CEUR-WS.org/Vol-2878/paper6.pdf

A Dataset of Open-Source Safety-Critical Software
Rafaila Galanopoulou’, Diomidis Spinellis’

'Department of Management Science and Technology Athens University of Economics and Business
Patission 76, Athens, 10434, Greece

Abstract

We describe the method used to create a dataset of open-source safety-critical software, such as that
used for autonomous cars, healthcare, and autonomous aviation, through a systematic and rigorous
selection process. The dataset can be used for empirical studies regarding the quality assessment of
safety-critical software, its dependencies, and its development process, as well as comparative studies
considering software from other domains.

Keywords

open-source, safety-critical, dataset

1. Introduction

Safety-critical systems (SCS) are those whose failure could result in loss of life, significant
property damage, or damage to the environment [1]. Over the past decades ever more software
is developed and released as open-source software (OSS) — with licenses that allow its free
use, study, change, and distribution [2]. The increasing adoption of open-source software
in safety-critical systems [3], such as those used in the medical, aerospace, and automotive
industries, poses an interesting challenge. On the one hand, it shortens time to delivery and
lowers development costs [4]. On the other hand, it introduces questions regarding the system’s
quality. For a piece of software to be part of a safety-critical application it requires quality
assurance, because quality is a crucial factor of an SCS’s software [5]. This assurance demands
that evidence of OSS quality is supplied, and an analysis is needed to assess if the certification
cost is worthwhile.

Despite the increased interest by both industry and the research community for the adoption
of OSS in SCS, there seems to be little evidence regarding the quality of such systems. An
earlier study [3] explored the field through a systematic literature survey. It identified 22
relevant studies and isolated 31 software systems. Given that many OSS projects lack academic
publications associated with them, we approach the question of finding OSS associated with
SCS by looking directly for relevant software systems.

First workshop on trustworthy software and open source, March 23-25, 2021, Virtual Conference

& t8160018@aueb.gr (R. Galanopoulou); dds@aueb.gr (D. Spinellis)

& https://www.dmst.aueb.gr/dds/ (D. Spinellis)

® 0000-0002-5318-9017 (R. Galanopoulou); 0000-0003-4231-1897 (D. Spinellis)

© 2021 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

[=3 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:t8160018@aueb.gr
mailto:dds@aueb.gr
https://www.dmst.aueb.gr/dds/
https://orcid.org/0000-0002-5318-9017
https://orcid.org/0000-0003-4231-1897
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

2. Software Selection Method

Our search is based on the methodology guidelines proposed by Kitchenham and Charters [6].
The software selection method consists of three steps:

« candidate system identification based on Google queries, GitHub tags queries, and results
of other studies,

« project repository identification and exclusion based on selection criteria, and

« filtering based on software purpose and characteristics.

To retrieve relevant SCS open-source projects, we run by hand the following search queries.
The provided search queries are notional; the disjunctions were performed by combining by
hand the results of individual queries.

2»

OSS: (“open source system” OR “github project” OR “git repository” OR “open source project
OR “open source hardware”) We used this query in combination with the ones detailed in the
following paragraphs, which target specific SCS domains, applications, and standards. By using
“github” and “git repository” as search keywords, the OSS query finds projects that are likely to
have a Git repository, which can then be queried through an API to further narrow down the
selected projects. We added the “open source hardware” term based on the assumption that an
open-source hardware system might use OSS as well.

SCS Domains: 0SS AND (“Infrastructure” OR “Medicine” OR “Nuclear engineering” OR “Recre-
ation” OR “Transport” OR “Railway” OR “Automotive” OR “Aviation” OR “Space flight”) This query
associated with broad SCS domains identified 15 projects in total (through a Google search and
a GitHub tag search). We complemented these results for the domain of health applications by
adding five projects derived from the data associated with a recent related study [7].

SCS Automotive Applications: 0SS AND (“Airbag systems” OR “Braking systems” OR “Seat
belts” OR “Power Steering systems” OR “Advanced driver-assistance systems” OR “Electronic throttle
control” OR “Battery management system for hybrids and electric vehicles” OR “Electric park brake”
OR “Shift by wire systems” OR “Drive by wire systems” OR “Park by wire”) We derived the terms
of this query from Pimentel’s book chapter [8].

SCS Medical Applications: 0SS AND (“Heart-lung machines ” OR “Ventilators” OR “Insulin
pumps” OR “Life critical monitors” OR “Infusion pumps” OR “Robotic surgery”) The terms of this
query were derived from Hamilton’s [9] and Alemzadeh et al. [10] studies.

SCS Infrastructure Applications: 0SS AND (“Circuit breaker” OR “fire systems” OR “electri-
cal and hydraulic systems” OR “buildings infrastructure” OR “burner control systems”) The query
keywords were derived from studies conducted for civil infrastructure and systems used for
emergency in buildings (e.g. fire) [11, 12].

The three domain-specific queries identified 96 projects in total.

SCS Standards: OSS AND (“DO-178C” OR “MISRA” OR “MISRA-C” OR “IEC 61580” OR “IEC
880” OR “ISO 9000”) The standard names were derived from conference presentations associated
with the examined SCS domains derived from the Conference on Digital Avionics Systems [13].
This query identified 4 projects in total.

For practical reasons in each step we excluded projects lacking a description or having a
non-English description (e.g. Japanese, Portuguese).

The second step of our selection method was based on a project’s repository characteristics.
Here we excluded projects without a Git repository (Github or GitLab), inactive projects (lacking
a commit in the last eight months) and unpopular projects (having fewer than 70 GitHub stars).
Through these criteria we rejected 57 projects leaving us with 63.

In our last step we applied an exclusion criterion based on whether the project served a
safety-critical role. For example, in the medical category, we excluded projects associated with a
hospital’s enterprise resource planning (ERP) services or the keeping of patient records. We did
this by running the following Google search query for each project and studying the results to
identify the project’s purpose. (project-name AND (“applications” OR “in open source hardware”
OR “safety critical systems”). Through this criterion we rejected 21 projects leaving us with 42.

3. Results

The selected projects are listed in Table 1. For each project we list its name, application field,
popularity (in awarded stars), size (in thousands of lines of code), implementation language(s),
and repository location. The whole dataset and replication package are available online.

Most projects are in the automotive (AM) sector (12 out of 42), followed by ten projects in
avionics (AV), six in medicine (MED), three in spaceflight (SP), two in nuclear engineering (NE),
and one in recreation (RE).

Additionally, we found that 34 unique programming languages are used by the selected 42
projects. The most popular are C++ (used in 29 projects), C (25), Python (24), and the Unix shell
(15).

4. Dataset Limitations

The presented dataset suffers from some limitations, which could be lifted in the future. First, the
threshold and inclusion criterion of 70 stars we used is arbitrary. Ideally it should be replaced by
objective criteria, based e.g. on attributes that characterize engineered projects [14]. Second, the
study has excluded projects hosted on platforms other than Github and Gitlab. This was done,
because we are aiming to evaluate the dataset against community metrics that can be gathered
from these platforms, such as the number of forked repositories, open and closed issues, and
contributed pull requests. Nevertheless, if one does not care about these metrics, then more
repository hosting platforms should be considered. Third, the dataset does not incorporate SCS
testing software and components, which can be vital for satisfying safety requirements [15].

'https://dx.doi.org/10.5281%2Fzenodo.4568977

https://dx.doi.org/10.5281%2Fzenodo.4568977

14ydaz/s011-109(01d 14y daz /oo qny1s S[YINO0(T ‘[19d ‘TPYS ‘UoYIAJ D 0002 YLZ¥ NI uadoinydaz
T0JB[1URA/ [WIG[D[/WOd"qnYy313 uod ‘qvosuadQ O “++0 LI 0991 Tan T0JB[IIUIA
Ted-3UIALIP-J[95/A)10RPN /W0 N3 [1PYS MBND ‘UoLJ ‘++D LOS ZISS WV Ie0-SUIALIP-J[9S
URdABNAI/NVIAV[)/W0d qnys Ajquisssy diogeae[++0 0 €2 112 AV NVOAVN
surjodurer/gQ 1 yyaurjodurer] /urod qnuyid ++DD 008¢ SI¢ WV surjodurexn
SAIP-10J-90eJ NSNS /SP[LAIO) /W0 qNIIL3 SN TRYS “TNO ‘LISX O “++D €68 Syl e aoeymsqng
2doosoy191g/XeID/wod qnyid AVILVIN ‘QvOSuado Aqny p6¢ €19 aan adoosoyels
xnjen)s/3unokd/wod qnuyird [eyS adimogeae(‘09) ¢ 191 AV XnjIels
1oxyeuurds/1oyeuurds/wod qnyirs uoyiAJ ‘UIoy ‘oo ‘ArooIn) ‘eae[g 199 L NI Iyeuurdg
J¥os/aodnsnAy/wod qnuyrs 0-9A1303(qQ ‘UOYILJ TPYS ‘“++D D L6 91¢ AV Jgii08

PUeqITY - S TLY/AU0jo1o1m/wod quyiis AJqQuIassy TPUS A[YNEN O “++D 9¢ 9LE AV PUeqIy-4dsTLy
sukd/oukd/wod qnuyid dVILVIN ‘Uenio ‘uoyidd ‘++d) 86L 891 AN AINAJ

joridony -pX d/yXd/wod quyiis [19YS ‘UoyAd O “++0 009€ 622 AV 1onidojny duoIq $Xd
1zzereded/1zzereded /woo qnyis eAR[‘UOIAJ ‘++D ISY D 001 T IL11 AV Sy 1zzeredeg
adoosuado/adoosuado/wod qnirs uoAg 9dirogese[¢/ €Ge AV adooguado
joriduado/reewrurod /wod qnuyirs oy ‘woyihg ‘D ‘++0 LS¥ 10422 WV jorduadQ
Sunuad(/101R[IULA/I01B[HUIA-01IN0S -Ud0 /U0 qe113 avosuadp “++) ¥ 122 QIN ToreMmuap SunuadQ
rduoura/1o3ruow431ausuado/wod qnuyrs [BYS ‘o ‘D “++D ¥he 102 NI wa
10JTUOW-2)0TI-UI3D/IN00S)YSTU/W0d YIS idiogeae[QTT 8TV 1 AN IMoosyy3ru
[ESO/SEU/WOd qny}I3 MWD D 06 882 ds TVSO VSVN

HJ0/eseu/wod qnys MWD ++D D sl 21e ds T VSYN

Sdo/eseu/wod quyis AEND T 61¢ dS wsAS 31 VSYN
detwABUR[II]/S96TBqe/WOd Ny S MENO TRYS ++O OLb 1SS AV dewaeuay
SunTuadQ-axrdsuy/Jsn -0 -211dsuy/wod qnuy3rs ++D 10§ 561 aan SunTuad-amdsur
ArRIqIT oumpry Ty IT/uruLres, / wod qnuyrs 'AR[‘D) ‘UOYILJ ‘0D “++) €T (¥4 AV [eUOHEUIdIU] UTULIED)
SYVO/20UdSI[[2)UI-PIZI[RISUISE /W0 qNUII3 D ‘OEND ‘uohg yduosese(‘++) 00T € G961 AV SYVO
SOLYA91I/SO LY /w0 qnu3 o o1 9% 1 NI SOLY?21]

AVOR2LI/qV 1]/ w0d qnyjis [1oYS ‘woyidg Aqny ++O 00% 9 6288 NI aAvOeR1g
SINgATp/Aemenidirenys/woo qnuis D4+ 8¢ 0Fg NI SINGATP
D[UO/SO-TIU0D/W0d Y33 BAR(D LL8 60€ ¢ WV Buod
SOIqYO/SOIIYD/wod qnyid PYS O 001% 147 NI SOqMO

WIOJR[JVINYV O/[01S -2 -J0PST/ W0 qnyji3 uoy&d ‘eAe([PYS VWO 4+ 662 161 WV WIOReVINIVO
B[IBD/I0JR[NIUIS-R[ILD /W0 YIS [1PYS O[gyoreq ‘uomihg ‘“++) 2SS S¥96 WV I0jR[NUIIS B[IRD)
0JNY2IEMOINY/0JNE DIEMOINE/UOTIEPUNOJIIEMOINE/WI0I IS S[YIINI0(] ‘UOYIAJ DY) ‘++) €F €ST WV oy aremoiny
Aqreroine/A[reygoiny /wod qniyirs AeND ‘UOYIAJ BpPND ‘“++D OF €65 WV Aegony
se/seojne/wod qnurs A[quassy ‘wophd ‘++D D 0SS 996 WV Syomy

ddLSV/XIIIXaN1/Wod qnu1s yduogese[“I410S “TOSL ‘dHd 16 A NI ddLSV
Turre/1omoder1a)/wod qnuyirs uomAd %I 01 AN INYV
Jo[rdnpue/10[1gnpIy/wod qny3rs AVILVIN B0 ‘UOyIAd O ++D 002 1 9696 WV 100fo1q Jor1dnpry
offode/omyorjody/wod quid 1duogeae(YIe[relg ‘WoAd ‘++0 0081 €26 LI WY ofody

WIGITY /}JOSOIDIL/ W0 NY[1T MWD O UOYIA 4D ++D 062 62€11 WV wisIy

19D1]G/12D1[G/ W0 qny3I3 [1PYS ‘O MBND ‘WOYIA] ‘++D 608 8¥¢ dIn 19011S d¢

Axoysodoy sodengue] Surwmuerdory DO SIel§ PRI sureN 103foxg

s309[01g Pa3daras i1 J[qeL

github.com/Slicer/Slicer
github.com/microsoft/AirSim
github.com/ApolloAuto/apollo
github.com/ArduPilot/ardupilot
github.com/terrapower/armi
github.com/iNextrix/ASTPP
github.com/autoas/as
github.com/AutoRally/autorally
gitlab.com/autowarefoundation/autoware.auto/AutowareAuto
github.com/carla-simulator/carla
github.com/usdot-fhwa-stol/CARMAPlatform
github.com/ChibiOS/ChibiOS
github.com/contiki-os/contiki
github.com/stuartpittaway/diyBMS
github.com/FreeCAD/FreeCAD
github.com/FreeRTOS/FreeRTOS
github.com/generalized-intelligence/GAAS
github.com/garmin/LIDARLite_Arduino_Library
github.com/Inspire-Poli-USP/Inspire-OpenLung
github.com/albar965/littlenavmap
github.com/nasa/cFS
github.com/nasa/cFE
github.com/nasa/osal
github.com/nightscout/cgm-remote-monitor
github.com/openenergymonitor/emonpi
gitlab.com/open-source-ventilator/ventilator/OpenLung
github.com/commaai/openpilot
github.com/openscope/openscope
github.com/paparazzi/paparazzi
github.com/PX4/PX4-Autopilot
github.com/pyne/pyne
github.com/microtony/RTLSDR-Airband
github.com/lyusupov/SoftRF
github.com/spinnaker/spinnaker
github.com/cyoung/stratux
github.com/GliaX/Stethoscope
github.com/torvalds/subsurface-for-dirk
github.com/TrampolineRTOS/trampoline
github.com/UAVCAN/libuavcan
github.com/udacity/self-driving-car
github.com/jcl5m1/ventilator
github.com/zephyrproject-rtos/zephyr

5. Discussion and Future Work

The development of SCS as OSS did not prove to be a widespread industrial practice, especially
for avionics. We noticed that some of the field’s leaders (BAE System Avionics, Furuno, Airbus
Helicopters, GE Aviation, Telefunken) maintain GitHub organizations, but evidently prefer to
keep their repositories private.

The low number of SCS OSS projects we found may be associated with onerous require-
ments and diminished incentives. Many SCS application domains, in common with accessibility
OSS [16], may require either specialized peripherals (such as LIDAR or ECG sensors) or powerful
hardware. In addition, SCS software may be based on specialized, inflexible, and non-free devel-
opment tools [17]. These requirements, can hinder OSS developer participation. Furthermore,
due to its specialized nature and regulatory requirements, SCS deployment may require strong
organizational backing, thus further limiting and discouraging OSS volunteer participation.

Notably, none of the systems identified in the earlier study [3] passed our inclusion criteria.
Most were excluded due to lack of activity or popularity in terms of GitHub stars. This is a
concern regarding the long-term viability and maintenance of OSS SCSs.

The presented dataset can be used to evaluate the quality of OSS SCSs. This can be done
e.g. based on the defect prediction model proposed by Foyzur and Premkumar [18], which
outlines relevant process and code metrics. It is important to study both facets, because the
most successful OSS projects are those featuring not only a high-quality code base, but also
a thriving user community [4]. Results can then be compared with other OSS endeavors that
have similar engineered project characteristics [14]. Furthermore, results can be qualitatively
evaluated based on practices advocated by Wilson et al. [19, 20].

Acknowledgments

This work has received funding from the European Union’s Horizon 2020 research and innova-
tion programme under grant agreement No 825328.

References

[1] J. C. Knight, Safety critical systems: challenges and directions, in: Proceedings of the 24th
International Conference on Software Engineering. ICSE 2002, 2002, pp. 547-550.

[2] S. Androutsellis-Theotokis, D. Spinellis, M. Kechagia, G. Gousios, Open source software:
A survey from 10,000 feet, Foundations and Trends in Technology, Information and
Operations Management 4 (2011) 187-347. doi:10.1561/0200000026.

[3] S.M. Sulaman, A. Orucevi¢-Alagi¢, M. Borg, K. Wnuk, M. Host, J. L. de la Vara, Development
of safety-critical software systems using open source software — a systematic map, in:
2014 40th EUROMICRO Conference on Software Engineering and Advanced Applications,
2014, pp. 17-24. doi:10.1109/SEAA. 2014 . 25.

[4] D. Margan, S. Candrli¢, The success of open source software: A review, in: 2015 38th
International Convention on Information and Communication Technology, Electronics
and Microelectronics (MIPRO), 2015, pp. 1463-1468. doi:10.1109/MIPRO.2015.7160503.

http://dx.doi.org/10.1561/0200000026
http://dx.doi.org/10.1109/SEAA.2014.25
http://dx.doi.org/10.1109/MIPRO.2015.7160503

(5]

6]

(7]

(8]

(9]

[10]

[11]

[12]

E. P. Jharko, The methodology of software quality assurance for safety-critical systems,
in: 2015 International Siberian Conference on Control and Communications (SIBCON),
2015, pp. 1-5. doi:10.1109/SIBCON. 2015.7147057.

B. Kitchenham, S. Charters, Guidelines for Performing Systematic Literature Reviews in
Software Engineering, Technical Report EBSE-2007-01, School of Computer Science and
Mathematics, Keele University, 2007.

G. Minohara, C. Rocha, J. Costa, P. Meirelles, Benefits and challenges of open-source
health informatics systems: A systematic search of projects and literature review., JMIR
Preprints (2020). doi:10.2196/preprints.18489.

J. Pimentel, SECTION 1: INTRODUCTION TO SAFETY-CRITICAL AUTOMOTIVE SYS-
TEMS, 2006, pp. 1-1. doi:10.4271/PT-103.

D. K. Hamilton, Chapter 7 - design for critical care, in: A. Sethumadhavan, F. Sasan-
gohar (Eds.), Design for Health, Academic Press, 2020, pp. 129-145. URL: https://
www.sciencedirect.com/science/article/pii/B9780128164273000075. doi:https://doi.org/
10.1016/B978-0-12-816427-3.00007-5.

H. Alemzadeh, R. K. Iyer, Z. Kalbarczyk, J. Raman, Analysis of safety-critical computer
failures in medical devices, IEEE Security & Privacy 11 (2013) 14-26.

R. G. Little, Toward more robust infrastructure: observations on improving the resilience
and reliability of critical systems, in: 36th Annual Hawaii International Conference on
System Sciences, 2003. Proceedings of the, IEEE, 2003, pp. 9-pp.

J. Bosch, P. Molin, Software architecture design: evaluation and transformation, in:
Proceedings ECBS’99. IEEE Conference and Workshop on Engineering of Computer-Based
Systems, IEEE, 1999, pp. 4-10.

N. Metayer, A. Paz, G. El Boussaidi, Modelling do-178c assurance needs: A design assur-
ance level-sensitive dsl, in: 2019 IEEE International Symposium on Software Reliability
Engineering Workshops (ISSREW), 2019, pp. 338—345. doi:10.1109/ISSREW.2019.00094.

N. Munaiah, S. Kroh, C. Cabrey, M. Nagappan, Curating GitHub for engineered
software projects, Empirical Software Engineering 22 (2017) 3219-3253. doi:10.1007/
$10664-017-9512-6.

K. Amarendra, A. V. Rao, Safety critical systems analysis, Global journal of computer
science and technology (2011).

M. Heron, V. Hanson, L. Ricketts, Open source and accessibility: Advantages and limitations,
Journal of Interaction Science 1 (2013). doi:10.1186/2194-0827-1-2.

S. Suomalainen, Kunnanmaéki, Open-source components in safety critical systems, 2004.
F. Rahman, P. Devanbu, How, and why, process metrics are better, in: Proceedings of
the 2013 International Conference on Software Engineering, ICSE ’13, IEEE Press, 2013, p.
432-441.

G. Wilson, D. A. Aruliah, C. T. Brown, N. P. Chue Hong, M. Davis, R. T. Guy, S. H. D.
Haddock, K. D. Huff, I. M. Mitchell, M. D. Plumbley, B. Waugh, E. P. White, P. Wilson, Best
practices for scientific computing, PLOS Biology 12 (2014) 1-7. URL: https://doi.org/10.
1371/journal.pbio.1001745. doi:10.1371/journal.pbio. 1001745.

G. Wilson, J. Bryan, K. Cranston, J. Kitzes, L. Nederbragt, T. K. Teal, Good enough practices
in scientific computing, PLOS Computational Biology 13 (2017) 1-20. doi:10.1371/journal.
pcbi.1005510.

http://dx.doi.org/10.1109/SIBCON.2015.7147057
http://dx.doi.org/10.2196/preprints.18489
http://dx.doi.org/10.4271/PT-103
https://www.sciencedirect.com/science/article/pii/B9780128164273000075
https://www.sciencedirect.com/science/article/pii/B9780128164273000075
http://dx.doi.org/https://doi.org/10.1016/B978-0-12-816427-3.00007-5
http://dx.doi.org/https://doi.org/10.1016/B978-0-12-816427-3.00007-5
http://dx.doi.org/10.1109/ISSREW.2019.00094
http://dx.doi.org/10.1007/s10664-017-9512-6
http://dx.doi.org/10.1007/s10664-017-9512-6
http://dx.doi.org/10.1186/2194-0827-1-2
https://doi.org/10.1371/journal.pbio.1001745
https://doi.org/10.1371/journal.pbio.1001745
http://dx.doi.org/10.1371/journal.pbio.1001745
http://dx.doi.org/10.1371/journal.pcbi.1005510
http://dx.doi.org/10.1371/journal.pcbi.1005510

	1 Introduction
	2 Software Selection Method
	3 Results
	4 Dataset Limitations
	5 Discussion and Future Work

