy to the broken windows theory, we consider code of
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high internal quality as “order” and changes that reduce it as
“crime”. There is also an analogy with the seriousness of the
crime: code style infractions [12] can be considered as petty
crime, whereas structural problems are more serious.

Though known and often anecdotally referenced, the broken
windows theory has not been explored adequately in our field.
A motivation for the study is to justify devoting effort to
maintaining specific attributes of internal code quality because
of their indirect, signalling, effects. The findings can have
implications regarding the software development process in
general and also specific aspects such as tooling, refactoring,
code reviews, and continuous integration.

This work, based on the statistical analysis of metrics
derived from two million code commits in 122 constantly
evolving projects for long time, comprising 5.5 million lines of
code (LOC) contributes two types of findings. First, history’s
weight on the evolution of internal code quality: it seems
that some aspects of a body’s existing code quality are
related to the quality of its subsequent evolution. Second,
the relationship between the commits’ code quality in areas
covered by injunctive norms and some of the corresponding
code’s descriptive norms: adherence to coding guidelines is
related to the look of the existing code. Both findings provide
(qualified) support for the application of the broken windows
theory to software development.

We contribute the following to the state of the art. First, we
present a method to systematically explore the applicability of
the broken windows theory on code quality. Next, we outline
a theoretical model concerning code quality and the broken
windows theory, contributing towards the understanding of
their potential connection. Finally, we make publicly available
a replication package comprising time-series code quality data
(metrics and smells) from 122 open-source projects as well as
corresponding analysis scripts.!

II. THEORETICAL MODEL

The impact of norms on human behavior can be produc-
tively studied by distinguishing two norm types. Injunctive
norms encompass what others approve or disapprove, in a
formal way (through rules) or informally (through social pres-
sure). Descriptive norms illustrate what others actually do [13],
and are established when a subject observes the environment.
Both norms provide information, what is the expected and the
common behavior, and in a particular situation they can be
in agreement or in conflict. In the context of programming,
an injunctive norm would be the disapproval of using the
goto statement [14], while a (conflicting) descriptive norm
would be its common use to jump to a function’s error exit
routine [15], [16, pp. 43—44]. In the physical world, it has
been found that injunctive norms are observed more when
they are in agreement with descriptive norms, associated with
the corresponding or even another type of behavior [17], [9].
Persons take into account these norms in order to accurately

'https://zenodo.org/records/13142720
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model reality and their reactions, to have meaningful social
relationships, and to maintain their self-concept [17].

For the purposes of our study we have devised a model
that describes our understanding of the factors affecting the
evolution of a code module’s internal quality from a time
point T’y to a later time point Ty ;. First, there are factors
external to our study that affect the quality at both time points,
without however establishing a causal correlation via the code.
These may include developer ability, the development process
(which can set diverse injunctive norms through rules, guide-
lines, processes, and tools), the application domain, the global
distribution of developers, and many others; see Section VI.
All these can affect the code quality at both time points, and
thereby result in a correlation. There are also factors that may
establish a direct causal correlation between the code at the
two time points, i.e., the code quality at Ty directly affecting
the code quality at T’y 1. The most important factor is clearly
the legacy of inherited code: at time point Ty the majority
of the code, and therefore its quality, will consist of code from
T'n with some changes.

There are also other more interesting ways in which the
code quality at 7Ty affects the code quality at 71. First,
come the interfaces that the code has to use, either to interface
with the rest of the system or to use third party components. If
their design is substandard, they can be detrimental to the code
quality [18], [19], [20], because they can impose naming con-
vention violations or, worse, an ineffective module structure.
Then, comes the module’s design structure. If this imposes bad
traits, such as lack of appropriate layering or encapsulation,
subsequent code additions that build upon that design will
naturally add to the problem. Also consider identifier naming.
Badly named identifiers (overly short, long, inaccurate, or
violating coding conventions) existing at 7y are likely to be
used at Ty 1, thus perpetuating the problem. Finally, any of
the preceding aspects of the internal code quality may act as
a descriptive norm, signalling to its developers a lack of care
regarding a module’s quality, contributing to the commission
of further sins in the future. This last point is the essence of
the broken windows theory applied to software development.

Although our examples showed how bad code can lead to
worse, note that all the factors associated with the code can
also improve the code quality: a sound design, suitably-named
identifiers, high-quality third party components, and a code
state that signals love and care can make subsequent additions
maintain or improve the code’s quality. Also note that, al-
though the module structure, the naming conventions, and the
used interfaces at Ty are bound by those used at point Ty,
this binding can be broken through refactoring [21]. However,
in practice, refactoring tools, which can aid these tasks, are
underused [22], and it is doubtful whether refactoring actually
improves code quality metrics [23], [24], [25], [26].

In common with the real world, the signalling effect associ-
ated with the broken windows theory in software development
is about communicating expectations regarding community
standards. These can be associated with injunctive and de-
scriptive norms (this is how we write code around here),
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incentives (rewarding or reprimanding developers based on
the quality of their code), and processes that flag or correct
quality problems (code reviews, commit hooks, and continuous
integration checks).
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Fig. 1. Factors affecting the evolution of internal code quality.

The code quality evolution model we use in our study is
illustrated as a UML diagram in Figure 1. Note that UML,
confusingly for some, has dependency arrows point from the
dependent (client) entity to the independent (supplier) one. So
in the figure the internal quality of the changes Ty — T4
may depend on the signalling effect of the module’s internal
quality at T’y the internal quality is derived from the module
structure, naming, and formatting; the external factors affect
the internal quality; and the structure naming and interfaces at
T'ny1 are bound by the choices at Ty.

III. METHODS
A. Overview

The goal of this study is to examine the applicability of the
broken windows theory to source code quality. Specifically,
we investigate whether the adherence to code quality practices
within a source code project impacts its internal quality. In
other words, we explore whether the historical internal quality
of the code influences developers’ adherence to code quality
practices. To achieve this goal, we formulate the following two
research questions.

RQ1. Does future code quality relate to past code quality?
Through this research question we investigate whether the
code quality at time 7y correlates to the code quality at time
TNy

RQ2. How does existing code quality relate to developers’

behavior and practices concerning it?

With this research question we check whether a developer
behaves better or worse on source code that starts with better
or worse quality characteristics. Exploring these research
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questions will help us establish the applicability (or, non-
applicability) of the broken windows theory on code quality.

To investigate the research questions, we conduct an em-
pirical analysis. First, we identify a set of repositories written
mainly in C and Java. We then collect a time series of the
required code quality metrics and code smells indicating the
code quality of the repositories. We apply statistical analysis
to the collected code quality data to investigate the addressed
research questions. The rest of the section describes each of
the steps in detail.

B. Data Collection and Processing

We studied the possible correlation between the quality of
an existing code body and additions or changes made to it
as follows. After selecting two popular languages exhibiting
different aspects of code quality characteristics (C and Java),
we employed stratified sampling to obtain a random repre-
sentative sample of GitHub open source code repositories
to study. We selected various metrics and smells covering
size, structure, code style, documentation, and adherence to
design principles. These metrics and smells are commonly
used in code quality analysis studies and fairly represent the
state of software code quality. We chose two tools that can
reliably produce quality measures for diverse projects written
in these languages, namely gmcalc [27] for C and DESIGNITE-
JAvA [28] for Java. Based on the capabilities of these tools, we
then collected data regarding the evolution of C code quality
metrics and Java design, implementation, and testability smells
for more than two million file revisions. Finally, we analyzed
the obtained data using statistical autocorrelation techniques.
We have made publicly available on the Zenodo repository a
260 MB replication package with the code used for extracting
and analyzing the data as well as the obtained results.!

1) Project Sampling: Following proposed guidelines for
the systematic mining of software repositories [29], [30]
we established the following inclusion criteria for selecting
repositories.

1) More than 10 GitHub stars or forks, to select projects
relevant to the software engineering community, and
avoid personal projects and student exercises. These two
metrics are considered to be the most useful GitHub
project popularity metrics [31].

Code in the C or the Java programming language.
These two languages cover the imperative and object-
oriented programming paradigms, and are among the
most popular languages according to the TIOBE index.?
At least ten years of history with at least one commit
on every half-year interval, in order to examine long-
evolving software, where code quality may act as a
repository of tacit norms.

2)

3)

For repository selection we employed random sampling,
aiming for a sample size NN in the range 50-100, which is what
we could process with the computational and storage resources
at our disposal. To aid the generalizability of our findings, we

Zhttps://www.tiobe.com/tiobe-index/
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TABLE 1
EXAMINED REPOSITORY METRICS

Total Min Median Avg Max s
Created (YYYY-MM) 2008-07 2012-02  2011-11 2013-08 16
Commits 2233372 223 3624 18306 872689 80321
Committers 13 157 478 24960 2263
Stars 26 6628 13787 174980 21767
Forks 22 1451 4072 52625 7889
Files 386909 35 966 3171 65697 7009
Lines 104442209 3589 164919 856084 27533925 2640579
C files 56389 3 183 842 27626 3373
C lines 35306678 6475 92137 526965 18904362 2302884
C file revisions 2195510 38 3884 32769 1148732 140756
C analysis time (s) 145 644 1 38 2174 132335 16 148
Java files 82090 6 628 1493 12568 2295
Java lines 12378220 137 81294 225059 2179378 392288
Java file revisions 638533 4 6510 11610 50728 13534
Java analysis time (s) 1599688 303 4610 34036 507 184 89989

selected a random stratified sample of the /V projects based on
community interest and third-party involvement. Specifically,
we defined our sampling method to reflect the fact that it is
more likely for developers to interact with popular projects.

In common with most studies, we sampled projects from
GitHub, which contains millions of open source repositories,
including mirrors of popular projects hosted elsewhere. We
used GitHub stars as a proxy for community interest [31]
and GitHub forks as a proxy for direct developer involvement.
We defined five strata on an exponential progression of star
or fork engagement ranges: 11-100, 101-1 000, 1 001-10 000,
10001-100 000, 100 001-1 000 000. (Through experiments we
determined that this stratification yields same order of magni-
tude number of projects in the first four strata. We also found
that there are no projects with more than 1000000 stars or
forks that satisfied our other criteria.)

We calculated the number of projects to sample in each
stratum to mirror the probability of engaging with the stratum’s
projects as follows. For each stratum we obtained with GitHub
API queries the number of projects in it that were written in
one of the languages we studied, and had at least ten years
of history, including a change in a six-month period in the
period’s middle. In each stratum ¢ for the number of obtained
projects P; in it, we estimated the total engagements (forks or
stars) T} in the range 10° to 10°*! as

107 4 107+!
2

Based on it, we calculated a random selection probability to
obtain one of the N projects if it had a single engagement as

N

2T
Finally, we obtained the number of projects IN; to select in
each stratum i as IV; = ST;. For example, in the Java projects
stratum with 10 001-100000 stars there are 51 projects, shar-
ing an estimated total of 2.8 million stars, which results in

the requirement to select 30 projects from it. We then selected
projects at random from each stratum ¢, checked whether they

T, =P,

S
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satisfied the outlined criteria, and kept those that did, until we
reached the required number of projects NV;. Doing this for
both stars and forks and taking into account overlaps yielded
a number of projects in the desired range 50-100: 93 for Java
and 83 for C.

We obtained all data using GitHub API queries, utilizing
features such as range selection, sorting, and the conjunction
of multiple selection criteria in a single query to obtain the
required results in the most efficient manner. This required
36 queries for obtaining the strata metrics (6 strata x 2
engagement metrics X 3 languages — we also provide C#
projects in the dataset to facilitate future work) and more than
6000 for deriving the projects sample (18 queried commit
intervals for 304 accepted projects in all three languages, plus
average of 9 intervals for 139 rejected projects). As a last step
we we examined the list of randomly selected repositories
for potential issues and removed two repositories that were
clones of the (also selected) Linux kernel (Xilinx/linux-xinx
and raspberrypi/linux) and one that contained mostly patches
rather than code (freebsd/pkg). Indicative descriptive statistics
of the examined project repositories are listed in Table I. The
file and line metrics refer to the contents of each repository at
the head of its default branch.

2) C Quality Metrics Collection: Calculating quality met-
rics on large C code bodies is tricky for technical and opera-
tional reasons [32], [33]. On the technical side, dependencies
of code associated with its compilation environment, as well
as code portability issues, make it difficult to establish the
context required to parse and semantically analyze the code.
This is especially true for programs written in C, where
the compilation depends on compile-time flags and macro
definitions passed through the build process, system header
files, the search paths for these files, and macros internally
defined by the compiler [34], [35], [36]. Then comes the
required throughput: with build times for large projects taking
minutes, analyzing thousands of revisions of hundreds of
projects with a full-fledged compile can take an impractically
long time.
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TABLE II
C CODE SIZE AND QUALITY METRICS PER FILE

Metric and initials Mean 25% 50% 75%
Begin End Begin End Begin End Begin End
Number of statements 119.8 168.4 11 14 49 65 133 181
Number of characters 13079 18568 2488 2783 5748 7245 13085 17749
Number of comment characters 2551 3382 435 409 1101 1159 2469 2823
Number of comments 30.76 39.72 2 3 8 11 25 33
Comment density % CD 67.46 57.85 6.383 7.692 14.68 15.44 29.89 30.49
Comment size CS 191.2 154.4 60.47 53.88 107.4 88.8 208 157
Number of functions FN 10.48 14.27 1 2 5 6 12 16
Function size FS 12.59 13.05 6 6.333 9.75 10.06 14.71 15.09
Goto density % GD 1.689 1.863 0 0 0 0 1.695 2.128
Mean unique identifier length 1L 10.2 10.71 8.374 8.915 10.04 10.6 11.75 12.31
Mean line length LL 27.24 26.73 22.67 22.98 25.39 25.57 29.04 29.3
Number of lines LN 445.5 619 90 101 212 266 474 635
Questionable word density % QD 0.1162  0.08946 0 0 0 0 0 0
Style inconsistency % SI 2.075 1.767  0.09494  0.1293  0.9804 0.8386 2.708 2.254
Mean statement nesting SN 0.5738 0.5916 0.2727  0.3023 0.4945 05188  0.7679 0.781

We addressed both problems choosing to use, in common
with other studies [37], [38], [39], [40], gmcalc, an open
source tool that efficiently calculates C code quality metrics,
without requiring full access to the compilation environment’s
parameters [27]. The gmcalc tool operates as a filter, receiving
on its standard input C source code, and printing on its
standard output a line of metrics associated with that code.
As such it can be efficiently tied to the output of a git
show command, so that successive versions of a file can
be analyzed without the performance degradation of code
touching the secondary storage. The tool’s operation is based
on a state machine logic lexical analyzer for a superset
of C code. The analyser combines the functionality of the
C preprocessor and C language-proper lexical analysis with
rudimentary parsing, so as to recognize C preprocessor direc-
tives, functions, statement nesting, indentation, other spacing,
comments, identifiers, keywords, and operators. The provided
metrics do not require semantic analysis of the code, allowing
gmcalc to sidestep its cost and brittleness; thus gmcalc dodges
the complexity of C’s pointer aliasing. By treating the C
preprocessor’s function-like (those defining entities that can
be called like a function) and object-like (e.g. those defining
constants) macros as C-proper functions and objects, gmcalc
will produce reasonably accurate results without requiring
access to header files and the compilation environment. As
an example, gmcalc will not stop processing with an error
due to missing include files, declarations, or definitions.

The gmcalc tool calculates size, structural, quality, and
code style metrics; see references [41], [42, pp. 326-333]
for more details. A representative selection of metrics, along
with the quartile points calculated on the first version and last
version of each file in our data set, are listed in Table II.
In our study we provided gmcalc with successive versions of
each C file, and obtained from its output the corresponding
metrics: one set of metrics for each version of each C file.
Most metrics are self explanatory; here are details for the rest.
The comment density (CD) is the ratio between the number

of comments and statements in a file. The comment size
(cs) is the ratio between the number of comment characters
and the number of comments. The function size (FS) is the
ratio between the number of statements and the number of
functions. The goto density (GD) is the ratio between the
number of gofo statements and the number of statements. The
questionable word density (QD) is the number of words that
may indicate problems in the code as well as swearwords
divided by the file’s number of lines. The following whole
words were searched for in a case-insensitive manner: bugbug,
buggy, bullshit, crap, crash, damn, damned, doom, doomed,
fixme, fuck, fucker, fucking, hack, hacked, hackery, hacks,
hell, kludge, kludges, lame, lameness, poop, screwed, screws,
shit, shits, suck, sucks, todo, xxx. Finally, the mean statement
nesting (SN) is measured as the sum of the nesting of all lines
within code blocks (e.g., 1 after a while statement and 2 after
an if statement nested within the while one) divided by the
number of those lines.

The gmecalc tool calculates code style infractions from
commonly agreed formatting guidelines. As there are a number
of different approaches for formatting C code, gmcalc allows
us to measure the consistency of their application, rather than
adherence to a specific formatting style. Specifically, for each
way to format a particular construct (for example putting a
space after the while keyword) gmcalc counts the times a
the rule is applied in the one way (e.g., putting a space) and
the times b the rule is applied in the other way (omitting the
space).

Each metric represents the number of occurrences of the
corresponding phenomenon in a file.

e A space, a (or a lack of it, b) before or after the
following tokens: binary operator, closing brace, comma,
keyword, opening brace, opening square bracket, semi-
colon, st ruct access operator. (2 X 2 X 8 = 32 metrics.)

o A space, a (or a lack of it, b): before a closing bracket,
after a unary operator, before a closing square bracket.
(2 x 3 = 6 metrics.) Note that the rules regarding spacing
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on the opposite side of the preceding three tokens are
context-specific, and therefore they were not checked.
e A space, a at end of a line. (One metric; no style
convention puts a space at the end of a line, therefore
= 0 in this case.)

The file’s style inconsistency for n style rules (20 in our
case) as a percentage of possible cases is defined as follows.

>~ min(ag, b;)
i=1

SI = x 100 1

Thus, through gmcalc and the preceding definition we identify
the prevalent coding style used in each file (e.g. putting spaces
around a binary operator), and obtain a metric of inconsistency
regarding the coding style found within the file. We obtained
the rules from the Google,? FreeBsD,* GNU, and the updated
Indian Hill® style guidelines.

From the metrics we gathered five are associated with code
style quality: commenting (CD, CS), naming (IL), and layout
(S, LL). Another six are proxies for code structure quality:
modularity at the file level (FN, SN, LN) and the function
level (Fs), code complexity (SN, GD), and questionable coding
practices (QD).

The metrics calculation was performed through a series of
nested loops, expressed as bash [43] shell scripts that run
gmcalc for each revision, of each file, of each repository. The
revisions were obtained through the git log command, run
with a custom output format to obtain the revision’s hash code,
committer email, and machine-readable time stamp. Then git
show was invoked on the filename and hash code associated
with each revision to pipe to gmcalc the source code to
be analyzed. Thus a single 118-field line was produced for
each file’s revision (258 million values in total), which other
programs could use to analyze the results.

The metrics calculation of all revisions of all files (35
million lines) took more than 40 hours to run. Caching and
checkpointing were used to allow the efficient execution of in-
cremental runs while the processing code was debugged [44].
A considerable speedup was achieved by parallelising the
analysis of each file using GNU parallel [45]. This gave the
calculation a throughput of 25 thousand lines per second on
an 8-core computer.

3) Java Code Smells Collection: We extended the code
quality analysis by detecting and analyzing commonly oc-
curring code smells [46], [47] on projects mainly written
in Java. For a comprehensive coverage of code quality, we
required a tool that supports code smell detection at different
granularities such as implementation, design, and testability.
We chose DESIGNITEJAVA [28], which detects a variety of
code smells and computes common code quality metrics. The

3https:/google.github.io/styleguide/cppguide.html
“http://www.freebsd.org/cgi/man.cgi?query=style&sektion=9
Shttps://www.gnu.org/prep/standards/ntml_node/Formatting.html
Shttps://www2.cs.arizona.edu/~mccann/cstyle.html
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TABLE III

JAVA CODE SIZE AND SMELL INSTANCES
Type Name Begin End

Lines of code 5872257 6321769

Number of classes 143 850 147279
DS Broken hierarchy 10935 11183
DS Broken modularization 3721 4111
DS Deep hierarchy 13 14
DS Deficient encapsulation 12719 13706
DS Feature envy 5504 5994
DS Hublike modularization 97 153
DS Insufficient modularization 6840 8092
DS Missing hierarchy 245 311
DS Multifaceted abstraction 181 214
DS Multipath hierarchy 185 201
DS Wide hierarchy 314 371
1S Complex conditional 6788 8450
IN Complex method 11869 14188
1S Empty catch clause 14841 16345
IS Long method 1261 1575
IN Long parameter list 14506 17419
IN Long statement 118374 138959
IS Magic number 301830 334784
IS Missing default 3644 4110
TS Excessive dependency 7479 8773
TS Global state 12310 13753
TS Hard-wired dependency 204 234
TS Law of Demeter violation 437 628

tool has been validated by its authors [48], [49] and has been
used in diverse studies [50], [48], [51], [52], [53].

We included in our analysis three types of smells listed in
Table III: design smells (DS) [54], implementation smells
(IS) [46], and testability smells (TS) [49]. The latter, tak-
ing into account that testability is the degree to which the
development of test cases can be facilitated by the software
design choices, are the practices that impact the testability of
a software system. We selected the listed commonly occurring
smells for our analysis because, given their scope and charac-
teristics they may get influenced by other existing smells.

In terms of its architectural design, DESIGNITEJAVA is
organized into three layers. At the bottom layer lies the Eclipse
Java Development Toolkit (JDT). The tool utilizes JDT to
parse the source code, prepare ASTs, and resolve symbols
i.e., associate type information with variable declarations. The
middle layer, source model, maintains a source code model
created from the extracted information from an AST with
the help of JDT. The business logic i.e., the smell detection
and code quality metrics computation logic resides in the top
layer. The layer accesses the source model, identifies smells,
computes metrics, and outputs the inferred information in
either .CSV or .XML files. As its user, we utilized the tool for
each repository selected for analysis in multi-commit analysis
mode.” In this mode the tool takes the path of a Git repository
as input, switches the repository to a commit, analyzes the
code, and produces a set of .CSV files containing smells and
metrics data for the commit. This produces CSV files with
smell details for each file at each commit. We subsequently

"DesigniteJava
commands.html

documentation—nhttps://www.designite-tools.com/docs/
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Fig. 2. Percentage of files with autocorrelation > 0.5 at each lag for code
style metrics.

filtered these to create timeline series specific to changed files.
The total number of smells detected at the beginning and at the
end of all time series is listed in Table III. (The total number
of lines in Table III is larger than the one shown for Java
files in Table I, because a file can appear in many time series
as it moves around the repository.) Our processing excludes
a few Java projects with faulty repositories (apache/camel)
or with processing requirements that exceeded our computing
resources (e.g. checkstyle/checkstyle, which run out of heap
space despite getting allocated 40 GB of RAM).

IV. RESULTS

We present our observations corresponding to both research
questions exploring the broken windows theory in software
using our corpus.

A. RQI1: Relationship of quality of existing code on code
quality evolution

To set the scene we inquired into the way code quality
evolves over time; in particular, the way existing code quality
relates to future quality. After all, if existing quality does not
relate to future quality in a significant way, it does not make
much sense to check the effect of existing code in developers’
coding practices.

We started our analysis by looking at the autocorrelation
of C code style metrics and C code structure metrics. We
calculated the autocorrelation for files that have more than
50 commits and a non-constant value of the metric (because
otherwise the autocorrelation is undefined). From 55 523 files,
that left us with 10530 files with autocorrelations calculated
for at least one of the code style metrics and 10404 files for
code structure metrics. We took into account up to 50 lags and
judged as important autocorrelations greater than 0.5 that were
found to be statistically significant, having p-value < 0.05 for
the Ljung-Box test. The results can be seen in Figure 2 and
Figure 3.

For both classes of metrics, we see that a very high
percentage of files have significant autocorrelations for small
lags. Moving forward in time, we see that for all metrics about
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Fig. 4. Percentage of files with autocorrelation > 0.5 at each lag for smells.

40% of the files have significant autocorrelations for lags up
to 10. Overall, history does relate to the evolution of code
style and structure metrics, as the value of a metric at
a particular commit exerts a considerable effect to more
than 80% of files for all metrics in the commits that follow.
Moreover, in a significant portion of the files the relationship
goes deep, to many commits and not just the one that comes
next.

A general pattern that we can discern from Figures 2 and 3
is that metrics that correspond to advice given frequently in
software engineering matter a lot in history. Comments, both
in what regards their density and their size, make a mark in
the history of many files. Rules on identifier length and line
length are also found in many style guides, and they are sticky
in that previous values to a large extent relate to future values.
The same goes for style inconsistency, which aggregates
different kinds of inconsistencies. Advice on function size and
number of functions in a file is frequently drilled to software
developers; so is advice against too much nesting and the use
of gotos. It seems that it is not just history, but what we might
call tradition, in the form of old, time-honoured programming
tenets, that manifests itself along the evolution of software.

We can discern a similar pattern in Figure 4, which shows
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the autocorrelation of Java smell metrics over different time
lags. Out of 114519 files, we found 832 with more than 50
commits and a non-constant metric value. The autocorrelations
show again that about 40% of the files we examined
exhibit significant autocorrelations for lags up to ten. We
have highlighted the top five and bottom three of the smells,
in terms of the average percentage. Three of the top five,
i.e., multipath hierarchy, hub-like modularization, and Law
of Demeter violation, seem to follow distinctive paths, as do
the bottom three metrics, i.e., multi-faceted abstraction, hard-
wired dependency, and wide hierarchy. This may be because
for all the highlighted metrics, the number of files where the
autocorrelation could be calculated with statistical significance
was small: the median number of files, for the different lags,
for which we could calculate autocorrelation > 0.5 with p-
value < 0.05 was less than 10.

Our analysis indicates that history does relate to the
evolution of code quality, both for code style and
structure metrics and for code smells.

B. RQ2: Developers’ behavior and historical code quality

It is easy to spot a real broken window, but as there is no
a priori indication of what is a good or a bad file, we used
quantiles for ascribing categories to files. For each project,
we identified the first commit and the corresponding metric
for each of the code style and the code structure metrics. We
computed the 25% and the 75% quantiles for those metrics
and we grouped the files at the top quantile as top files and
the files at the bottom quantile as bottom files. Note that top
and bottom are not equivalent to good and bad, as in some
metrics higher values are better whereas in other metrics the
opposite is true. In total we formed 11 groups containing top
and bottom files, one for each selected metric.

To see whether developers behave differently in top files
than they do in bottom files, we investigated whether their
commits in top files are quantitatively different, in terms of
our metrics, than their commits in bottom files. In effect, we
looked whether developers tailor the quality of their commits
based on the quality of the file they commit to. We measured
the quality of a particular commit as the difference of the
selected metric for the commit from the value of the metric
in the previous commit.

To work out the numbers, we grouped each project’s data by
developer and for each group we selected the commits made
in top files and the commits made in bottom files. To see if
the developers perform different kinds of commits depend-
ing on the file’s quality (top or bottom), we calculated the
Kolmogorov-Smirnov two samples test for those developers
that had at least 10 commits in top files and 10 commits in
bottom files. We have 11 metrics, so in total we have 121 cases.
As these are multiple tests, we used a Family-Wise Error Rate
of 0.05 to adjust the p-values using the Benjamini-Hochberg
prodecure [55].

The results for C code are shown as a heat map in Figure 5.
The y-axis of the heat map represents the different groupings;
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the x-axis represents the metric we are using for the statistical
test. For example, the bottom left square corresponds to files
being grouped to top and bottom quartiles depending on mean
line length (y-axis), and the percentage of developers that
display different commit behaviour in what regards mean line
length (z-axis). The square at the intersection of SI on the
z-axis and CD on the y-axis corresponds to the percentage
of developers that display different commit behaviour in
what regards style inconsistency measured in files grouped
according to the classification of the file as top or bottom
based on the code density. In other words, what is the
percentage of developers whose commits exhibit a different
style inconsistency on files coming out top in comment density
against files coming out at the bottom in comment density?
Looking the at columns of Figure 5, CD, GD, and IL stand
out. Developers appear to behave very differently in what
regards comment density, goto density, and to long or short
identifier lengths, along files grouped in the top or bottom
with respect to a variety of different metrics. The laggards
are LL, LN, and FN; it seems that developers do not behave
with respect to line lengths and high or low line and function
counts on files with different top or bottom metric counts.
Going row-wise, one way to interpret each row is as the
context the file provides regarding the value of a metric in the
file. So, LN, SN, CS, CD, and LL seem to provide particularly
strong contexts and, taking the whole picture, stronger
than others. That is reasonable. Developers do different kinds
of commits depending on the file they are into, but not every
single characteristic of the file influences every single commit
metric to the same extent. The row for GD illustrates that
the heatmap is not symmetric: even though developers behave
differently in terms of goto density on files grouped to the top
or bottom on many different metrics, files that come top or
bottom in goto density seem to be have high percentage of
different goto density behavior on the part of the developers.
We repeated the same analysis for the Java smells; we
omit the resulting heatmap, as it is bright yellow nearly all
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over. That means that we were not able to detect a statistical
significance in the Java smells metrics of developers’ commits
in files rated top and bottom with regards to those smells.
That does not entail that, in contrast to C code and structure,
developers do not show a difference in their behavior regarding
design smells, implementation smells, and testability smells;
it may be that developers adhere to norms regarding these
smells independently of the context. We plan to investigate
this further in the future.

Our results indicate that some historical code char-
acteristics (such as comment density and identifier
length) strongly relate to the developers’ behavior.
However, code smells do not show a similar statis-
tically significant relationship.

V. THREATS TO VALIDITY

In terms of external validity, it is clear that we have
limited ourselves to projects using the C and Java program-
ming languages. Although these languages still enjoy rude
health, programmers have a wealth of other languages at their
disposal, and it does not automatically follow that our findings
transfer to them. In our defense, the syntax and overall style
of C and Java have influenced many other newer programming
languages, so there is no a priori reason to indicate our results
would not carry over to other languages, at least those with
a similar structure. However, it may be difficult to replicate
our findings in environments, such as Visual Basic, that by
default perform many formatting tasks automatically. At the
same time, programs written in dynamic languages may rely
more on a consistent code style to make up for the lack of a
compiler that can catch trivial errors.

The metrics we have used are internal quality ones we could
efficiently measure through the two tools we employed. More
sophisticated measures, such as the actual defect density, may
yield different results. Looking at external quality metrics, like
those measuring reliability, accuracy, and performance, may
also differentiate the resulting picture.

In projects code style may not be a developer’s choice, but
may be imposed through tools and processes. We manually
searched the developer documentation of 25 popular projects
(Blender, CPython, ffmpeg, FreeBSD, GCC, gdb, gecko-dev,
Git, illumos, ImageMagick, KDE, Linux, MySQL server, Na-
gios, OpencCV, Perl, PHP, PostgresQL, VLC, WINE, as well as
the Apache, freedesktop.org, GNOME, GNU Git, and Source-
ware projects) looking for style guidelines and how these
are enforced. We found that 7 out of 25 projects (28%)
are using automated methods (mandatory and voluntary) to
ensure code style conformance. Linux, GCC, CPython, and
illumos-gate instruct committers to check their source code
for style inconsistencies before each commit, whereas other
projects suggest the use of automatic style checks, such as
adapting the configuration of source code editors and IDEs,
and executing third-party scripts. We also found that 17 out of
25 projects (68%) prescribe specific mandatory or voluntary
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coding guidelines. Projects with mandatory checks, such as
FreeBsD, Blender, Perl, and PHP, have extensive guidelines,
and encourage committers to conform to them in order to have
their commits accepted by reviewers. Projects with voluntary
checks, such as PostgreSQL, VLC, and KDE, provide shorter
guidelines, and do not impose strict code style checks.

Our choice of projects may also be a limiting factor. Our
random stratified sampling resulted in the inclusion of some
big, successful projects, where quality standards may be above
and beyond those entertained by other projects. It is possible
that our findings may apply less to such other projects. On
the other hand, it is likelier that quality in such projects
will show increased variation, and that developers will enjoy
greater freedom in their coding. Both factors would amplify
the quality’s signalling effects.

Note also that we only examine the changes that show up in
the main development branch. Development also takes place in
other branches as well [56]; changes on other branches may be
merged with the current branch, so these will show in the data
we examine, but their own history may be lost when commits
are squashed, as we do not examine the history of the separate
branches. This may hide from our analysis quality problems
that were identified and fixed through a code review.

Moving on to internal validity, we have been careful not to
propose any causal relationships in the analysis of our results,
which is a key criticism leveled against the broken windows
theory [11]. We report results of statistical relations, or point
out the absence of relations, but we do not attribute cause
and effect. That would require a more detailed examination of
the model we proposed in Section II, and, possibly, putting
forward a concrete mathematical formulation encompassing
dependent and independent variables of software quality in
relation to the existing quality context. This can be the subject
of further research.

VI. RELATED WORK

The broken windows theory in software engineering: To
the best of our knowledge there is limited work that uses
the broken windows theory to explain factors that affect
software quality. In particular, Deissenboeck and Pizka have
referred to the broken windows theory when examining the
inconsistent naming of identifiers in software projects [57].
The same authors in another study [58] have also called for
studying psychological effects, such as those associated with
the broken windows theory. Brunet et al. refer to the theory
when suggesting that the gap between code and architecture
is tractable provided that violations are checked and solved
in a short time period [59]. The preceding studies referred to
the broken windows theory in order to explain or justify soft-
ware development phenomena. However, none of the studies
attempted to use empirical evidence in order to validate or
disprove the broken windows theory in the context of software
development.

A related theory concerns contagious technical debt, which
has so far been studied mainly qualitatively [60], [61]. In the
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similar vein, the human inclination to imitate behavior of oth-
ers is known as the Bandwagon effect. Such cognitive biases
have been explored in the software engineering context [62],
[63], [64], [65].

Factors affecting software quality: On the other hand, there
is a considerable body of work on the factors that affect
software quality. These studies can be categorized into the
areas of management, the software development process, the
developers’ characteristics, and product properties. A survey
on factors that affect software quality [66] examined organiza-
tional, technical, and individual factors. In the following para-
graphs we will briefly describe some representative findings
from each area.

In the field of management a number of studies found that
clear source code ownership results in fewer failures [67]
and defects [68], that unfocused teams working on central
modules can increase post-release failures [69], that well-
coordinated teams can reduce software failures [70], that
organizationally (rather than geographically) distributed teams
lead to an increase of software failures [71], and that low
staff morale and excessive turnover can decrease software
quality [72].

Regarding the software development process, major factors
that have been reported to affect software quality include the
software’s architecture and design [72], [73], the quality of
the requirements [74], [72], tool use (in some cases) [74],
[72], test-driven development [75], [76], code reviews [77],
[78], scheduling [72], (maybe) refactoring [24], [23], and the
existence of software processes in general [74], [72].

On the developer front, studies have found that the capabil-
ities and experience of the personnel can ensure the software’s
conformance quality [74], while their absence can lead to
software decay [72].

Finally, the properties of the developed product can also
affect its quality. Factors that have been identified include
the product’s size [74], [79], [72], the age of the source
code [72], [70], code porting and reuse [72], [80], the chosen
programming language [81], and the application domain [82],
[83].

VII. DISCUSSION AND IMPLICATIONS

In the experimented boundary, factors, and context, we have
shown the following in the preceding sections.

o The quality of an existing, initial, code body and its

subsequent evolution are related. Code quality carries its
history with it, and its current state is strongly dependent
on that history. The exact nature of the dependence varies
on how we define history. It appears that traditional
software engineering advice has a particularly strong
effect on history.
The developers’ behavior associated with a variety of
code style and structure metrics is significantly related
to a file’s commenting (comment size and density—cCS,
CD), size (number of lines and statements—LN, SN), and,
rather unexpectedly, length of lines (LL), as seen by
studying Figure 5 row-wise.
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o The developers’ behavior associated with identifier length
(IL), comment density (CD), and style inconsistency (SI)
is related with a number of file characteristics, as seen
by studying Figure 5 column-wise.

In effect, we have seen evidence that some descriptive norms
that apply to software (how the software is actually written)
are associated with variations in developer behavior in areas
that are often covered by injunctive norms (guidelines and best
practices). In the context of the broken windows theory, we
did not find as high a significant relationship between public
order (style consistency) and more serious crimes (increased
statement indentation, fewer comments, shorter identifiers, or
more goto statements). Consequently, our results are nearer
to Zimbardo’s original demonstration [2] — a community’s
effect on descriptive norms — than to Kelling and Wilson’s in-
terpretation [3] — the escalation of violations from descriptive
to injunctive norms.

Surprisingly, we saw that a file’s style consistency which
is a ubiquitous indicator of order in a file and thereby forms
a strong descriptive norm, is associated with the developers’
behavior at a lesser extent; certainly not as strongly as we
would have expected when we started this study.

The apparent lack of a strong behavioral link between style
inconsistency and other measures of software quality surprised
us at first; but then upon deeper reflection less so. The fact
that it does not appear to be correlated with other measures
suggests that it is an independent quality variable, and not one
that can be readily calculated from structural quality metrics.
Programming style is a distinct quality attribute, and our style
inconsistency density metric may be one way to measure it.

In the context of the broken windows theory in software
development, style inconsistency is special for a number
of reasons. First, style infractions can be easily determined
by inspection, and committed with the sure knowledge that
they will not affect the software’s external quality. Therefore,
stylistic infractions are both a more noticeable signal and
a more sensitive effect. This situation resembles the actual
broken windows in the real world.

Furthermore, code style is also a matter of personal taste
and opinion. Some developers hold these opinions with such
a conviction that it may give rise to so-called holy wars [84,
p- 35]. Therefore, it may be easy for developers lacking
self-discipline to commit stylistic infractions, especially when
editing a file where their “religion” appears to be tolerated.

Assuming that the effect of code on code is indeed casual,
it has important implications for software developers and
their managers. The key message that should be carried away
is that keeping basic code hygiene can not only help the
software’s maintainability, but also improve the quality of
subsequent code additions. Developer behavior regarding the
code quality measures we examined can be improved by a few,
rather unglamorous, actions: keeping modules (files in the case
of C code) short and focused, writing plenty of descriptive
comments, and avoiding long code lines.

Furthermore, given that a file’s number of functions (FN)
and their size (FS) seem to be strongly related with developers’
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behavior regarding the file’s size, it seems important to invest
effort in designing the appropriate decomposition of the code
into modules (files and functions in the case of C code), for
once this structure is set in code it is apparently difficult to
escape from it.

VIII. FURTHER WORK

The study of social influence in the context of software
development can be expanded in two fronts: those of the
empirical data and the mechanisms at work.

The empirical basis can be extended by studying more
and smaller projects where external quality-setting factors
are less prevalent. This can be done by using data sets
that contain metadata from many such repositories, such as
the RepoReapers Data Set [85], or GitHub Search [30], in
conjunction with actual commit data from the corresponding
repositories. The work can also be easily extended to cover
more programming languages, especially given the fact that
the analysis performed by gmcalc is mostly programming
language agnostic. In particular, it would be interesting to
study object-oriented metrics [86], resource leaks, code du-
plication, and security vulnerabilities. It would also be par-
ticularly interesting to check the effect of style infractions in
languages where these often lead to errors in programming
logic; for example, one could examine the role of the optional
semicolons in JavaScript.

Studying the mechanisms through which social influence
theory applies to software development as well as the effects
of these mechanisms on software quality and process is
more challenging. Some topics worthy of further, qualitative,
examination are the following.

o Are the signals communicated and acted upon subcon-
sciously, or are developers making conscious rational
choices on the quality of their work based on a file’s
perceived quality?

« Are developers using the signals to optimize where they
will direct their efforts?

« How does this optimization affect external code quality?

« How should the software development process be ad-
justed to take into account these factors?

o What are the reasons and the meaning in the differences
of the results between code and structure metrics on
the one hand, and design, implementation, and testability
smells on the other?

These are clearly questions whose answers can change the way
we view software development.
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