
2
0

2
1

 I
E

E
E

/A
C

M
 4

3
rd

 I
n

te
rn

a
ti

o
n

a
l

C
o

n
fe

re
n

c
e
 o

n
 S

o
ft

w
a
re

 E
n

g
in

e
e

ri
n

g
 (

IC
S

E
)

|
9

7
8

-1
-6

6
5

4
-0

2
9

6
-5

/2
0

/$
3

1
.0

0
 ©

2
0

2
1

 I
E

E
E

 |
D

O
I:

1

0
.1

1
0

9
/I

C
S

E
4

3
9

0
2

.2
0

2
1

.0
0

1
4

6

2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE)

PyCG: Practical Call Graph Generation in Python
Vitalis Salis,§t Thodoris Sotiropoulos,§ Panos Louridas,§ Diomidis Spinellis§ and Dimitris Mitropoulos^

§ Athens University o f Economics and Business

iNational Technical University o f Athens

/National Infrastructures for Research and Technology - GRNET

vitsalis@gmail.com, {theosotr, louridas, dds, dimitro}@aueb.gr

Abstract— Call graphs play an important role in different
contexts, such as profiling and vulnerability propagation analysis.
Generating call graphs in an efficient manner can be a challeng-
ing task when it comes to high-level languages that are modular

and incorporate dynamic features and higher-order functions.
Despite the language’s popularity, there have been very few

tools aiming to generate call graphs for Python programs. Worse,
these tools suffer from several effectiveness issues that limit their

practicality in realistic programs. We propose a pragmatic, static

approach for call graph generation in Python. We compute all
assignment relations between program identifiers of functions,
variables, classes, and modules through an inter-procedural
analysis. Based on these assignment relations, we produce the

resulting call graph by resolving all calls to potentially invoked

functions. Notably, the underlying analysis is designed to be

efficient and scalable, handling several Python features, such as

modules, generators, function closures, and multiple inheritance.
We have evaluated our prototype implementation, which

we call PyCG, using two benchmarks: a micro-benchmark

suite containing small Python programs and a set of macro-
benchmarks with several popular real-world Python packages.
Our results indicate that PyCG can efficiently handle thousands

of lines of code in less than a second (0.38 seconds for 1k

LoC on average). Further, it outperforms the state-of-the-art
for Python in both precision and recall: PyCG achieves high

rates of precision ~99.2% , and adequate recall ~69.9%. Finally,
we demonstrate how PyCG can aid dependency impact analysis

by showcasing a potential enhancement to GitHub’s “security

advisory” notification service using a real-world example.
Index Terms— Call Graph, Program Analysis, Inter-procedural

Analysis, Vulnerability Propagation I.

I. In t r o d u c t i o n

A call graph depicts calling relationships between subrou-

tines in a computer program. Call graphs can be employed to

perform a variety of tasks, such as profiling [1], vulnerability

propagation [2], and tool-supported refactoring [3].

Generating call graphs in an efficient way can be a complex

endeavor especially when it comes to high-level, dynamic pro-

gramming languages. Indeed, to create precise call graphs for

programs written in languages such as Python and JavaScript,

one must deal with several challenges including higher-

order functions, dynamic and metaprogramming features (e.g.,

e v a l) , and modules. Addressing such challenges can play

a significant role in the improvement of dependency impact

analysis [4]-[6], especially in the context of package managers

such as npm [7] and pip [8].

To support call graph generation in dynamic languages,

researchers have proposed different methods relying on static

analysis. The primary aim for many implementations is com-

pleteness, i.e., facts deduced by the system are indeed true [9]-

[11]. However, for dynamic languages, completeness comes

with a performance cost. Hence, such approaches are rarely

employed in practice due to scalability issues [12]. This has

led to the emergence of practical approaches focusing on in-

complete static analysis for achieving better performance [13],

[14]. Sacrificing completeness is the key enabler for adopt-

ing these approaches in applications that interact with com-

plex libraries [13], or Integrated Development Environments

(ID Es) [14]. Prior work primarily targets JavaScript programs

and—among other things—attempts to address challenges

related to events and the language’s asynchronous nature [15],

[16].

Despite Python’s popularity [17], there have been surpris-

ingly few tools aiming to generate call graphs for programs

written in the language. Pyan [18] parses the program’s Ab-

stract Syntax Tree (A ST) to extract its call graph. Nevertheless,

it has drawbacks in the way it handles the inter-procedural

flow of values and module imports. code2graph [19], [20]

visualizes Pyan-constructed call graphs, so it has the same

limitations. Depends [21] infers syntactical relations among

source code entities to generate call graphs. However, func-

tions assigned to variables or passed to other functions are

not handled by Depends, thus it does not perform well in the

context of a language supporting higher-order programming.

We will expand on the shortcomings of the existing tools in the

remainder of this work. That said, developing an effective and

efficient call graph generator for a dynamically typed language

like Python is no minor task.

We introduce a practical approach for generating call graphs

for Python programs and implement a corresponding prototype

that we call PyCG. Our approach works in two steps. In the

first step we compute the assignment graph, a structure that

shows the assignment relations among program identifiers.

To do so, we design a context-insensitive inter-procedural

analysis operating on a simple intermediate representation

targeted for Python. Contrary to the existing static analyzers,

our analysis is capable of handling intricate Python features,

such as higher-order functions, modules, function closures, and

multiple inheritance. In the next step, we build the call graph of

the original program using the assignment graph. Specifically,

we utilize the graph to resolve all functions that can be

potentially pointed to by callee variables. Such a programming

pattern is particularly common in higher-order programming.

978-1-6654-0296-5/21/$31.00 ©2021 IEEE
DOI 10.1109/ICSE43902.2021.00146

1646

Authorized licensed use limited to: Athens University of Economics and Business. Downloaded on July 04,2023 at 08:14:35 UTC from IEEE Xplore. Restrictions apply.

Similar to previous work [14], our analysis follows a con-

servative approach, meaning that the analysis does not reason

about loops and conditionals. To make our analysis more

precise, especially when dealing with features like inheritance,

modules or programming patterns such as duck typing [22], we

distinguish attribute accesses (i.e, e.x) based on the namespace

where the attribute (x) is defined. Prior work uses a field-
based approach that correlates attributes of the same name

with a single global location without taking into account their

namespace [14]. This leads to false positives. Our design

choices make our approach achieve high rates of precision,

while remaining efficient and applicable to large-scale Python

programs.

We evaluate the effectiveness of our method through a

micro- and a macro-benchmarking suite. Also, we compare

it against Pyan and Depends. Our results indicate that our

method achieves high levels of precision (~99.2%) and ade-

quate recall (~69.9%) on average, while the other analyzers

demonstrate lower rates in both measures. Our method is

able to handle medium-sized projects in less than one second

(0.38 seconds for 1k LoC on average). Finally, we show how

our method can accommodate the fine-grained tracking of

vulnerable dependencies through a real-world case study.

Contributions. Our work makes the following contributions.

• We propose a static approach for pragmatic call graph

generation in Python. Our method performs inter-procedural

analysis on an intermediate language that records the assign-

ment relations between program identifiers, i.e., functions,

variables, classes and modules. Then it examines the docu-

mented associations to extract the call graph (Section III).

• We develop a micro-benchmark suite that can be used as

a standard to evaluate call graph generation methods in

Python. Our suite is modular, easily extendable, and covers

a large fraction of Python’s functionality related to classes,

generators, dictionaries, and more (Section V-A1).

• We evaluate the effectiveness of our approach through our

micro-benchmark and a set of macro-benchmarks including

several medium-sized Python projects. In all cases our

method achieves high rates of precision and recall, outper-

forming the other available analyzers (Sections V-B, V-C).

• We demonstrate how our approach can aid dependency im-

pact analysis through a potential enhancement of GitHub’s

“security advisory” notification service (Section V-E).

Availability. PyCG is available as open-source software under

the Apache 2.0 Licence at https://github.com/vitsalis/pycg. The

research artifact is available at https://doi.org/10.5281/zenodo.

4456583. II.

II. Ba c k g r o u n d

Generating precise call graphs for Python programs involves

several challenges. Existing static approaches fail to address

these challenges leaving opportunities for improvement.

1 import cryptops
2
3 class Crypto:
4 def init (self, key):
5 self.key = key
6
7 def apply(self, msg, func):
8 return func(self.key, msg)
9

10 crp = Crypto(”secretkey”)
11 encrypted = crp.apply(”hello world”,

^ cryptops.encrypt)
12 decrypted = crp.apply(encrypted,

^ cryptops.decrypt)

Fig. 1: The c r y p t o module. Existing tools fail to generate a

corresponding call graph effectively.

A. Challenges
• Higher-order Functions: In a high-level language such as

Python, functions can be assigned to variables, passed as

parameters to other functions, or serve as return values.

• Nested Definitions: Function definitions can be nested,

meaning that a function can be defined and invoked within

the context of another function.

• Classes: As an object-oriented language, Python allows for

the creation of classes that inherit attributes and methods

from other classes. The resolution of inherited methods

from parent classes requires the computation of the Method

Resolution Order (MRO) of each class.

• Modules: Python is highly extensible, allowing applications

to import different modules. Keeping track of the different

modules that are imported in an application, as well as the

resolution order of those imports, can be a challenging task.

• Dynamic Features: Python is dynamically typed, allowing

variables to take values of different types during execution.

Also, it allows for classes to be dynamically modified

during runtime. Furthermore, the e v a l function allows for

a dynamically constructed string to be executed as code.

• Duck Typing: Duck typing is a programming pattern that

is particularly common in dynamic languages such as

Python [22]. Through duck typing, the suitability of an

object is determined by the presence of specific methods and

properties, rather than the type of the object itself. In this

context, given a method defined by two (or more) classes,

it is not trivial to identify its origins when it is invoked.

B. Limitations o f Existing Static Approaches
We focus on two open-source static analyzers: Pyan [18]

and Depends [21]. We do not examine code2graph [19], [20]

separately, as it is based on Pyan to generate call graphs.

We discuss the limitations of the two existing analyzers in

terms of efficiency and practicality. To do so, we introduce a

small Python module named c r y p t o (see Figure 1), which is

used to encrypt and decrypt a “hello world” message. First, it

imports an external Python module named c r y p to p s , which

defines two functions, namely: e n c r y p t (k e y , msg) and

d e c r y p t (k e y , msg) . Then, the C ry p to class is defined.

To use it, we instantiate it with an encryption key and we

can encrypt or decrypt messages by calling a p p l y (s e l f ,

1647

Authorized licensed use limited to: Athens University of Economics and Business. Downloaded on July 04,2023 at 08:14:35 UTC from IEEE Xplore. Restrictions apply.

(a) Precise call graph. (b) Pyan-generated call graph.

Fig. 2: Call graphs for the c r y p to module.

(c) Depends-generated call graph.

m sg, f u n c) , where fu n c is one of e n c r y p t (k e y ,

msg) and d e c r y p t (k e y , m sg) . Figure 2a shows the call

graph of the module.

Pyan [18] produces the imprecise call graph shown in

Figure 2b. This graph does not contain all function calls,

because the tool does not track the inter-procedural flow of

values. Therefore, it is unable to infer which functions are

passed as arguments to a p p l y (s e l f , m sg, f u n c) . In

addition, there are several features that lead to the addition of

unrealized call edges. Specifically, when Pyan detects object

initialization, it creates call edges to both the class name and

th e __ i n i t __ () method of the class.1 Beyond that, in the

case of a module import, Pyan generates a call edge from the

importing namespace to the module name.

Depends produces the call graph presented in Figure 2c.

Depends does not track function calls originating from the

module’s namespace (e.g., c r p . a p p l y ()). This in turn, led

to an empty call graph. Therefore, to get a result, we wrapped

those function calls within a new function. The resulting

graph does not contain most of the calls included in the

source program. This is because Depends does not capture

the call to th e __ i n i t __ () function of the C ry p to class.

Furthermore, (like Pyan) Depends does not track the inter-

procedural flow of functions leading to missing edges to the

parameter functions. Compared to Pyan, Depends follows a

more conservative approach. That is, it only includes a call

edge when it has all the necessary information it needs to

anticipate that the call will be realized. Contrary to Pyan, this

can lead to a call graph without false positives.

III. Pr a c t i c a l Ca l l Gr a p h Ge n e r a t i o n

Our approach for generating call graphs employs a context-

insensitive inter-procedural analysis operating on an inter-

mediate representation of the input Python program. The

analysis uses a fixed-point iteration algorithm, and gradually

builds the assignment graph, which is a structure that shows

the assignment relations between program identifiers (Sec-

tion III-A). In a language supporting higher-order program-

ming, the assignment graph is an essential component that we

use for resolving functions pointed to by variables. Function

resolution takes place at the final step where we build the

1In Python, init () is the name of a special function called during

object construction.

e C Expr ::= o | x | x := e | function x (y .. .) e | return e |
e(x=e.. .) | class x (y .. .) e | e.x | e.x := e |
new x (y = e . . .) | import x from m as y |
iter x | e;e

o C Obj ::= n, v

v C D efinition ::= x ,T

t C IdentType ::= func | var | cls | mod
n C Namespace ::= (v)*
x ,y C Identifier ::= is the set o f program identifiers

m C Modules ::= is the set o f modules
E ::= [] | x := E | return E | E (x = e . . .) |

o(x = E . . .) | new x(y=E) | E.x | E.x := e |
o.x := E | iter o | E;e | o;E

Fig. 3: The syntax for representing the input Python programs

along with the evaluation contexts.

call graph for the given program by exploiting the assignment

graph stemming from the analysis step (Section III-B).

A. The Core Analysis
The starting point of our approach is to compute the assign-

ment graph using an inter-procedural analysis working on an

intermediate representation targeted for Python programs.

One of the key elements of our analysis is that it examines

attribute accesses based on the namespace where each attribute

is defined. For example, consider the following code snippet:

1 class A :
2 def func ():
3 pass
4
5 class B :
6 def func ():
7 pass
8
9 a = A()
10 b = B()
11 a. func()
12 b . func()

Our analysis is able to distinguish the two functions defined

at lines 2 and 6, because they are members of two different

classes, i.e., class A and B respectively. Note that field-based

approaches focused on JavaScript [14] will fail to treat the two

invocations as different, causing imprecision. That is because

a field-based approach will match all accesses of identical

attribute names (e.g., f u n c ()) with a single object.

1) Syntax: The intermediate representation, where our anal-

ysis works on, follows the syntax of a simple imperative and

1648

Authorized licensed use limited to: Athens University of Economics and Business. Downloaded on July 04,2023 at 08:14:35 UTC from IEEE Xplore. Restrictions apply.

n € AssignG = Obj ^ P (Obj)
s € Scope = Definition ^ P (Definition)
h € ClassHier = Obj ^ Obj *
a € State = AssignG x Scope x Namespace x ClassHier

Fig. 4: Domains of the analysis.

object-oriented language, which is shown in Figure 3. The last

rule in this figure also shows the evaluation contexts [23] for

this language, which we will explain shortly.

An important element of this model language is identifiers.

Every identifier can be one of the following four types:

(1) func corresponding to the name of a function (2) var

indicating the name of a variable, (3) cls for class names,

and (4) mod when the identifier is a module name. Every

pair (x ,t) € Identifier x IdentType forms a definition. We

represent every definition and its namespace as an object (see

the Obj rule). A namespace is a sequence of definitions,

and it is essential for distinguishing objects sharing the same

identifier from each other. For example, consider the following

Python code fragment located in a module named m ain.
1 var = 10
2 class A :
3 var = 10

The analysis distinguishes the objects created at lines 1 and 3,

as the first one resides in the namespace [(main,mod)], while

the second one lives in the namespace [(main,mod), (A,cls)].

Our approach treats every object as the value given from

the evaluation of the expressions supported by the language. In

particular, our representation contains expressions that capture

the inter-procedural flow, assignment statements, class and

function definitions, module imports, and iterators / generators

(see the Expr rule). Note that the language is able to abstract

different features, including lambda expressions, keyword ar-

guments, constructors, multiple inheritance, and more.

As with prior work focusing on JavaScript [15], [16],

[24], we use evaluation contexts [23] that describe the order

in which sub-expressions are evaluated. For example, in an

attribute assignment E . x := e, the E symbol denotes that we

are currently evaluating the receiver of the attribute x , while

o.x := E indicates that the receiver has been already evaluated

to an object o € Obj (recall that evaluating expressions results

in objects), and the evaluation now proceeds to the right-hand

side of the assignment.

Remarks. When calling Python functions that produce a

generator (i.e., they contain a y i e l d statement instead of

r e tu r n) , these calls take place only when the generator

is actually used. To model this effect, when encountering

such lazy calls (e.g., gen = l a z y _ c a l l (x)), we create

a thunk (e.g., gen = lam b d a : l a z y _ c a l l (x)) that is

evaluated only when we iterate the generator (through the iter

construct). Furthermore, dictionaries and lists are treated as

regular objects. For example, we model a dictionary lookup

x [" k e y "] , as an attribute access x.key.
2) State: After converting the original Python program to

our intermediate representation, our analysis starts evaluating

each expression, and gradually constructs the assignment

graph. To do so, the analysis maintains a state consisting

of four domains as shown in Figure 4, namely, scope, class

hierarchy, assignment graph, and current namespace.
A scope is a map of definitions to a set of definitions.

Conceptually, a scope is a tree where each node corresponds

to a definition (e.g., a function), and each edge shows the

parent/child relations between definitions, i.e., the target node

is defined inside the definition of the source node. The domain

of scopes is useful for correctly resolving the definitions that

are visible inside a specific namespace. Figure 5a illustrates

the scope tree of the program depicted in Figure 1, and

shows all program definitions and their inter-relations. Orange

nodes correspond to module definitions, red nodes are class

definitions, black nodes indicate functions, while blue nodes

denote variables. Based on this scope tree, we infer that the

function a p p ly is defined inside the class C ry p to , which is

in turn defined inside the module c r y p to , i.e., notice the path

c r y p to ^ C ry p to ^ a p p ly . This domain enables us to

properly deal with Python features such as function closures

and nested definitions.

A class hierarchy is a tree representing the inheritance

relations among classes. An edge from node u to node v

indicates that the class u is a child of the class v. The

analysis uses this domain for resolving class attributes (either

methods or fields) defined in the base classes of the receiver

object. Through this domain we are able to handle the object-

oriented nature of Python, addressing features such as multiple

inheritance, and the method resolution order.

The assignment graph is defined as a map of objects

to an element of the power set of objects P (O bj). This

graph holds the assignment relations between objects, cap-

turing the assignments and the inter-procedural flow of the

program. Figure 5b illustrates the assignment graph cor-

responding to the program of Figure 1. Each node in

the graph (e.g., { c r y p t o .C r y p t o .a p p l y , fu n c}) rep-

resents an object. The first component of the node label (e.g.,

c r y p t .C r y p t o .a p p l y) indicates the namespace where

each identifier (e.g., fu n c) is defined. Colors reveal the type

of the identifier as explained in a previous paragraph (e.g.,

the blue color implies variable definitions). An edge shows

the possible values that a variable may hold. For example,

the variable fu n c defined in the c r y p t o .C r y p t o .a p p l y

namespace may point to the functions d e c r y p t and

e n c r y p t , both defined in the c r y p to p s namespace.

As another example, notice the edge originating from the

node { c r y p t o .C r y p t o .a p p l y , msg} and leading to

{ c r y p to , e n c ry p te d } . This edge shows that the param-

eter msg of the function c r y p t o .C r y p t o .a p p l y points

to the variable e n c r y p te d when the function is invoked on

line 12. The assignment graph domain enables us to address

the challenge regarding higher-order programming in Python.

Finally, we use the current namespace to track the location

where new variables, classes, modules, and functions are

defined. This domain is important for establishing a more

precise analysis than field-based analysis employed by prior

work. Through namespaces, objects and attribute accesses are

distinguished based on their namespace, addressing challenges

1649

Authorized licensed use limited to: Athens University of Economics and Business. Downloaded on July 04,2023 at 08:14:35 UTC from IEEE Xplore. Restrictions apply.

crypto.Crypto.apply, fune crypto, cryptops

cryptops, encrypt cryptops, decrypt

Crypto

(b) The assignment graph of the c ry p to module.

Fig. 5: Analyzing the c r y p to module.

cryptops

such as duck typing.

3) Analysis Rules: The analysis examines every expression

found in the intermediate representation of the initial program,

and transitions the analysis state according to the semantics of

each expression. The algorithm repeats this procedure until the

state converges, and the assignment graph is given by the final

state of the analysis.

Figure 6 demonstrates the state transition rules of our

analysis. The rules follow the form:

(n, s, n, h, E[e]} ^ (n ', s ', n ', h ', E[e']}

In the following, we describe each rule in detail.

According to the [E-CTX] rule, when we have an expression

e in the evaluation context E , an assignment graph n, a scope

s, a namespace n, a class hierarchy h, we can get an expression

e' in the evaluation context E , if the initial expression e

evaluates to e'. For what follows, the binary operation x • y

stands for appending the element y to the list x .

The [COMPOUND] rule states that when we have a com-

pound expression consisting of two objects oi, o2, we return

the last object o2 as the result of the evaluation. Observe that

the evaluation of the compound expression requires each sub-

term to have been evaluated to an object according to the

evaluation contexts shown in Figure 3. The rest of the rules

also follow this behavior.

The [IDENT] rule describes the scenario when the initial

expression is an identifier x . In this case, the analysis retrieves

the object o corresponding to the identifier x , in the namespace

n, based on the scope tree s. To do so, the analysis uses the

function g e tO b je c t (s , n, x) , which iterates every element

y of the namespace n in the reverse order. Then, by examining

the scope tree s, it checks whether the element node y has

any child matching the identifier x . In case of a mismatch,

the function g e tO b je c t proceeds to the next element of the

namespace. Notice that the [IDENT] rule does not have any

side-effect on the analysis state.

The [ASSIGN] rule assigns the object o to the identi-

fier x . First, the analysis adds the identifier x in the cur-

rent namespace n of the scope tree s, using the function

a d d S c o p e (s , n, x , t) . This function adds an edge from the

node accessed by the path n to the target node given by

the definition (x ,t). Second, this rule updates the assignment

graph by adding an edge from the object corresponding to the

left-hand side of the assignment (i.e., o') to that of the right-

hand side (i.e., o). This update says that the variable x defined

in the namespace n can point to the object o.

[FUNC] updates the scope tree. In particular, it adds the

function x to the current namespace n, leading to a new scope

tree s'. Then, it creates a new namespace n ' by adding the

function definition (x , func) to the top of the current names-

pace. It adds all function parameters, and a virtual variable

named r e t —which stands for the variable holding the return

value of the function—to the newly-created namespace n'.

This results in a new scope tree s (3). Finally, the analysis

proceeds to the evaluation of the body of the function x in

the fresh namespace n ', i.e., observe that the rule evaluates

to E[e]. The new namespace n ' correctly captures that any

variable defined in e, is actually defined in the body of the

function.

[RETURN] assigns the object o to the virtual variable r e t ,

which is used for storing the return value of a function (recall

the [FUNC] rule). To do so, the analysis updates the assignment

graph by adding a new edge from the object o' corresponding

to the return variable r e t to the object o which is the operand

of return. Finally, this rule evaluates to the object o' related

to the return virtual variable r e t .

The inter-procedural flow is captured by the [CALL] rule.

Specifically, when we encounter a call expression o1(y =

o2 . . .) , we examine the callee object oi associated with

a function f defined in a namespace n '. Then, the rule

connects every parameter of f with the appropriate argu-

ment passed during function invocation (e.g., the counter-

part object of the parameter y at call-site is o2), leading

to a new assignment graph n '. As an example, consider

again the graph of Figure 5b. The outgoing edges of the

{ c r y p t o .C r y p t o .a p p l y , fu n c} node are created by

this rule. These edges imply that the parameter fu n c of the

c r y p t o .C r y p t o .a p p l y function may hold the functions

c r y p t o p s . e n c r y p t and c r y p t o p s .d e c r y p t passed

when calling c r y p t o .C r y p t o .a p p l y (Figure 1).

1650

Authorized licensed use limited to: Athens University of Economics and Business. Downloaded on July 04,2023 at 08:14:35 UTC from IEEE Xplore. Restrictions apply.

E-CTX
(n, s, n, h, e} ^ (n ; , s; , n ; , ft/, e;)

(n ,s ,n ,h ,E [e]} (n / ,s / ,n / , f t / ,E [e /j)

c o mp o u n d

(n, s, n , h, E [o i ; 02]} (n, s, n, h, E [o2]}

IDENT
o = g e tO b je c t(s, n, x)

(n , s, n , h, E [x]} (n, s, n, h, E [o]}

ASSIGN
s/ = addScope(s, n, x, var)

o/ = (n, (x, va r)) n / = n [o/ n (o/) U { o}]

(n , s, n, h, E [x := o]} (n / , s/ , n , h, E [o/]}

FUNC
s/ = addScope(s, n , x, func)

n / = n - (x, func) s// = addScope(s/ , n / , r e t , var)

s(3) = addScope(s/ / ,n / ,y , var)

(n , s, n, h, E fu n ctio n x (y . . .) e]} (n , s(3), n / , h, E [e]}

RETURN
o/ = (n - x, (r e t, v a r)) n / = n [o/ n (o/) U { o}]

(n, s ,n - x, h, E [re turn o]} (n / , s, n, h, E [o/]}

CALL
o i = (n / , (f , func))

o2 = (n ; - f , (y, va r)) = n [o2 ^ n (o2) U { o2}]

(n, s, n, h, E [o i (y = o2 . . .)]} (n / ,s ,n , h, (n / - f , (r e t, v a r))}

CLASS
s/ = addScope(s, n , x, cls) t = (g e tO b je c t(s , n, b) | b E (y . . .) }

h / = h [(n, (x, cls)) t] n / = n - (x, cls)

(n, s, n, h, E [class x (y . . .) e] } (n, s/ , n / , h/ , E [e] }

ATTR
o/ = g e tC la s s A ttrO b je c t(o ,x ,h)

(n, s, n, h, E [o.x] } (n, s, c, h, E [o/]}

NEW
o3 = g e tO b je c t(s ,n ,x)

o2 = g e tC la s s A ttrO b je c t(o 3, __in i t __, h)

(n, s, n , h, E [new x(y = o i . . .)] } (n ,s , n , h, E [o2(y = o i . . .); o3] }

ATTR-ASSIGN
o3 = g e tC la s s A ttrO b je c t(o i, x ,h) n / = n [o3 n (o3) U { o2 }]

(n , s, n , h, E [o i.x := o2]} (n / , s, n, h, E [o3]}

impo r t
o2 = g e tO b je c t(s , m, x) s/ = addScope(s, n, y, var)

o i = (n , (y, va r)) n / = n [oi n (o i) U { o2}]

(n, s, n, h, E [im port x from m as y] } (n / , s/ , n , h, E [o i] }

ITER-ITERABLE
o/ = g e tC la s s A ttrO b je c t(o ,__n e x t__, h)

(n, s, n, h, E [ite r o]} (n, s, n , h, E [o/ ()]}

ITER-GENERATOR
g e tC la s s A ttrO b je c t(o ,__n e x t__, h) = undefined

(n, s, n, h, E [ite r o] } (n, s, n, h, E [o()]}

Fig. 6: Rules of the analysis.

The [CLASS] rule handles class definitions. The rule first
adds the class x to the scope tree through the function
addScope() , and then gets every object related to the base
classes of x (i.e., y ...). To achieve this, the rule consults
the scope tree in the namespace n, and gets a sequence of
objects t that respects the order in which base classes are
passed during class definition. We later explain why keeping
the registration order of base classes is important. The rule then
updates the class hierarchy so that the freshly-defined class x is
a child of the base classes pointed to by the identifiers (y . . .) .

After this, the analysis works on the body of the class e in
a new namespace n'. The new namespace contains the class
definition to the top of the current namespace (i.e., n • (x , cls)).
Then, the analysis starts examining the body of the class using
the new namespace.

The [ATTR] rule is similar to [ID EN T]. However, this
time, in order to correctly retrieve the object corresponding
to the attribute x of the receiver object o, the analysis
examines the hierarchy of classes h through the function
g e t C la s s A t t r O b je c t (o , x , h) . This is the point where
our analysis is able to distinguish attributes according to the
location (i.e., o) where they are defined.

To deal with multiple inheritance, the function
g e t C l a s s A t t r O b j e c t () respects the method resolution
order implemented in Python. For example, consider the
following code snippet.

1 c la s s A :
2 d e f func () :
3 pass
4
5 c la s s B :
6 d e f func () :
7 pass
8
9 c la s s C (B, A):

10 pass
11
12 c = C()
13 c . fu n c ()

In the example above, the method resolution order is C ^
B ^ A, because the class B is the first parent class of C,
while A is the second one. As a result, c . f u n c () leads to
the invocation of function func defined in class B, as it is the
first matching function whose name is func in the method
resolution order. Correctly resolving class members explains
why the domain of the class hierarchy maps every object to
a sequence of objects rather than a set—we need to track the
order in which the parents of a class are registered.

For object initialization, we introduce the [NEW] rule. This
rule gets the object o3 associated with the definition of the
class x . Using the g e t C l a s s A t t r O b j e c t () function, the
rule inspects the method resolution order of the object o3 to
find the first object o2 matching the function __i n i t __.
Recall that this function is called whenever a new object
is created. Observe how the new evaluates; it reduces to
o2(y = o1. . .) ; o3. That is, we first call the constructor of
the class with the same arguments passed as in the initial
expression (i.e., o2(y = o1)), and then we return the object o3
corresponding to the class definition, which is eventually the
result of the new expression.

The rule for attribute assignment o1.x := o2 describes
the case when the attribute x is defined somewhere in
the class hierarchy of the receiver object o1 . In this case,
g e t C l a s s A t t r O b j e c t () returns the object o3 associated
with this attribute, and the rule updates the assignment graph
so that o3 points to the object o2 from the right-hand side
of the assignment. I f the attribute is not defined in the class
hierachy, (i.e., g e t C l a s s A t t r O b j e c t () returns X) the
attribute assignment is similar to [ASSIGN], i.e., we first add

1651

Authorized licensed use limited to: Athens University of Economics and Business. Downloaded on July 04,2023 at 08:14:35 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: Call Graph Construction

Input : p € Program

a € State
Output: cg € CallGraph

1 foreach e in Program do
2
3
4
5
6
7
8
9

10
11
12 end
13 return cg

while e 0 Obj do
{a E [e]> ^ {̂ ,,E [e']>
if ej = oi (y = 0 2 ...) then // Call Expression

(n, s, n • f , h) ̂ a '
c ^ getReachableFuns(n, oi)
o3 ̂ getObject(s, n, f)
cg ^ cg[0 3 ̂ cg(03) U c] // Add Call Edges

end
e <— ej

end

the attribute x to the current scope through a d d S c o p e () ,

and then update the graph. This case is omitted for brevity.

When we encounter an import x from m as y expression, we

retrieve the object o2 corresponding to the imported identifier

x , which is defined in the module m. Then, we create an alias

y for x . To do so, we add y to the scope tree of the current

namespace, and update the assignment graph by adding an

edge from the object of y to that of x . Through this rule, we

are able to deal with Python’s module system.

Consuming iterables and generators is supported through

the iter x expression. When the identifier x points to an

iterable, (i.e., the object pointed to by x has an attribute named

__n e x t __), we get the object o' related to n e x t __ . Then,

iter evaluates to a call of o'() (see the [ITER-ITE R A B LE] rule).

If this is not the case, we treat x as a generator ([ITE R-

GENERATOR]). In this case, iter reduces to a call of x (). Recall

from Section III-A1 that we model generators as thunks,

therefore this scenario describes the evaluation of these thunks

(generators) when they are actually used (iterated).

Remark about analysis termination. The analysis tra-

verses expressions, and transitions the analysis state based

on the rules of Figure 6, until the state converges. The

analysis is guaranteed to terminate, because the domains are

finite. Even in the presence of the domain of class hierarchy

h e C lassH ier (Figure 4), which is theoretically infinite,

the analysis eventually terminates, because a Python program

cannot have an unbounded number of classes.

B. Call Graph Construction

After the termination of the analysis, we build the call graph

by performing a final pass on the intermediate representation

of the given Python program. Algorithm 1 describes the details

of this pass. The algorithm takes two elements as input: (1) a

program p e Program of the model language whose syntax is

shown in Figure 3, and (2) the final state a e S tate stemming

from the analysis step. The algorithm produces a call graph:

cg e CallGraph = Obj ^ P (O bj)

The graph contains only objects associated with functions. An

element o e Obj mapped to a set of objects t e P (Obj)
means that the function o may call any function included in t.

The algorithm inspects every expression e found in the

program (line 1), and it evaluates e based on the state transition

rules described in Figure 6. The algorithm repeats the state

transition rules, until e eventually reduces to an object (lines

2, 3). Every time when e reduces to a call expression of

the form o1 (y = o2 . . .) (line 4), the algorithm gets the

namespace where this invocation happens and retrieves the

top element of that namespace (see n • f , line 5). After that,

the algorithm gets all functions that the callee object o1 may

point to. To do so, it consults the assignment graph through the

function g e t R e a c h a b l e F u n s (n , o1), which implements a

simple Depth-First Search (D FS) algorithm and gets the set of

functions c that are reachable from the source node o1. In turn,

the algorithm updates the call graph cg by adding all edges

from the top element of the current namespace to the set of

the callee functions c (lines 7, 8). In other words, the object o3
(line 7) representing the top element of the namespace, where

the call occurs, is actually the caller of the functions pointed

to by the object o1 .
C. Discussion & Limitations

One of our major design decisions is to ignore conditionals

and loops. For instance, when we come across an i f state-

ment, our analysis over-approximates the program’s behavior

and considers both branches. This design choice enables

efficiency without highly compromising the analysis precision

(as we will discuss in Section V). Other static analyzers [9]-

[11] choose to follow a more heavyweight approach and reason

about conditionals. These static analyzers, though, do not

solely focus on call-graph construction, but rather they attempt

to compute the set of all reachable states based on an initial

one. However, for call-graph generation, providing such an

initial state that exercises all feasible paths (which is required

in order to compute a complete call graph), especially when

analyzing libraries, is not straightforward.

In Python where object-oriented features, duck typing [22],

and modules are extensively used, it is important to separate

attribute accesses based on the namespace where each at-

tribute is defined. This design choice boosts—contrary to prior

work [14]—the precision of our analysis without sacrificing its

scalability.

Our analysis does not fully support all of Python’s features.

First, we ignore code generation schemes, such as calls to the

e v a l built-ins. In general, such dynamic constructs hinder the

effectiveness of any static analysis, and dynamic approaches

are often employed as a countermeasure [25], [26]. Second,

our approach does not store information about variables’ built-

in types, and does not reason about the effects of built-in

functions. Therefore, attribute calls that depend on a specific

built-in type (e.g., l i s t . a p p e n d ()) are not resolved, while

the effects of functions such as g e t a t t r and s e t a t t r are

ignored. Third, we can only analyze modules for which their

source code has been provided. When a function—for which

1652

Authorized licensed use limited to: Athens University of Economics and Business. Downloaded on July 04,2023 at 08:14:35 UTC from IEEE Xplore. Restrictions apply.

its code definition is not available—is called, our method will

add an edge to the function, but no edges stemming from

that function will ever be added, and its return value will be

ignored.

IV. Im p l e m e n t a t i o n

We have developed PyCG, a prototype of our approach

in Python 3. For each input module, our tool creates its

scope tree and its intermediate representation by employing

the symtable [27] and ast [28] modules respectively.

Our prototype discovers the file locations of the different

imported modules to further analyze them by using Python’s

importlib module. This is the module that Python uses in-

ternally to resolve import statements. We perform two steps.

First, the file location of the imported module is identified, and

then a loader is used to import the module’s code. In Python

one can define custom loaders for import statements, which

allowed us to use a loader that logs the file locations discovered

and then exit without loading the code. Then, in the second

step, our tool takes over and uses the discovered file’s contents

to iterate its intermediate representation in a recursive manner.

This allows us to resolve imports in an efficient way. Currently,

we only analyze discovered modules that are contained in the

package’s namespace.

V. Ev a l u a t i o n

We evaluate our approach based on three research questions:

RQ1 Is the proposed approach effective in constructing call

graphs for Python programs? (Sections V-B and V-C)

RQ2 How does the proposed approach stand in comparison

with existing open-source, static-based approaches for

Python? (Sections V-B and V-C)

RQ3 What is the performance of our approach? (Section V-D)

Further, we show a potential application through the enhance-

ment of GitHub’s “security advisory” notification service.

A. Experimental Setup
We use two distinct benchmarks: (1) a micro-benchmark

suite containing 112 minimal Python programs, and (2) a

macro-benchmark suite of five popular real-world Python

packages. We ran our experiments on a Debian 9 host with 16

C PUs and 16 G Bs of R A M .

1) Micro-benchmark Suite: We propose a test suite for

benchmarking call graph generation in Python. Based on this

suite, researchers can evaluate and compare their approaches

against a common standard. Reif et al. [29] have provided a

similar suite for Java, containing unique call graph test cases,

grouped into different categories.

Our suite consists of 112 unique and minimal micro-

benchmarks that cover a wide range of the language’s features.

We organize our micro-benchmarks into 16 distinct categories,

ranging from simple function calls to more complex features

such as twisted inheritance schemes. Each category contains

a number of tests. Every test includes (1) the source code, (2)

the corresponding call graph (in JSON format), and (3) a short

description. Categorizing and adding a new test is relatively

TABLE I: Micro-benchmark suite categories.

Category #tests Description

parameters 6 Positional arguments that are functions

assignments 4 Assignment of functions to variables
built-ins 3 Calls to built in functions and data types
classes 22 Class construction, attributes, methods

decorators 7 Function decorators
dicts 12 Hashmap with values that are functions
direct calls 4 Direct call of a returned function (func()())

exceptions 3 Exceptions
functions 4 Vanilla function calls
generators 6 Generators
imports 14 Imported modules, functions classes
kwargs 3 Keyword arguments that are functions
lambdas 5 Lambdas
lists 8 Lists with values that are functions
mro 7 Method Resolution Order (m r o)
returns 4 Returns that are functions

easy. The source code of each test implements only a single

execution path (i.e., no conditionals and loops) so there is

a straightforward correspondence to its call graph. Table I

lists the categories along with the number of benchmarks they

incorporate and a corresponding description.

Addressing Validity Threats: The internal validity of

the micro-benchmark suite depends on the range of Python

features that it covers. To address this threat, we presented

the suite to two researchers, who have professionally worked

as Python developers (other researchers have applied similar

methods to verify their work [30]). Then, we asked them to

rank the suite (from 1 to 10) based on the following criteria:

1) Completeness: Does it cover all Python features?

2) Code Quality: Are the tests unique and minimal?

3) Description Quality: Does the description adequately de-

scribe the given test case?

The first reviewer provided a 9.7 ranking in all cases. The

second indicated an excellent (10) code and description quality

but ranked lower (6) the completeness of the benchmarks.

Both reviewers provided corresponding feedback. In their

comments, they suggested some code cleanups and asked for

more comprehensive descriptions on some complex bench-

marks. Regarding the completeness of the suite, they pointed

out missing tests for some common features such as built-in

functions and generators. We applied the reviewers’ sugges-

tions by refactoring the affected benchmarks and improving

their descriptions. Furthermore, we implemented more tests

for some of the missing functionality.

2) Macro-benchmarks: We have manually generated call

graphs for five popular real-world packages. The packages

were chosen as follows. First, we queried the GitHub API

for Python repositories sorted by their number of stars. Then,

we downloaded each repository and counted the number of

lines of Python code. If the repository contained less than

3.5k lines of Python code, we kept it. Table II presents the

GitHub repositories we chose along with their lines of code,

GitHub stars and forks, together with a short description.

Currently, there is no acceptable implementation generating

Python call graphs in an effective manner, so the first author

manually inspected the projects and generated their call graphs

in JSON format, spending on average 10 hours for each project.

1653

Authorized licensed use limited to: Athens University of Economics and Business. Downloaded on July 04,2023 at 08:14:35 UTC from IEEE Xplore. Restrictions apply.

TABLE II: Macro-benchmark suite project details.

Project LoC Stars Forks Description
fabric 3,236 12.1k 1.8k Remote execution & deployment
aut o j u m p 2,662 10.8k 530 Directory navigation tool
a s c i i n e m a 1,409 7.9k 687 Terminal session recorder
face c l a s s i f i c a t i o n 1,455 4.7k 1.4k Face detection & classification
Su b l i s t 3 r 1,269 4.4k 1.1k Subdomains enumeration tool

TABLE III: Micro-benchmark results for PyCG and Pyan.
Depends is unsound in all cases and complete in 110/112 cases

and is omitted.

Category PyCG
Complete Sound

Pyan
Complete Sound

assignments 4/4 3/4 4/4 4/4

built-ins 3/3 1/3 2/3 0/3

classes 22/22 22/22 6/22 10/22

decorators 6/7 5/7 4/7 3/7

dicts 12/12 11/12 6/12 6/12

direct calls 4/4 4/4 0/4 0/4

exceptions 3/3 3/3 0/3 0/3

functions 4/4 4/4 4/4 3/4

generators 6/6 6/6 0/6 0/6

imports 14/14 14/14 10/14 4/14

kwargs 3/3 3/3 0/3 0/3

lambdas 5/5 5/5 4/5 0/5

lists 8/8 7/8 3/8 4/8

mro 7/7 5/7 0/7 2/7

parameters 6/6 6/6 0/6 0/6

returns 4/4 4/4 0/4 0/4

Total 111/112 103/112 43/112 36/112

We opted for medium sized projects (less than 3.5k LoC), so

that we could minimize human errors. To further verify the

validity of the generated call graphs, we examined the output

of PyCG Pyan, and Depends and identified 90 missing edges

from a total of 2506.

B. Micro-benchmark suite results

The benchmarks included in the micro-test suite have a

limited scope and are designed to cover specific functionalities

(such as decorators and lambdas). Table III lists the results of

our evaluation. For each benchmark belonging to a specific

category, we show if our prototype and Pyan generated com-

plete or sound call graphs. Note that a call graph is complete

when it does not contain any call edges that do not actually

exist (no false positives), and sound when it contains every

call edge that is realized (no false negatives).

PyCG produces a complete call graph in almost all cases

(111/112). In addition, it produces sound call graphs for 103

out of 112 benchmarks. The lack of soundness is attributed

to not fully covered functionalities, i.e., Python’s starred

assignments.

Pyan produces either complete or sound call graphs at

a much lower rate. However, for assignments, Pyan turns

out as a more sound method because it supports them in a

better manner. We performed a qualitative analysis on the

call graphs generated by Pyan to check the reasons behind

its performance. We observed that Pyan produces incomplete

call graphs because it creates call edges to class names as well

as th e ir__ i n i t __ methods (see also Section II-B). Also it

generates imprecise results because it does not support all of

TABLE IV: Macro-benchmark results and tool comparison.

Project

PyCG

Precision (%)

Pyan Depends PyCG

Recall (%)

Pyan Depends
a u t o j u m p 99.5 66.5 99.2 68.2 28.5 22.5
f a bric 98.3 100 61.9 6.3
a s c i i n e m a 100 98.1 68 15.5
face c l a s s i f i c a t i o n 99.5 86.8 96.2 89.7 7.6 5.7
S u b l i s t 3 r 98.8 69.8 100 61.6 25.6 21.9
Average 99.2 74.4 98.7 69.9 20.6 14.4

Python’s functionality, (0/6 generators and 0/3 exceptions),

ignores the inter-procedural flow of functions (0/6 parameters

and 0/4 returns), misses calls to imported ones (4/14), and

fails to support classes (10/ 22).

The evaluation of Depends shows both its fundamental

strengths and limitations. Recall that each benchmark imple-

ments a single execution path and includes a call coming from

the module’s namespace. Our results indicate that Depends

does not identify calls from module namespaces, and therefore

soundness is never achieved (0/112). In terms of completeness,

Depends achieves an almost perfect score (110/112) due to its

conservative nature—i.e., it adds an edge when it has high

confidence that it will be realized.

C. Macro-benchmark results
By using our macro-benchmark, we have examined the three

tools in terms of precision and recall. Precision measures

the percentage of valid generated calls over the total number

of generated calls. Recall measures the percentage of valid

generated calls over the total number of calls. To do so, we

manually generated the call graphs of the examined packages.

Table IV presents our results. The missing entries for

Pyan indicate that the tool crashed during the execution. Our

findings show that PyCG generates high precision call graphs.

On all cases, more than 98% of the generated call edges are

true positives, while on one case none of the generated call

edges are false positives. Recall results show that on average,

69.9% of all call edges are successfully retrieved. The missing

call edges are attributed to the approach’s limitations (recall

Section III-C), and missing support for some functionalities.

Pyan shows average precision and low recall. Pyan’s aver-

age precision appears because the tool adds call edges to class

names instead of just the ir__ i n i t __ methods. Also, it does

not track the inter-procedural flow of functions, which is the

reason why it has low recall. For instance, the implementation

of the f a c e _ c l a s s i f i c a t i o n package mostly depends

on functions declared in external packages. Pyan ignores such

calls which in turn leads to a 7.6% recall.

Finally, Depends shows high precision (98.7%) and low

recall. The high precision of Depends can be attributed to

its conservative nature. Furthermore, Depends does not track

higher order functions and does not include calls coming from

module namespaces. This in turn, leads to its low recall.

D. Time and Memory Performance
We use the macro-benchmark suite as a base for our time

and memory evaluation. Table V presents the time and memory

performance metrics of the three tools. The execution time was

calculated using the UNIX time command, while the memory

1654

Authorized licensed use limited to: Athens University of Economics and Business. Downloaded on July 04,2023 at 08:14:35 UTC from IEEE Xplore. Restrictions apply.

TABLE V: Time and memory comparison.

Project Time (sec) Memory (MB)

PyCG Pyan Depends PyCG Pyan Depends
a u t o j u m p 0.76 0.42 2.37 62.7 37.8 27.1
f a bric 0.77 1.83 60.9 18.5
a s c i i n e m a 0.87 2 61.6 19.4
face c l a s s i f i c a t i o n 0.92 0.38 2.49 60.9 35.3 25.6
S u b l i s t 3 r 0.51 0.33 2.01 60 35.8 19.4
Average 0.77 0.38 2.14 61.2 36.3 22

consumption was measured using the UNIX pmap command.

The metrics presented are the average out of 20 runs.

The results show that Pyan is more time efficient, and that

Depends is more memory efficient. PyCG and Pyan generate

a call graph for the programs in the benchmark (< 3.5k LoC)

in under a second, while Depends requires more than two

seconds on average. Furthermore, all tools use a reasonable

amount of memory, with PyC G, Pyan and Depends using on

average ~61.2, ~36.3 and ~22M Bs of memory respectively.

Overall, PyCG is on average 2 times slower than Pyan, and

uses 2.8 times the amount of memory that Depends uses.

We attribute the differences in execution time between Pyan

and PyCG to the fact that Pyan performs two passes of the

AST in comparison to PyCG performing a fixpoint iteration

(Section III). Depends is overall slower, because it spends

most of its execution time parsing the source files. In terms of

memory, Pyan and Depends store less information about the

state of the analysis leading to better memory performance.

E. Case Study: A Fine-grained Tracking o f Vulnerable Depen-
dencies

GitHub sends a notification to the contributors of a repos-

itory when it identifies a dependency to a vulnerable library.

However, this notification does not indicate if the project

invokes the function containing the defect. We show that PyCG

can be employed to enhance the service with method-level

information that may further warn the contributors.

To highlight the usefulness of our method in this context,

we performed the following steps. First we accessed GitHub’s

“Advisory Database” [31]. Then, we searched for vulnerable

Python packages sorted by the severity of the defect. In many

occasions the accompanying CVE (Common Vulnerabilities

and Exposures) entries did not include further details about

the defects. We disregarded such instances and focused on the

first two cases that provided information about the functions

that contained the vulnerability: (1) PyYAML [32] (versions

before 5.1), a YAML parser affected by CVE-2017-18342 [33],

and (2) Paramiko [34] (multiple versions before 2.4.1), an

implementation of the SSHv2 protocol affected by CVE-2018-

7750 [35]. Both packages were imported by thousands of

projects, 9226 for PyYAML and 1097 for Paramiko. We could

not clone all dependent repositories because some were private

and others did not exist any more: we managed to download

570 PyYAML and 322 Paramiko dependent projects. Then, we

ran our tool on each project and generated corresponding call

graphs for 106 out of the 570 PyYAML dependent projects

and 76 out of the 322 Paramiko dependent projects—the

projects that PyCG failed to generate call graphs were written

in Python 2. Finally, we queried the generated call graphs to

check if the vulnerable functions were included. We found that

the vulnerable function in PyYAML (i.e., l o a d) was invoked

by 42/106 projects. In Paramiko we found that the problem

method (s t a r t _ s e r v e r) was not utilized at all by any of the

76 projects. We also observed that 12 projects did not invoke

any library coming from Paramiko. Paramiko was needlessly

included in the requirement files of the dependents. That was

not a false negative from our part: we manually checked that

PyCG did not miss any invocation.

VI. Re l a t e d W o r k

Call Graph Generation. Methods that generate call graphs

can be either dynamic [36], or static [37]. Dynamic approaches

usually produce fewer false positives, but suffer from perfor-

mance issues. Also, they are able to analyze a single execution

path, and their effectiveness relies on the program’s input.

Static approaches are more time efficient and can typically

cover a wider range of execution paths, trying to capture all

possible program’s behaviors. Several approaches [38]-[40],

try to combine the two so they can get improved results.

There are plenty of methods and tools targeting call graph

generation for statically-typed programming languages such as

Java. DOOP [41] and WALA [42] follow a context-sensitive,

points-to analysis method. PADDLE [43], a similar approach,

employs Binary Decision Diagrams (BDDs) [44]. Finally,

OPAL [45] is a lattice-based approach written in Scala. Ali

et al. [46], implement CGC, a partial call graph generator for

Java, with the main focus being efficiency. They ignore calls

coming from externally imported libraries, and only analyze

the source code of a given package. We are currently following

a similar approach, but we aim to efficiently analyze external

dependencies in the future.

Moving to dynamic languages, Ali et al. [47] convert Python

source code into JVM bytecode, and use the existing imple-

mentations for Java [42], [48], [49] to generate its call graph.

However, they argue that generating precise call graphs using

this method is infeasible, and sometimes the output has more

than 96% of false positives. pycallgraph [50] generates Python

call graphs by dynamically analyzing one execution path.

Thus the analysis is not practical and one should pair it with

another method (e.g., fuzzing) to retrieve meaningful results.

On the JavaScript front, Feldthaus et al. [14] implement a

flow-based approach for the generation of call graphs. They

evaluate against call graphs generated by a dynamic approach

paired with instrumentation, achieving > 66% precision and

> 85% recall. Other JavaScript call graph generators include,

IBM WALA [42], NPM call graph [51], Google closure com-

piler [52], Approximate Call Graph (ACG) [14], and Type

Analyzer for JavaScript (TAJS) [9]. TAJS implements a lattice-

based flow-sensitive approach using abstract interpretation.

Although, such an approach yields more promising results,

it comes with a performance cost.

Call Graph Benchmarking and Comparison. Reif et

al. present Judge [29], a toolchain for analyzing call graph

generators for Java. At its core, the toolchain contains a test

1655

Authorized licensed use limited to: Athens University of Economics and Business. Downloaded on July 04,2023 at 08:14:35 UTC from IEEE Xplore. Restrictions apply.

suite with benchmarks for a range of Java features. The authors

then proceed to compare Java call graph generators, namely

Soot [48], [49], WALA [42], DOOP [41] and OPAL [45]. Sui et

al. [53], also present a test suite of Java benchmarks, and they

use it to evaluate and compare Soot [48], [49], WALA [42],

and DOOP [41]. The above benchmark suites are very similar,

leading to Judge consolidating them into one benchmark suite.

Recall our very similar implementation of a micro-benchmark

suite from Section V-A.

Static Analysis for Dynamic Languages. Numerous ad-

vanced frameworks aim for the static analysis of JavaScript

programs. SAFE [10] provides a formally specified static

analysis framework with the goal of being flexible, scalable

and pluggable. JSA I [11] is a formally specified and provably

sound platform using abstract interpretation.

Other JavaScript approaches target different aspects of its

functionality. Madsen et al. implement RADAR [54] a tool that

identifies bugs in event-driven JavaScript programs. Sotiropou-

los et al. [15] propose an analysis targeting asynchronous

functions. Bae et al. [55], implement SA FEWAPI a tool aimed

at identifying possible API misuses. Park et al. [56] propose

SAFEWApp, a static analyzer for client-side JavaScript.

Fromherz et al. [57] implement a prototype that soundly

identifies run-time errors by evaluating the data types of

Python variables through abstract interpretation. In compar-

ison, our approach does not infer the data types of variables

and focuses on the generation of call graphs.

VII. Co n c l u s i o n

We have introduced a practical static approach for

generating Python call graphs. Our method performs a

context-insensitive inter-procedural analysis that identifies the

flow of values through the construction of a graph that stores

all assignment relationships among program identifiers. We

used two benchmarks to evaluate our method, namely a micro-

and a macro-benchmark suite. Our prototype showed high

rates of both precision and recall. Also, our micro-benchmark

suite can serve as a standard for the evaluation of future

methods. Finally, we applied our approach in a real-world

case scenario, to highlight how it can aid dependency impact

analysis.

Acknowledgments. We thank the anonymous reviewers for

their insightful comments and constructive feedback. This

work has received funding from the European Union's Horizon

2020 research and innovation programme under grant agree-

ment No. 825328.

Re f e r e n c e s

[1] Valgrind, “Callgrind: a call-graph generating cache and branch

prediction profiler,” 2020. [Online]. Available: http://valgrind.org/docs/

manual/cl- manual.html

[2] H. Shahriar and M. Zulkernine, “Mitigating program security vulnera-

bilities: Approaches and challenges,” ACM Comput. Surv., vol. 44, no. 3,

Jun. 2012.

[3] A. Feldthaus, T. Millstein, A. Mpller, M. Schäfer, and F. Tip, “Tool-

supported refactoring for JavaScript,” in Proceedings o f the 2011 ACM

International Conference on Object Oriented Programming Systems

Languages and Applications, ser. OOPSLA ’11. New York, NY, USA:

Association for Computing Machinery, 2011, pp. 119-138.

[4] J. Hejderup, A. van Deursen, and G. Gousios, “Software ecosystem

call graph for dependency management,” in Proceedings o f the 40th

International Conference on Software Engineering: New Ideas and

Emerging Results, ser. ICSE-NIER ’18. New York, NY, USA: ACM,

2018, pp. 101-104.

[5] R. Kikas, G. Gousios, M. Dumas, and D. Pfahl, “Structure and evo-

lution of package dependency networks,” in Proceedings o f the 14th

International Conference on Mining Software Repositories, ser. MSR

’17. IEEE Press, 2017, pp. 102-112.

[6] (2016) The npm blog: changes to npm’s unpublish policy. [Online;

accessed 26-July-2020]. [Online]. Available: https://blog.npmjs.org/

post/141905368000/changes-to-npms-unpublish-policy

[7] (2020) npm(1)— a JavaScript package manager. [Online; accessed

26-July-2020]. [Online]. Available: https://github.com/npm/cli

[8] (2020) pip 20.0.2: The PyPA recommended tool for installing

Python packages. [Online; accessed 26-July-2020]. [Online]. Available:

https://pypi.org/project/pip/

[9] S. H. Jensen, A. Mpller, and P. Thiemann, “Type analysis for JavaScript,”

in International Static Analysis Symposium. Springer, 2009, pp. 238-

255.

[10] H. Lee, S. Won, J. Jin, J. Cho, and S. Ryu, “SAFE: Formal specification

and implementation of a scalable analysis framework for ECMAScript,”

in FOOL 2012: 19th International Workshop on Foundations o f Object-
Oriented Languages. Citeseer, 2012, p. 96.

[11] V. Kashyap, K. Dewey, E. A. Kuefner, J. Wagner, K. Gibbons, J. Sar-

racino, B. Wiedermann, and B. Hardekopf, “JSAI: A static analysis

platform for JavaScript,” in Proceedings o f the 22nd ACM SIGSOFT

International Symposium on Foundations o f Software Engineering, ser.

FSE 2014. New York, NY, USA: Association for Computing Machin-

ery, 2014, pp. 121-132.

[12] Y. Ko, H. Lee, J. Dolby, and S. Ryu, “Practically tunable static analysis

framework for large-scale JavaScript applications,” in Proceedings of
the 30th IEEE/ACM International Conference on Automated Software

Engineering, ser. ASE ’15. IEEE Press, 2015, pp. 541-551.

[13] M. Madsen, B. Livshits, and M. Fanning, “Practical static analysis of

javascript applications in the presence of frameworks and libraries,” in

Proceedings o f the 2013 9th Joint Meeting on Foundations o f Software

Engineering, ser. ESEC/FSE 2013. New York, NY, USA: Association

for Computing Machinery, 2013, pp. 499-509.

[14] A. Feldthaus, M. Schafer, M. Sridharan, J. Dolby, and F. Tip, “Efficient

construction of approximate call graphs for JavaScript IDE services,”

in Proceedings o f the 2013 International Conference on Software

Engineering, ser. ICSE '13. IEEE Press, 2013, pp. 752-761.

[15] T. Sotiropoulos and B. Livshits, “Static analysis for asynchronous

JavaScript programs,” in 33rd European Conference on Object-Oriented

Programming (ECOOP 2019), ser. Leibniz International Proceedings

in Informatics (LIPIcs), A. F. Donaldson, Ed., vol. 134. Dagstuhl,

Germany: Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019, pp.

8:1-8:30. [Online]. Available: http://drops.dagstuhl.de/opus/volltexte/

2019/10800

[16] M. Madsen, F. Tip, and O. Lhotak, “Static analysis of event-driven

node.js JavaScript applications,” SIGPLAN Not., vol. 50, no. 10, pp.

505-519, Oct. 2015.

[17] GitHub, “The state of the octoverse,” https://octoverse.github.com/,

2019, [Online; accessed 09-January-2020].

[18] D. Fraser, E. Horner, J. Jeronen, and P. Massot, “Pyan3: Offline

call graph generator for Python 3,” https://github.com/davidfraser/pyan,

2018, [Online; accessed 09-January-2020].

[19] G. Gharibi, R. Tripathi, and Y. Lee, “Code2graph: Automatic generation

of static call graphs for Python source code,” in Proceedings o f the 33rd

ACM/IEEE International Conference on Automated Software Engineer-
ing, ser. ASE 2018. New York, NY, USA: Association for Computing

Machinery, 2018, pp. 880-883.

[20] G. Gharibi, R. Alanazi, and Y. Lee, “Automatic hierarchical clustering

of static call graphs for program comprehension,” in IEEE International
Conference on Big Data, Big Data 2018, Seattle, WA, USA, December

10-13, 2018. IEEE, 2018, pp. 4016^025.

1656

Authorized licensed use limited to: Athens University of Economics and Business. Downloaded on July 04,2023 at 08:14:35 UTC from IEEE Xplore. Restrictions apply.

[21] G. Zhang and J. Wuxia, “Depends is a fast, comprehensive code de-

pendency analysis tool,” https://github.com/multilang-depends/depends,

2018, [Online; accessed 04-August-2020].

[22] N. Milojkovic, M. Ghafari, and O. Nierstrasz, “It's duck (typing)

season!” in 2017IEEE/ACM 25th International Conference on Program

Comprehension (ICPC), May 2017, pp. 312-315.

[23] M. Felleisen, R. B. Findler, and M. Flatt, Semantics engineering with

PLT Redex. Mit Press, 2009.

[24] M. Madsen, O. Lhotak, and F. Tip, “A model for reasoning about

JavaScript promises,” Proc. ACM Program. Lang., vol. 1, no. OOPSLA,

Oct. 2017. [Online]. Available: https://doi.org/10.1145/3133910

[25] S. Guarnieri and B. Livshits, “GATEKEEPER: Mostly static enforce-

ment of security and reliability policies for JavaScript code,” in Pro-
ceedings o f the 18th Conference on USENIX Security Symposium, ser.

SSYM’09. USA: USENIX Association, 2009, pp. 151-168.

[26] C.-A. Staicu, M. Pradel, and B. Livshits, “SYNODE: Understanding and

automatically preventing injection attacks on Node. js.” in NDSS, 2018.

[27] (2020) symtable. [Online; accessed 20-July-2020]. [Online]. Available:

https://docs.python.org/3/library/symtable.html

[28] (2020) AST in Python. [Online; accessed 20-July-2020]. [Online].

Available: https://docs.python.org/3/library/ast.html

[29] M. Reif, F. Kubler, M. Eichberg, D. Helm, and M. Mezini, “Judge:

Identifying, understanding, and evaluating sources of unsoundness in

call graphs,” in Proceedings o f the 28th ACM SIGSOFT International
Symposium on Software Testing and Analysis, ser. ISSTA 2019. New

York, NY, USA: Association for Computing Machinery, 2019, pp. 251-

261.

[30] A. Rahman, C. Parnin, and L. Williams, “The seven sins: Security

smells in infrastructure as code scripts,” in Proceedings o f the

41st International Conference on Software Engineering, ser. ICSE '19.

IEEE Press, 2019, pp. 164-175. [Online]. Available: https://doi.org/10.

1109/ICSE.2019.00033

[31] (2020) GitHub advisory database. [Online; accessed 20-July-2020].

[Online]. Available: https://github.com/advisories

[32] (2020) PyYAML: The next generation YAML parser and emitter

for Python. [Online; accessed 20-July-2020]. [Online]. Available:

https://github.com/yaml/pyyaml/

[33] (2017) CVE-2017-18342. [Online; accessed 20-July-2020]. [Online].

Available: https://nvd.nist.gov/vuln/detail/CVE-2017-18342

[34] (2020) Paramiko: The leading native Python SSHv2 protocol library.

[Online; accessed 20-July-2020]. [Online]. Available: https://github.

com/paramiko/paramiko/

[35] (2018) CVE-2018-7750. [Online; accessed 20-July-2020]. [Online].

Available: https://nvd.nist.gov/vuln/detail/CVE-2018-7750

[36] T. Xie and D. Notkin, “An empirical study of Java dynamic call graph

extractors,” University o f Washington CSE Technical Report 02-12,
vol. 3, 2002.

[37] G. C. Murphy, D. Notkin, W. G. Griswold, and E. S. Lan, “An empirical

study of static call graph extractors,” ACM Transactions on Software

Engineering and Methodology (TOSEM), vol. 7, no. 2, pp. 158-191,

1998.

[38] T. Eisenbarth, R. Koschke, and D. Simon, “Aiding program comprehen-

sion by static and dynamic feature analysis,” in Proceedings o f the IEEE
International Conference on Software Maintenance (ICSM’01). IEEE

Computer Society, 2001, p. 602.

[39] N. Grech, G. Fourtounis, A. Francalanza, and Y. Smaragdakis, “Heaps

don’t lie: Countering unsoundness with heap snapshots,” Proc. ACM

Program. Lang., vol. 1, no. OOPSLA, Oct. 2017.

[40] J. Liu, Y. Li, T. Tan, and J. Xue, “Reflection analysis for Java: Uncov-

ering more reflective targets precisely,” in 2017 IEEE 28th International
Symposium on Software Reliability Engineering (ISSRE). IEEE, 2017,

pp. 12-23.

[41] M. Bravenboer and Y. Smaragdakis, “Strictly declarative specification

of sophisticated points-to analyses,” in ACM SIGPLAN Notices, vol. 44,

no. 10. ACM, 2009, pp. 243-262.

[42] S. Fink and J. Dolby, “WALA—the T.J. Watson libraries for analysis,”

2012.

[43] O. Lhotak and L. Hendren, “Evaluating the benefits of context-sensitive

points-to analysis using a BDD-based implementation,” ACM Trans-
actions on Software Engineering and Methodology (TOSEM), vol. 18,

no. 1, p. 3, 2008.

[44] M. Berndl, O. Lhotak, F. Qian, L. Hendren, and N. Umanee, “Points-to

analysis using BDDs,” SIGPLAN Not., vol. 38, no. 5, pp. 103-114, May

2003.

[45] M. Eichberg, F. Kübler, D. Helm, M. Reif, G. Salvaneschi, and

M. Mezini, “Lattice based modularization of static analyses,” in Com-
panion Proceedings fo r the ISSTA/ECOOP 2018 Workshops, ser. ISSTA

’18. New York, NY, USA: Association for Computing Machinery,

2018, pp. 113-118.

[46] K. Ali and O. Lhotak, “Application-only call graph construction,”

in Proceedings o f the 26th European Conference on Object-Oriented

Programming, ser. ECOOP’12. Berlin, Heidelberg: Springer-Verlag,

2012, pp. 688-712.

[47] K. Ali, X. Lai, Z. Luo, O. Lhotak, J. Dolby, and F. Tip, “A study of

call graph construction for JVM-hosted languages,” IEEE Transactions

on Software Engineering, pp. 1-1, 2019.

[48] R. Vallee-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundaresan,

“Soot: A Java bytecode optimization framework,” in CASCON First
Decade High Impact Papers, ser. CASCON ’10. USA: IBM Corp.,

2010, pp. 214-224.

[49] O. Lhotak and L. Hendren, “Scaling Java points-to analysis us-

ing SPARK,” in International Conference on Compiler Construction.
Springer, 2003, pp. 153-169.

[50] GitHub user gak, “pycallgraph is a Python module that creates call

graphs for Python programs.” https://github.com/gak/pycallgraph, 2014,

[Online; accessed 09-January-2020].

[51] G. Gessner, “npm call graph,” https://www.npmjs.com/package/

callgraph, 2019, [Online; accessed 09-January-2020].

[52] M. Bolin, Closure: The Definitive Guide: Google Tools to Add Power

to Your JavaScript. ” O ’Reilly Media, Inc.”, 2010.

[53] L. Sui, J. Dietrich, M. Emery, S. Rasheed, and A. Tahir, “On the sound-

ness of call graph construction in the presence of dynamic language

features— a benchmark and tool evaluation,” in Asian Symposium on

Programming Languages and Systems. Springer, 2018, pp. 69-88.

[54] M. Madsen, F. Tip, and O. Lhotak, “Static analysis of event-driven

Node.js JavaScript applications,” in Proceedings o f the 2015 ACM

SIGPLAN International Conference on Object-Oriented Programming,
Systems, Languages, and Applications, ser. OOPSLA 2015. New York,

NY, USA: Association for Computing Machinery, 2015, pp. 505-519.

[55] S. Bae, H. Cho, I. Lim, and S. Ryu, “SAFEWAPI: Web API misuse de-

tector for web applications,” in Proceedings o f the 22nd ACM SIGSOFT

International Symposium on Foundations o f Software Engineering, ser.

FSE 2014. New York, NY, USA: Association for Computing Machin-

ery, 2014, pp. 507-517.

[56] C. Park, S. Won, J. Jin, and S. Ryu, “Static analysis of JavaScript web

applications in the wild via practical DOM modeling,” in Proceedings

ofthe 30th IEEE/ACM International Conference on Automated Software

Engineering, ser. ASE ’15. IEEE Press, 2015, pp. 552-562.

[57] A. Fromherz, A. Ouadjaout, and A. Mine, “Static value analysis of

Python programs by abstract interpretation,” in NASA Formal Methods

Symposium. Springer, 2018, pp. 185-202.

1657

Authorized licensed use limited to: Athens University of Economics and Business. Downloaded on July 04,2023 at 08:14:35 UTC from IEEE Xplore. Restrictions apply.

