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Abstract— Call graphs play an important role in different 
contexts, such as profiling and vulnerability propagation analysis. 
Generating call graphs in an efficient manner can be a challeng-
ing task when it comes to high-level languages that are modular 

and incorporate dynamic features and higher-order functions.
Despite the language’s popularity, there have been very few 

tools aiming to generate call graphs for Python programs. Worse, 
these tools suffer from several effectiveness issues that limit their 

practicality in realistic programs. We propose a pragmatic, static 

approach for call graph generation in Python. We compute all 
assignment relations between program identifiers of functions, 
variables, classes, and modules through an inter-procedural 
analysis. Based on these assignment relations, we produce the 

resulting call graph by resolving all calls to potentially invoked 

functions. Notably, the underlying analysis is designed to be 

efficient and scalable, handling several Python features, such as 

modules, generators, function closures, and multiple inheritance.
We have evaluated our prototype implementation, which 

we call PyCG, using two benchmarks: a micro-benchmark 

suite containing small Python programs and a set of macro-
benchmarks with several popular real-world Python packages. 
Our results indicate that PyCG can efficiently handle thousands 

of lines of code in less than a second (0.38 seconds for 1k 

LoC on average). Further, it outperforms the state-of-the-art 
for Python in both precision and recall: PyCG achieves high 

rates of precision ~99.2% , and adequate recall ~69.9%. Finally, 
we demonstrate how PyCG can aid dependency impact analysis 

by showcasing a potential enhancement to GitHub’s “security 

advisory” notification service using a real-world example.
Index Terms— Call Graph, Program Analysis, Inter-procedural 

Analysis, Vulnerability Propagation I.

I. In t r o d u c t i o n

A call graph depicts calling relationships between subrou-

tines in a computer program. Call graphs can be employed to 

perform a variety of tasks, such as profiling [1], vulnerability 

propagation [2], and tool-supported refactoring [3].

Generating call graphs in an efficient way can be a complex 

endeavor especially when it comes to high-level, dynamic pro-

gramming languages. Indeed, to create precise call graphs for 

programs written in languages such as Python and JavaScript, 

one must deal with several challenges including higher-

order functions, dynamic and metaprogramming features (e.g., 

e v a l) ,  and modules. Addressing such challenges can play 

a significant role in the improvement of dependency impact 

analysis [4]-[6], especially in the context of package managers 

such as npm [7] and pip [8].

To support call graph generation in dynamic languages, 

researchers have proposed different methods relying on static

analysis. The primary aim for many implementations is com-

pleteness, i.e., facts deduced by the system are indeed true [9]- 

[11]. However, for dynamic languages, completeness comes 

with a performance cost. Hence, such approaches are rarely 

employed in practice due to scalability issues [12]. This has 

led to the emergence of practical approaches focusing on in-

complete static analysis for achieving better performance [13], 

[14]. Sacrificing completeness is the key enabler for adopt-

ing these approaches in applications that interact with com-

plex libraries [13], or Integrated Development Environments 

(ID Es) [14]. Prior work primarily targets JavaScript programs 

and—among other things—attempts to address challenges 

related to events and the language’s asynchronous nature [15], 

[16].

Despite Python’s popularity [17], there have been surpris-

ingly few tools aiming to generate call graphs for programs 

written in the language. Pyan [18] parses the program’s Ab-

stract Syntax Tree (A ST) to extract its call graph. Nevertheless, 

it has drawbacks in the way it handles the inter-procedural 

flow of values and module imports. code2graph [19], [20] 

visualizes Pyan-constructed call graphs, so it has the same 

limitations. Depends [21] infers syntactical relations among 

source code entities to generate call graphs. However, func-

tions assigned to variables or passed to other functions are 

not handled by Depends, thus it does not perform well in the 

context of a language supporting higher-order programming. 

We will expand on the shortcomings of the existing tools in the 

remainder of this work. That said, developing an effective and 

efficient call graph generator for a dynamically typed language 

like Python is no minor task.

We introduce a practical approach for generating call graphs 

for Python programs and implement a corresponding prototype 

that we call PyCG. Our approach works in two steps. In the 

first step we compute the assignment graph, a structure that 

shows the assignment relations among program identifiers. 

To do so, we design a context-insensitive inter-procedural 

analysis operating on a simple intermediate representation 

targeted for Python. Contrary to the existing static analyzers, 

our analysis is capable of handling intricate Python features, 

such as higher-order functions, modules, function closures, and 

multiple inheritance. In the next step, we build the call graph of 

the original program using the assignment graph. Specifically, 

we utilize the graph to resolve all functions that can be 

potentially pointed to by callee variables. Such a programming 

pattern is particularly common in higher-order programming.

978-1-6654-0296-5/21/$31.00 ©2021 IEEE 
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Similar to previous work [14], our analysis follows a con-

servative approach, meaning that the analysis does not reason 

about loops and conditionals. To make our analysis more 

precise, especially when dealing with features like inheritance, 

modules or programming patterns such as duck typing [22], we 

distinguish attribute accesses (i.e, e.x) based on the namespace 

where the attribute (x) is defined. Prior work uses a field- 
based approach that correlates attributes of the same name 

with a single global location without taking into account their 

namespace [14]. This leads to false positives. Our design 

choices make our approach achieve high rates of precision, 

while remaining efficient and applicable to large-scale Python 

programs.

We evaluate the effectiveness of our method through a 

micro- and a macro-benchmarking suite. Also, we compare 

it against Pyan and Depends. Our results indicate that our 

method achieves high levels of precision (~99.2%) and ade-

quate recall (~69.9%) on average, while the other analyzers 

demonstrate lower rates in both measures. Our method is 

able to handle medium-sized projects in less than one second 

(0.38 seconds for 1k LoC on average). Finally, we show how 

our method can accommodate the fine-grained tracking of 

vulnerable dependencies through a real-world case study. 

Contributions. Our work makes the following contributions.

• We propose a static approach for pragmatic call graph 

generation in Python. Our method performs inter-procedural 

analysis on an intermediate language that records the assign-

ment relations between program identifiers, i.e., functions, 

variables, classes and modules. Then it examines the docu-

mented associations to extract the call graph (Section III).

• We develop a micro-benchmark suite that can be used as 

a standard to evaluate call graph generation methods in 

Python. Our suite is modular, easily extendable, and covers 

a large fraction of Python’s functionality related to classes, 

generators, dictionaries, and more (Section V-A1).

• We evaluate the effectiveness of our approach through our 

micro-benchmark and a set of macro-benchmarks including 

several medium-sized Python projects. In all cases our 

method achieves high rates of precision and recall, outper-

forming the other available analyzers (Sections V-B, V-C).

• We demonstrate how our approach can aid dependency im-

pact analysis through a potential enhancement of GitHub’s 

“security advisory” notification service (Section V-E).

Availability. PyCG is available as open-source software under 

the Apache 2.0 Licence at https://github.com/vitsalis/pycg. The 

research artifact is available at https://doi.org/10.5281/zenodo. 

4456583. II.

II. Ba c k g r o u n d

Generating precise call graphs for Python programs involves 

several challenges. Existing static approaches fail to address 

these challenges leaving opportunities for improvement.

1 import cryptops
2
3 class Crypto:
4 def  init (self, key):
5 self.key = key
6
7 def apply(self, msg, func):
8 return func(self.key, msg)
9

10 crp = Crypto(”secretkey”)
11 encrypted = crp.apply(”hello world”,

^  cryptops.encrypt)
12 decrypted = crp.apply(encrypted,

^  cryptops.decrypt)

Fig. 1: The c r y p t o  module. Existing tools fail to generate a 

corresponding call graph effectively.

A. Challenges
• Higher-order Functions: In a high-level language such as 

Python, functions can be assigned to variables, passed as 

parameters to other functions, or serve as return values.

• Nested Definitions: Function definitions can be nested, 

meaning that a function can be defined and invoked within 

the context of another function.

• Classes: As an object-oriented language, Python allows for 

the creation of classes that inherit attributes and methods 

from other classes. The resolution of inherited methods 

from parent classes requires the computation of the Method 

Resolution Order (MRO) of each class.

• Modules: Python is highly extensible, allowing applications 

to import different modules. Keeping track of the different 

modules that are imported in an application, as well as the 

resolution order of those imports, can be a challenging task.

• Dynamic Features: Python is dynamically typed, allowing 

variables to take values of different types during execution. 

Also, it allows for classes to be dynamically modified 

during runtime. Furthermore, the e v a l  function allows for 

a dynamically constructed string to be executed as code.

• Duck Typing: Duck typing is a programming pattern that 

is particularly common in dynamic languages such as 

Python [22]. Through duck typing, the suitability of an 

object is determined by the presence of specific methods and 

properties, rather than the type of the object itself. In this 

context, given a method defined by two (or more) classes, 

it is not trivial to identify its origins when it is invoked.

B. Limitations o f Existing Static Approaches
We focus on two open-source static analyzers: Pyan [18] 

and Depends [21]. We do not examine code2graph [19], [20] 

separately, as it is based on Pyan to generate call graphs. 

We discuss the limitations of the two existing analyzers in 

terms of efficiency and practicality. To do so, we introduce a 

small Python module named c r y p t o  (see Figure 1), which is 

used to encrypt and decrypt a “hello world” message. First, it 

imports an external Python module named c r y p to p s ,  which 

defines two functions, namely: e n c r y p t ( k e y ,  msg) and 

d e c r y p t ( k e y ,  msg) . Then, the C ry p to  class is defined. 

To use it, we instantiate it with an encryption key and we 

can encrypt or decrypt messages by calling a p p l y ( s e l f ,
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(a) Precise call graph. (b) Pyan-generated call graph.

Fig. 2: Call graphs for the c r y p to  module.

(c) Depends-generated call graph.

m sg, f u n c ) ,  where fu n c  is one of e n c r y p t ( k e y ,  

msg) and d e c r y p t ( k e y ,  m sg ) . Figure 2a shows the call 

graph of the module.

Pyan [18] produces the imprecise call graph shown in 

Figure 2b. This graph does not contain all function calls, 

because the tool does not track the inter-procedural flow of 

values. Therefore, it is unable to infer which functions are 

passed as arguments to a p p l y ( s e l f ,  m sg, f u n c ) .  In 

addition, there are several features that lead to the addition of 

unrealized call edges. Specifically, when Pyan detects object 

initialization, it creates call edges to both the class name and

th e __ i n i t __ () method of the class.1 Beyond that, in the

case of a module import, Pyan generates a call edge from the 

importing namespace to the module name.

Depends produces the call graph presented in Figure 2c. 

Depends does not track function calls originating from the 

module’s namespace (e.g., c r p . a p p l y ( ) ). This in turn, led 

to an empty call graph. Therefore, to get a result, we wrapped 

those function calls within a new function. The resulting 

graph does not contain most of the calls included in the 

source program. This is because Depends does not capture

the call to th e __ i n i t __ () function of the C ry p to  class.

Furthermore, (like Pyan) Depends does not track the inter-

procedural flow of functions leading to missing edges to the 

parameter functions. Compared to Pyan, Depends follows a 

more conservative approach. That is, it only includes a call 

edge when it has all the necessary information it needs to 

anticipate that the call will be realized. Contrary to Pyan, this 

can lead to a call graph without false positives.

III. Pr a c t i c a l  Ca l l  Gr a p h  Ge n e r a t i o n

Our approach for generating call graphs employs a context- 

insensitive inter-procedural analysis operating on an inter-

mediate representation of the input Python program. The 

analysis uses a fixed-point iteration algorithm, and gradually 

builds the assignment graph, which is a structure that shows 

the assignment relations between program identifiers (Sec-

tion III-A). In a language supporting higher-order program-

ming, the assignment graph is an essential component that we 

use for resolving functions pointed to by variables. Function 

resolution takes place at the final step where we build the

1In Python, init () is the name of a special function called during

object construction.

e C Expr ::= o | x | x := e | function x (y .. . )  e | return e | 
e(x=e.. . )  | class x (y .. . )  e | e.x | e.x := e | 
new x (y =  e . . . ) | import x from m as y |
iter x  | e;e 

o C Obj ::= n, v 

v C D efinition ::= x ,T  

t  C IdentType ::= func | var | cls | mod
n C Namespace ::= (v )*
x ,y  C Identifier ::= is the set o f program identifiers 

m  C Modules ::= is the set o f modules
E  ::= [] | x := E  | return E  | E (x  =  e . . . ) |

o(x =  E . . . ) | new x(y=E) | E.x | E.x := e | 
o.x := E  | iter o | E;e | o;E

Fig. 3: The syntax for representing the input Python programs 

along with the evaluation contexts.

call graph for the given program by exploiting the assignment 

graph stemming from the analysis step (Section III-B).

A. The Core Analysis
The starting point of our approach is to compute the assign-

ment graph using an inter-procedural analysis working on an 

intermediate representation targeted for Python programs.

One of the key elements of our analysis is that it examines 

attribute accesses based on the namespace where each attribute 

is defined. For example, consider the following code snippet:

1 class A :
2 def func ():
3 pass
4
5 class B :
6 def func ():
7 pass
8
9 a = A()
10 b = B()
11 a. func()
12 b . func()

Our analysis is able to distinguish the two functions defined 

at lines 2 and 6, because they are members of two different 

classes, i.e., class A and B respectively. Note that field-based 

approaches focused on JavaScript [14] will fail to treat the two 

invocations as different, causing imprecision. That is because 

a field-based approach will match all accesses of identical 

attribute names (e.g., f u n c ( ) ) with a single object.

1) Syntax: The intermediate representation, where our anal-

ysis works on, follows the syntax of a simple imperative and
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n € AssignG = Obj ^  P (Obj) 
s € Scope = Definition ^  P (Definition) 
h € ClassHier = Obj ^  Obj *
a  € State = AssignG  x Scope x Namespace x ClassHier 

Fig. 4: Domains of the analysis.

object-oriented language, which is shown in Figure 3. The last 

rule in this figure also shows the evaluation contexts [23] for 

this language, which we will explain shortly.

An important element of this model language is identifiers. 

Every identifier can be one of the following four types: 

(1) func corresponding to the name of a function (2) var 

indicating the name of a variable, (3) cls for class names, 

and (4) mod when the identifier is a module name. Every 

pair (x ,t ) € Identifier x IdentType forms a definition. We 

represent every definition and its namespace as an object (see 

the Obj rule). A namespace is a sequence of definitions, 

and it is essential for distinguishing objects sharing the same 

identifier from each other. For example, consider the following 

Python code fragment located in a module named m ain.
1 var = 10
2 class A :
3 var = 10

The analysis distinguishes the objects created at lines 1 and 3, 

as the first one resides in the namespace [(main,mod)], while 

the second one lives in the namespace [(main,mod), (A,cls)].

Our approach treats every object as the value given from 

the evaluation of the expressions supported by the language. In 

particular, our representation contains expressions that capture 

the inter-procedural flow, assignment statements, class and 

function definitions, module imports, and iterators / generators 

(see the Expr rule). Note that the language is able to abstract 

different features, including lambda expressions, keyword ar-

guments, constructors, multiple inheritance, and more.

As with prior work focusing on JavaScript [15], [16], 

[24], we use evaluation contexts [23] that describe the order 

in which sub-expressions are evaluated. For example, in an 

attribute assignment E . x  := e, the E  symbol denotes that we 

are currently evaluating the receiver of the attribute x , while 

o.x := E  indicates that the receiver has been already evaluated 

to an object o € Obj (recall that evaluating expressions results 

in objects), and the evaluation now proceeds to the right-hand 

side of the assignment.

Remarks. When calling Python functions that produce a 

generator (i.e., they contain a y i e l d  statement instead of 

r e tu r n ) ,  these calls take place only when the generator 

is actually used. To model this effect, when encountering 

such lazy calls (e.g., gen  = l a z y _ c a l l ( x ) ), we create 

a thunk (e.g., gen  = lam b d a : l a z y _ c a l l ( x ) ) that is 

evaluated only when we iterate the generator (through the iter 

construct). Furthermore, dictionaries and lists are treated as 

regular objects. For example, we model a dictionary lookup 

x [ " k e y " ] , as an attribute access x.key.
2) State: After converting the original Python program to 

our intermediate representation, our analysis starts evaluating 

each expression, and gradually constructs the assignment 

graph. To do so, the analysis maintains a state consisting

of four domains as shown in Figure 4, namely, scope, class 

hierarchy, assignment graph, and current namespace.
A scope is a map of definitions to a set of definitions. 

Conceptually, a scope is a tree where each node corresponds 

to a definition (e.g., a function), and each edge shows the 

parent/child relations between definitions, i.e., the target node 

is defined inside the definition of the source node. The domain 

of scopes is useful for correctly resolving the definitions that 

are visible inside a specific namespace. Figure 5a illustrates 

the scope tree of the program depicted in Figure 1, and 

shows all program definitions and their inter-relations. Orange 

nodes correspond to module definitions, red nodes are class 

definitions, black nodes indicate functions, while blue nodes 

denote variables. Based on this scope tree, we infer that the 

function a p p ly  is defined inside the class C ry p to , which is 

in turn defined inside the module c r y p to ,  i.e., notice the path 

c r y p to  ^  C ry p to  ^  a p p ly . This domain enables us to 

properly deal with Python features such as function closures 

and nested definitions.

A class hierarchy is a tree representing the inheritance 

relations among classes. An edge from node u  to node v  

indicates that the class u is a child of the class v. The 

analysis uses this domain for resolving class attributes (either 

methods or fields) defined in the base classes of the receiver 

object. Through this domain we are able to handle the object- 

oriented nature of Python, addressing features such as multiple 

inheritance, and the method resolution order.

The assignment graph is defined as a map of objects 

to an element of the power set of objects P (O bj). This 

graph holds the assignment relations between objects, cap-

turing the assignments and the inter-procedural flow of the 

program. Figure 5b illustrates the assignment graph cor-

responding to the program of Figure 1. Each node in 

the graph (e.g., { c r y p t o .C r y p t o .a p p l y ,  fu n c} ) rep-

resents an object. The first component of the node label (e.g., 

c r y p t .C r y p t o .a p p l y )  indicates the namespace where 

each identifier (e.g., fu n c )  is defined. Colors reveal the type 

of the identifier as explained in a previous paragraph (e.g., 

the blue color implies variable definitions). An edge shows 

the possible values that a variable may hold. For example, 

the variable fu n c  defined in the c r y p t o .C r y p t o .a p p l y  

namespace may point to the functions d e c r y p t  and 

e n c r y p t ,  both defined in the c r y p to p s  namespace. 

As another example, notice the edge originating from the 

node { c r y p t o .C r y p t o .a p p l y ,  msg} and leading to 

{ c r y p to ,  e n c ry p te d } . This edge shows that the param-

eter msg of the function c r y p t o .C r y p t o .a p p l y  points 

to the variable e n c r y p te d  when the function is invoked on 

line 12. The assignment graph domain enables us to address 

the challenge regarding higher-order programming in Python.

Finally, we use the current namespace to track the location 

where new variables, classes, modules, and functions are 

defined. This domain is important for establishing a more 

precise analysis than field-based analysis employed by prior 

work. Through namespaces, objects and attribute accesses are 

distinguished based on their namespace, addressing challenges
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crypto.Crypto.apply, fune crypto, cryptops

cryptops, encrypt cryptops, decrypt

Crypto

(b) The assignment graph of the c ry p to  module. 

Fig. 5: Analyzing the c r y p to  module.

cryptops

such as duck typing.

3) Analysis Rules: The analysis examines every expression 

found in the intermediate representation of the initial program, 

and transitions the analysis state according to the semantics of 

each expression. The algorithm repeats this procedure until the 

state converges, and the assignment graph is given by the final 

state of the analysis.

Figure 6 demonstrates the state transition rules of our 

analysis. The rules follow the form:

(n, s, n, h, E[e]} ^  (n ', s ', n ', h ', E[e']}

In the following, we describe each rule in detail.

According to the [E-CTX] rule, when we have an expression 

e in the evaluation context E , an assignment graph n, a scope 

s, a namespace n, a class hierarchy h, we can get an expression 

e' in the evaluation context E , if the initial expression e 

evaluates to e'. For what follows, the binary operation x  • y 

stands for appending the element y to the list x .

The [COMPOUND] rule states that when we have a com-

pound expression consisting of two objects oi, o2, we return 

the last object o2 as the result of the evaluation. Observe that 

the evaluation of the compound expression requires each sub-

term to have been evaluated to an object according to the 

evaluation contexts shown in Figure 3. The rest of the rules 

also follow this behavior.

The [IDENT] rule describes the scenario when the initial 

expression is an identifier x . In this case, the analysis retrieves 

the object o corresponding to the identifier x , in the namespace 

n, based on the scope tree s. To do so, the analysis uses the 

function g e tO b je c t ( s ,  n, x ) , which iterates every element 

y of the namespace n  in the reverse order. Then, by examining 

the scope tree s, it checks whether the element node y has 

any child matching the identifier x . In case of a mismatch, 

the function g e tO b je c t  proceeds to the next element of the 

namespace. Notice that the [IDENT] rule does not have any 

side-effect on the analysis state.

The [ASSIGN] rule assigns the object o to the identi-

fier x . First, the analysis adds the identifier x  in the cur-

rent namespace n  of the scope tree s, using the function 

a d d S c o p e (s , n, x , t ) . This function adds an edge from the

node accessed by the path n  to the target node given by 

the definition (x ,t ). Second, this rule updates the assignment 

graph by adding an edge from the object corresponding to the 

left-hand side of the assignment (i.e., o') to that of the right- 

hand side (i.e., o). This update says that the variable x  defined 

in the namespace n  can point to the object o.

[FUNC] updates the scope tree. In particular, it adds the 

function x  to the current namespace n, leading to a new scope 

tree s'. Then, it creates a new namespace n ' by adding the 

function definition (x , func) to the top of the current names-

pace. It adds all function parameters, and a virtual variable 

named r e t —which stands for the variable holding the return 

value of the function—to the newly-created namespace n'. 

This results in a new scope tree s (3). Finally, the analysis 

proceeds to the evaluation of the body of the function x  in 

the fresh namespace n ', i.e., observe that the rule evaluates 

to E[e]. The new namespace n ' correctly captures that any 

variable defined in e, is actually defined in the body of the 

function.

[RETURN] assigns the object o to the virtual variable r e t ,  

which is used for storing the return value of a function (recall 

the [FUNC] rule). To do so, the analysis updates the assignment 

graph by adding a new edge from the object o' corresponding 

to the return variable r e t  to the object o which is the operand 

of return. Finally, this rule evaluates to the object o' related 

to the return virtual variable r e t .

The inter-procedural flow is captured by the [CALL] rule. 

Specifically, when we encounter a call expression o1(y =  

o2 . . . ) , we examine the callee object oi associated with 

a function f  defined in a namespace n '. Then, the rule 

connects every parameter of f  with the appropriate argu-

ment passed during function invocation (e.g., the counter-

part object of the parameter y at call-site is o2), leading 

to a new assignment graph n '. As an example, consider 

again the graph of Figure 5b. The outgoing edges of the 

{ c r y p t o .C r y p t o .a p p l y ,  fu n c}  node are created by 

this rule. These edges imply that the parameter fu n c  of the 

c r y p t o .C r y p t o .a p p l y  function may hold the functions 

c r y p t o p s . e n c r y p t  and c r y p t o p s .d e c r y p t  passed 

when calling c r y p t o .C r y p t o .a p p l y  (Figure 1).
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E-CTX
(n, s, n, h, e} ^  (n ; , s; , n ; , ft/, e; ) 

(n ,s ,n ,h ,E [e ]}  (n / ,s / ,n / , f t / ,E [e /j)

c o mp o u n d

(n, s, n , h, E [o i ; 02]} (n, s, n, h, E [o2]}

IDENT
o =  g e tO b je c t(s, n, x )

(n , s, n , h, E [x ]} (n, s, n, h, E [o]}

ASSIGN
s/ =  addScope(s, n, x, var)

o/ =  (n, (x, va r)) n / =  n [o/ n (o/ ) U { o}]

(n , s, n, h, E [x :=  o]} (n / , s/ , n , h, E [o/ ]}

FUNC
s/ =  addScope(s, n , x, func) 

n / =  n  - (x, func) s// =  addScope(s/ , n / , r e t , var)

s(3) =  addScope(s/ / ,n / ,y , var)

(n , s, n, h, E fu n ctio n  x (y . . . ) e]} (n , s(3), n / , h, E [e]}

RETURN
o/ =  (n  - x, ( r e t, v a r)) n / =  n [o/ n (o/ ) U { o}]

(n, s ,n  - x, h, E [re turn  o]} (n / , s, n, h, E [o/ ]}

CALL
o i =  (n / , (f ,  func))

o2 =  (n ; - f ,  (y, va r)) =  n [o2 ^  n (o2) U { o2}]

(n, s, n, h, E [o i (y =  o2 . . . )]} (n / ,s ,n ,  h, (n / - f ,  ( r e t, v a r))}

CLASS
s/ =  addScope(s, n , x, cls) t  =  (g e tO b je c t(s , n, b) | b E (y . . . ) }

h / =  h [(n, (x, cls)) t ] n / =  n  - (x, cls)

(n, s, n, h, E [class x ( y . . . ) e] } (n, s/ , n / , h/ , E [e] }

ATTR
o/ =  g e tC la s s A ttrO b je c t(o ,x ,h )

(n, s, n, h, E [o.x] } (n, s, c, h, E [o/ ]}

NEW
o3 =  g e tO b je c t(s ,n ,x ) 

o2 =  g e tC la s s A ttrO b je c t(o 3, __in i t __, h)

(n, s, n , h, E [new x(y =  o i . . . ) ] } (n ,s , n , h, E [o2(y =  o i . . . ); o3] }

ATTR-ASSIGN
o3 =  g e tC la s s A ttrO b je c t(o i,  x ,h ) n / =  n [o3 n (o3) U { o2 }]

(n , s, n , h, E [o i.x  :=  o2]} (n / , s, n, h, E [o3]}

impo r t
o2 =  g e tO b je c t(s , m, x ) s/ =  addScope(s, n, y, var)

o i  =  (n , (y, va r)) n / =  n [oi  n (o i)  U { o2}]

(n, s, n, h, E [im port x from  m  as y ] } (n / , s/ , n , h, E [o i ] }

ITER-ITERABLE
o/ =  g e tC la s s A ttrO b je c t(o ,__n e x t__, h )

(n, s, n, h, E [ite r o]} (n, s, n , h, E [o/ ( ) ]}

ITER-GENERATOR
g e tC la s s A ttrO b je c t(o ,__n e x t__, h ) =  undefined

(n, s, n, h, E [ite r o] } (n, s, n, h, E [o( ) ]}

Fig. 6: Rules of the analysis.

The [CLASS] rule handles class definitions. The rule first 
adds the class x  to the scope tree through the function 
addScope() , and then gets every object related to the base 
classes of x  (i.e., y ...). To achieve this, the rule consults 
the scope tree in the namespace n, and gets a sequence of 
objects t that respects the order in which base classes are 
passed during class definition. We later explain why keeping 
the registration order of base classes is important. The rule then 
updates the class hierarchy so that the freshly-defined class x  is 
a child of the base classes pointed to by the identifiers ( y . . .) .

After this, the analysis works on the body of the class e in 
a new namespace n'. The new namespace contains the class 
definition to the top of the current namespace (i.e., n • (x , cls)). 
Then, the analysis starts examining the body of the class using 
the new namespace.

The [ATTR] rule is similar to [ ID EN T]. However, this 
time, in order to correctly retrieve the object corresponding 
to the attribute x  of the receiver object o, the analysis 
examines the hierarchy of classes h through the function 
g e t C la s s A t t r O b je c t ( o ,  x , h ) . This is the point where 
our analysis is able to distinguish attributes according to the 
location (i.e., o) where they are defined.

To deal with multiple inheritance, the function 
g e t C l a s s A t t r O b j e c t ( )  respects the method resolution 
order implemented in Python. For example, consider the 
following code snippet.

1 c la s s  A :
2 d e f func ( ) :
3 pass
4
5 c la s s  B :
6 d e f func ( ) :
7 pass
8
9 c la s s  C (B, A ):

10 pass
11
12 c = C()
13 c . fu n c ()

In the example above, the method resolution order is C ^  
B  ^  A, because the class B is the first parent class of C, 
while A is the second one. As a result, c . f u n c ( )  leads to 
the invocation of function func  defined in class B, as it is the 
first matching function whose name is func  in the method 
resolution order. Correctly resolving class members explains 
why the domain of the class hierarchy maps every object to 
a sequence of objects rather than a set—we need to track the 
order in which the parents of a class are registered.

For object initialization, we introduce the [NEW] rule. This 
rule gets the object o3 associated with the definition of the 
class x . Using the g e t C l a s s A t t r O b j e c t ( )  function, the 
rule inspects the method resolution order of the object o3 to
find the first object o2 matching the function __i n i t __.
Recall that this function is called whenever a new object 
is created. Observe how the new evaluates; it reduces to 
o2(y =  o1. . . ) ;  o3. That is, we first call the constructor of 
the class with the same arguments passed as in the initial 
expression (i.e., o2(y =  o1)), and then we return the object o3 
corresponding to the class definition, which is eventually the 
result of the new expression.

The rule for attribute assignment o1.x := o2 describes 
the case when the attribute x  is defined somewhere in 
the class hierarchy of the receiver object o1 . In this case, 
g e t C l a s s A t t r O b j e c t ( )  returns the object o3 associated 
with this attribute, and the rule updates the assignment graph 
so that o3 points to the object o2 from the right-hand side 
of the assignment. I f  the attribute is not defined in the class 
hierachy, (i.e., g e t C l a s s A t t r O b j e c t ( )  returns X) the 
attribute assignment is similar to [ASSIGN], i.e., we first add
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Algorithm 1: Call Graph Construction

Input : p  € Program 

a  € State
Output: cg € CallGraph 

1 foreach e in Program do
2
3
4
5
6
7
8 
9

10
11
12  end
13 return cg

while e 0  Obj do
{a  E [e]> ^  {̂ ,,E [e']>
if ej  =  oi (y =  0 2 ... ) then // Call Expression 

(n, s, n • f , h )  ̂  a ' 
c ^  getReachableFuns(n, oi) 
o3 ̂  getObject( s, n, f )
cg ^  cg[0 3  ̂  cg( 03 ) U c] // Add Call Edges

end
e <— ej

end

the attribute x  to the current scope through a d d S c o p e ( ) , 

and then update the graph. This case is omitted for brevity.

When we encounter an import x  from m  as y expression, we 

retrieve the object o2 corresponding to the imported identifier 

x , which is defined in the module m. Then, we create an alias 

y for x . To do so, we add y to the scope tree of the current 

namespace, and update the assignment graph by adding an 

edge from the object of y to that of x . Through this rule, we 

are able to deal with Python’s module system.

Consuming iterables and generators is supported through 

the iter x  expression. When the identifier x  points to an 

iterable, (i.e., the object pointed to by x  has an attribute named

__n e x t __ ), we get the object o' related to  n e x t __ . Then,

iter evaluates to a call of o'() (see the [ITER-ITE R A B LE] rule). 

If this is not the case, we treat x  as a generator ([ITE R- 

GENERATOR]). In this case, iter reduces to a call of x (). Recall 

from Section III-A1 that we model generators as thunks, 

therefore this scenario describes the evaluation of these thunks 

(generators) when they are actually used (iterated).

Remark about analysis termination. The analysis tra-

verses expressions, and transitions the analysis state based 

on the rules of Figure 6, until the state converges. The 

analysis is guaranteed to terminate, because the domains are 

finite. Even in the presence of the domain of class hierarchy 

h e  C lassH ier (Figure 4), which is theoretically infinite, 

the analysis eventually terminates, because a Python program 

cannot have an unbounded number of classes.

B. Call Graph Construction

After the termination of the analysis, we build the call graph 

by performing a final pass on the intermediate representation 

of the given Python program. Algorithm 1 describes the details 

of this pass. The algorithm takes two elements as input: (1) a 

program p  e  Program of the model language whose syntax is 

shown in Figure 3, and (2) the final state a  e  S tate  stemming 

from the analysis step. The algorithm produces a call graph:

cg e  CallGraph =  Obj ^  P (O bj)

The graph contains only objects associated with functions. An 

element o e  Obj mapped to a set of objects t e  P (Obj) 
means that the function o may call any function included in t.

The algorithm inspects every expression e found in the 

program (line 1), and it evaluates e based on the state transition 

rules described in Figure 6. The algorithm repeats the state 

transition rules, until e eventually reduces to an object (lines 

2, 3). Every time when e reduces to a call expression of 

the form o1 (y =  o2 . . . ) (line 4), the algorithm gets the 

namespace where this invocation happens and retrieves the 

top element of that namespace (see n  • f , line 5). After that, 

the algorithm gets all functions that the callee object o1 may 

point to. To do so, it consults the assignment graph through the 

function g e t R e a c h a b l e F u n s ( n ,  o1), which implements a 

simple Depth-First Search (D FS) algorithm and gets the set of 

functions c that are reachable from the source node o1. In turn, 

the algorithm updates the call graph cg by adding all edges 

from the top element of the current namespace to the set of 

the callee functions c (lines 7, 8). In other words, the object o3 
(line 7) representing the top element of the namespace, where 

the call occurs, is actually the caller of the functions pointed 

to by the object o1 .
C. Discussion & Limitations

One of our major design decisions is to ignore conditionals 

and loops. For instance, when we come across an i f  state-

ment, our analysis over-approximates the program’s behavior 

and considers both branches. This design choice enables 

efficiency without highly compromising the analysis precision 

(as we will discuss in Section V). Other static analyzers [9]- 

[11] choose to follow a more heavyweight approach and reason 

about conditionals. These static analyzers, though, do not 

solely focus on call-graph construction, but rather they attempt 

to compute the set of all reachable states based on an initial 

one. However, for call-graph generation, providing such an 

initial state that exercises all feasible paths (which is required 

in order to compute a complete call graph), especially when 

analyzing libraries, is not straightforward.

In Python where object-oriented features, duck typing [22], 

and modules are extensively used, it is important to separate 

attribute accesses based on the namespace where each at-

tribute is defined. This design choice boosts—contrary to prior 

work [14]—the precision of our analysis without sacrificing its 

scalability.

Our analysis does not fully support all of Python’s features. 

First, we ignore code generation schemes, such as calls to the 

e v a l  built-ins. In general, such dynamic constructs hinder the 

effectiveness of any static analysis, and dynamic approaches 

are often employed as a countermeasure [25], [26]. Second, 

our approach does not store information about variables’ built- 

in types, and does not reason about the effects of built-in 

functions. Therefore, attribute calls that depend on a specific 

built-in type (e.g., l i s t . a p p e n d ( ) ) are not resolved, while 

the effects of functions such as g e t a t t r  and s e t a t t r  are 

ignored. Third, we can only analyze modules for which their 

source code has been provided. When a function—for which
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its code definition is not available—is called, our method will 

add an edge to the function, but no edges stemming from 

that function will ever be added, and its return value will be 

ignored.

IV. Im p l e m e n t a t i o n

We have developed PyCG, a prototype of our approach 

in Python 3. For each input module, our tool creates its 

scope tree and its intermediate representation by employing 

the symtable [27] and ast [28] modules respectively.

Our prototype discovers the file locations of the different 

imported modules to further analyze them by using Python’s 

importlib module. This is the module that Python uses in-

ternally to resolve import statements. We perform two steps. 

First, the file location of the imported module is identified, and 

then a loader is used to import the module’s code. In Python 

one can define custom loaders for import statements, which 

allowed us to use a loader that logs the file locations discovered 

and then exit without loading the code. Then, in the second 

step, our tool takes over and uses the discovered file’s contents 

to iterate its intermediate representation in a recursive manner. 

This allows us to resolve imports in an efficient way. Currently, 

we only analyze discovered modules that are contained in the 

package’s namespace.

V. Ev a l u a t i o n

We evaluate our approach based on three research questions: 

RQ1 Is the proposed approach effective in constructing call 

graphs for Python programs? (Sections V-B and V-C) 

RQ2 How does the proposed approach stand in comparison 

with existing open-source, static-based approaches for 

Python? (Sections V-B and V-C)

RQ3 What is the performance of our approach? (Section V-D) 

Further, we show a potential application through the enhance-

ment of GitHub’s “security advisory” notification service.

A. Experimental Setup
We use two distinct benchmarks: (1) a micro-benchmark 

suite containing 112 minimal Python programs, and (2) a 

macro-benchmark suite of five popular real-world Python 

packages. We ran our experiments on a Debian 9 host with 16 

C PUs and 16 G Bs of R A M .

1) Micro-benchmark Suite: We propose a test suite for 

benchmarking call graph generation in Python. Based on this 

suite, researchers can evaluate and compare their approaches 

against a common standard. Reif et al. [29] have provided a 

similar suite for Java, containing unique call graph test cases, 

grouped into different categories.

Our suite consists of 112 unique and minimal micro-

benchmarks that cover a wide range of the language’s features. 

We organize our micro-benchmarks into 16 distinct categories, 

ranging from simple function calls to more complex features 

such as twisted inheritance schemes. Each category contains 

a number of tests. Every test includes (1) the source code, (2) 

the corresponding call graph (in JSON format), and (3) a short 

description. Categorizing and adding a new test is relatively

TABLE I: Micro-benchmark suite categories.

Category #tests Description

parameters 6 Positional arguments that are functions

assignments 4 Assignment of functions to variables
built-ins 3 Calls to built in functions and data types
classes 22 Class construction, attributes, methods

decorators 7 Function decorators
dicts 12 Hashmap with values that are functions
direct calls 4 Direct call of a returned function (func()())

exceptions 3 Exceptions
functions 4 Vanilla function calls
generators 6 Generators
imports 14 Imported modules, functions classes
kwargs 3 Keyword arguments that are functions
lambdas 5 Lambdas
lists 8 Lists with values that are functions
mro 7 Method Resolution Order (m r o )
returns 4 Returns that are functions

easy. The source code of each test implements only a single 

execution path (i.e., no conditionals and loops) so there is 

a straightforward correspondence to its call graph. Table I 

lists the categories along with the number of benchmarks they 

incorporate and a corresponding description.

Addressing Validity Threats: The internal validity of 

the micro-benchmark suite depends on the range of Python 

features that it covers. To address this threat, we presented 

the suite to two researchers, who have professionally worked 

as Python developers (other researchers have applied similar 

methods to verify their work [30]). Then, we asked them to 

rank the suite (from 1 to 10) based on the following criteria:

1) Completeness: Does it cover all Python features?

2) Code Quality: Are the tests unique and minimal?

3) Description Quality: Does the description adequately de-

scribe the given test case?

The first reviewer provided a 9.7 ranking in all cases. The 

second indicated an excellent (10) code and description quality 

but ranked lower (6) the completeness of the benchmarks.

Both reviewers provided corresponding feedback. In their 

comments, they suggested some code cleanups and asked for 

more comprehensive descriptions on some complex bench-

marks. Regarding the completeness of the suite, they pointed 

out missing tests for some common features such as built-in 

functions and generators. We applied the reviewers’ sugges-

tions by refactoring the affected benchmarks and improving 

their descriptions. Furthermore, we implemented more tests 

for some of the missing functionality.

2) Macro-benchmarks: We have manually generated call 

graphs for five popular real-world packages. The packages 

were chosen as follows. First, we queried the GitHub API 

for Python repositories sorted by their number of stars. Then, 

we downloaded each repository and counted the number of 

lines of Python code. If the repository contained less than 

3.5k lines of Python code, we kept it. Table II presents the 

GitHub repositories we chose along with their lines of code, 

GitHub stars and forks, together with a short description.

Currently, there is no acceptable implementation generating 

Python call graphs in an effective manner, so the first author 

manually inspected the projects and generated their call graphs 

in JSON format, spending on average 10 hours for each project.
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TABLE II: Macro-benchmark suite project details.

Project LoC Stars Forks Description
fabric 3,236 12.1k 1.8k Remote execution & deployment
aut o j u m p 2,662 10.8k 530 Directory navigation tool
a s c i i n e m a 1,409 7.9k 687 Terminal session recorder
face c l a s s i f i c a t i o n 1,455 4.7k 1.4k Face detection & classification
Su b l i s t 3 r 1,269 4.4k 1.1k Subdomains enumeration tool

TABLE III: Micro-benchmark results for PyCG and Pyan. 
Depends is unsound in all cases and complete in 110/112 cases 

and is omitted.

Category PyCG
Complete Sound

Pyan
Complete Sound

assignments 4/4 3/4 4/4 4/4

built-ins 3/3 1/3 2/3 0/3

classes 22/22 22/22 6/22 10/22

decorators 6/7 5/7 4/7 3/7

dicts 12/12 11/12 6/12 6/12

direct calls 4/4 4/4 0/4 0/4

exceptions 3/3 3/3 0/3 0/3

functions 4/4 4/4 4/4 3/4

generators 6/6 6/6 0/6 0/6

imports 14/14 14/14 10/14 4/14

kwargs 3/3 3/3 0/3 0/3

lambdas 5/5 5/5 4/5 0/5

lists 8/8 7/8 3/8 4/8

mro 7/7 5/7 0/7 2/7

parameters 6/6 6/6 0/6 0/6

returns 4/4 4/4 0/4 0/4

Total 111/112 103/112 43/112 36/112

We opted for medium sized projects (less than 3.5k LoC), so 

that we could minimize human errors. To further verify the 

validity of the generated call graphs, we examined the output 

of PyCG Pyan, and Depends and identified 90 missing edges 

from a total of 2506.

B. Micro-benchmark suite results

The benchmarks included in the micro-test suite have a 

limited scope and are designed to cover specific functionalities 

(such as decorators and lambdas). Table III lists the results of 

our evaluation. For each benchmark belonging to a specific 

category, we show if our prototype and Pyan generated com-

plete or sound call graphs. Note that a call graph is complete 

when it does not contain any call edges that do not actually 

exist (no false positives), and sound when it contains every 

call edge that is realized (no false negatives).

PyCG produces a complete call graph in almost all cases 

(111/112). In addition, it produces sound call graphs for 103 

out of 112 benchmarks. The lack of soundness is attributed 

to not fully covered functionalities, i.e., Python’s starred 

assignments.

Pyan produces either complete or sound call graphs at 

a much lower rate. However, for assignments, Pyan turns 

out as a more sound method because it supports them in a 

better manner. We performed a qualitative analysis on the 

call graphs generated by Pyan to check the reasons behind 

its performance. We observed that Pyan produces incomplete 

call graphs because it creates call edges to class names as well

as th e ir__ i n i t __ methods (see also Section II-B). Also it

generates imprecise results because it does not support all of

TABLE IV: Macro-benchmark results and tool comparison.

Project

PyCG

Precision (%)

Pyan Depends PyCG

Recall (%)

Pyan Depends
a u t o j u m p 99.5 66.5 99.2 68.2 28.5 22.5
f a bric 98.3 100 61.9 6.3
a s c i i n e m a 100 98.1 68 15.5
face c l a s s i f i c a t i o n 99.5 86.8 96.2 89.7 7.6 5.7
S u b l i s t 3 r 98.8 69.8 100 61.6 25.6 21.9
Average 99.2 74.4 98.7 69.9 20.6 14.4

Python’s functionality, (0/6 generators and 0/3  exceptions), 

ignores the inter-procedural flow of functions (0/6 parameters 

and 0/4  returns), misses calls to imported ones (4/14), and 

fails to support classes (10/ 22).

The evaluation of Depends shows both its fundamental 

strengths and limitations. Recall that each benchmark imple-

ments a single execution path and includes a call coming from 

the module’s namespace. Our results indicate that Depends 

does not identify calls from module namespaces, and therefore 

soundness is never achieved (0/112). In terms of completeness, 

Depends achieves an almost perfect score (110/112) due to its 

conservative nature—i.e., it adds an edge when it has high 

confidence that it will be realized.

C. Macro-benchmark results
By using our macro-benchmark, we have examined the three 

tools in terms of precision and recall. Precision measures 

the percentage of valid generated calls over the total number 

of generated calls. Recall measures the percentage of valid 

generated calls over the total number of calls. To do so, we 

manually generated the call graphs of the examined packages.

Table IV presents our results. The missing entries for 

Pyan indicate that the tool crashed during the execution. Our 

findings show that PyCG generates high precision call graphs. 

On all cases, more than 98% of the generated call edges are 

true positives, while on one case none of the generated call 

edges are false positives. Recall results show that on average, 

69.9% of all call edges are successfully retrieved. The missing 

call edges are attributed to the approach’s limitations (recall 

Section III-C), and missing support for some functionalities.

Pyan shows average precision and low recall. Pyan’s aver-

age precision appears because the tool adds call edges to class

names instead of just the ir__ i n i t __ methods. Also, it does

not track the inter-procedural flow of functions, which is the 

reason why it has low recall. For instance, the implementation 

of the f a c e _ c l a s s i f i c a t i o n  package mostly depends 

on functions declared in external packages. Pyan ignores such 

calls which in turn leads to a 7.6% recall.

Finally, Depends shows high precision (98.7%) and low 

recall. The high precision of Depends can be attributed to 

its conservative nature. Furthermore, Depends does not track 

higher order functions and does not include calls coming from 

module namespaces. This in turn, leads to its low recall.

D. Time and Memory Performance
We use the macro-benchmark suite as a base for our time 

and memory evaluation. Table V presents the time and memory 

performance metrics of the three tools. The execution time was 

calculated using the UNIX time command, while the memory
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TABLE V: Time and memory comparison.

Project Time (sec) Memory (MB)

PyCG Pyan Depends PyCG Pyan Depends
a u t o j u m p 0.76 0.42 2.37 62.7 37.8 27.1
f a bric 0.77 1.83 60.9 18.5
a s c i i n e m a 0.87 2 61.6 19.4
face c l a s s i f i c a t i o n 0.92 0.38 2.49 60.9 35.3 25.6
S u b l i s t 3 r 0.51 0.33 2.01 60 35.8 19.4
Average 0.77 0.38 2.14 61.2 36.3 22

consumption was measured using the UNIX pmap command. 

The metrics presented are the average out of 20 runs.

The results show that Pyan is more time efficient, and that 

Depends is more memory efficient. PyCG and Pyan generate 

a call graph for the programs in the benchmark (<  3.5k LoC) 

in under a second, while Depends requires more than two 

seconds on average. Furthermore, all tools use a reasonable 

amount of memory, with PyC G, Pyan and Depends using on 

average ~61.2, ~36.3 and ~22M Bs of memory respectively. 

Overall, PyCG is on average 2 times slower than Pyan, and 

uses 2.8 times the amount of memory that Depends uses. 

We attribute the differences in execution time between Pyan 

and PyCG to the fact that Pyan performs two passes of the 

AST in comparison to PyCG performing a fixpoint iteration 

(Section III). Depends is overall slower, because it spends 

most of its execution time parsing the source files. In terms of 

memory, Pyan and Depends store less information about the 

state of the analysis leading to better memory performance.

E. Case Study: A Fine-grained Tracking o f Vulnerable Depen-
dencies

GitHub sends a notification to the contributors of a repos-

itory when it identifies a dependency to a vulnerable library. 

However, this notification does not indicate if the project 

invokes the function containing the defect. We show that PyCG 

can be employed to enhance the service with method-level 

information that may further warn the contributors.

To highlight the usefulness of our method in this context, 

we performed the following steps. First we accessed GitHub’s 

“Advisory Database” [31]. Then, we searched for vulnerable 

Python packages sorted by the severity of the defect. In many 

occasions the accompanying CVE (Common Vulnerabilities 

and Exposures) entries did not include further details about 

the defects. We disregarded such instances and focused on the 

first two cases that provided information about the functions 

that contained the vulnerability: (1) PyYAML [32] (versions 

before 5.1), a YAML parser affected by CVE-2017-18342 [33], 

and (2) Paramiko [34] (multiple versions before 2.4.1), an 

implementation of the SSHv2 protocol affected by CVE-2018- 

7750 [35]. Both packages were imported by thousands of 

projects, 9226 for PyYAML and 1097 for Paramiko. We could 

not clone all dependent repositories because some were private 

and others did not exist any more: we managed to download 

570 PyYAML and 322 Paramiko dependent projects. Then, we 

ran our tool on each project and generated corresponding call 

graphs for 106 out of the 570 PyYAML dependent projects 

and 76 out of the 322 Paramiko dependent projects—the 

projects that PyCG failed to generate call graphs were written

in Python 2. Finally, we queried the generated call graphs to 

check if the vulnerable functions were included. We found that 

the vulnerable function in PyYAML (i.e., l o a d )  was invoked 

by 42/106 projects. In Paramiko we found that the problem 

method ( s t a r t _ s e r v e r )  was not utilized at all by any of the 

76 projects. We also observed that 12 projects did not invoke 

any library coming from Paramiko. Paramiko was needlessly 

included in the requirement files of the dependents. That was 

not a false negative from our part: we manually checked that 

PyCG did not miss any invocation.

VI. Re l a t e d  W o r k

Call Graph Generation. Methods that generate call graphs 

can be either dynamic [36], or static [37]. Dynamic approaches 

usually produce fewer false positives, but suffer from perfor-

mance issues. Also, they are able to analyze a single execution 

path, and their effectiveness relies on the program’s input. 

Static approaches are more time efficient and can typically 

cover a wider range of execution paths, trying to capture all 

possible program’s behaviors. Several approaches [38]-[40], 

try to combine the two so they can get improved results.

There are plenty of methods and tools targeting call graph 

generation for statically-typed programming languages such as 

Java. DOOP [41] and WALA [42] follow a context-sensitive, 

points-to analysis method. PADDLE [43], a similar approach, 

employs Binary Decision Diagrams (BDDs) [44]. Finally, 

OPAL [45] is a lattice-based approach written in Scala. Ali 

et al. [46], implement CGC, a partial call graph generator for 

Java, with the main focus being efficiency. They ignore calls 

coming from externally imported libraries, and only analyze 

the source code of a given package. We are currently following 

a similar approach, but we aim to efficiently analyze external 

dependencies in the future.

Moving to dynamic languages, Ali et al. [47] convert Python 

source code into JVM bytecode, and use the existing imple-

mentations for Java [42], [48], [49] to generate its call graph. 

However, they argue that generating precise call graphs using 

this method is infeasible, and sometimes the output has more 

than 96% of false positives. pycallgraph [50] generates Python 

call graphs by dynamically analyzing one execution path. 

Thus the analysis is not practical and one should pair it with 

another method (e.g., fuzzing) to retrieve meaningful results. 

On the JavaScript front, Feldthaus et al. [14] implement a 

flow-based approach for the generation of call graphs. They 

evaluate against call graphs generated by a dynamic approach 

paired with instrumentation, achieving > 66% precision and 

> 85% recall. Other JavaScript call graph generators include, 

IBM WALA [42], NPM call graph [51], Google closure com-

piler [52], Approximate Call Graph (ACG) [14], and Type 

Analyzer for JavaScript (TAJS) [9]. TAJS implements a lattice- 

based flow-sensitive approach using abstract interpretation. 

Although, such an approach yields more promising results, 

it comes with a performance cost.

Call Graph Benchmarking and Comparison. Reif et 

al. present Judge [29], a toolchain for analyzing call graph 

generators for Java. At its core, the toolchain contains a test
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suite with benchmarks for a range of Java features. The authors 

then proceed to compare Java call graph generators, namely 

Soot [48], [49], WALA [42], DOOP [41] and OPAL [45]. Sui et 

al. [53], also present a test suite of Java benchmarks, and they 

use it to evaluate and compare Soot [48], [49], WALA [42], 

and DOOP [41]. The above benchmark suites are very similar, 

leading to Judge consolidating them into one benchmark suite. 

Recall our very similar implementation of a micro-benchmark 

suite from Section V-A.

Static Analysis for Dynamic Languages. Numerous ad-

vanced frameworks aim for the static analysis of JavaScript 

programs. SAFE [10] provides a formally specified static 

analysis framework with the goal of being flexible, scalable 

and pluggable. JSA I [11] is a formally specified and provably 

sound platform using abstract interpretation.

Other JavaScript approaches target different aspects of its 

functionality. Madsen et al. implement RADAR [54] a tool that 

identifies bugs in event-driven JavaScript programs. Sotiropou- 

los et al. [15] propose an analysis targeting asynchronous 

functions. Bae et al. [55], implement SA FEWAPI a tool aimed 

at identifying possible API misuses. Park et al. [56] propose 

SAFEWApp, a static analyzer for client-side JavaScript.

Fromherz et al. [57] implement a prototype that soundly 

identifies run-time errors by evaluating the data types of 

Python variables through abstract interpretation. In compar-

ison, our approach does not infer the data types of variables 

and focuses on the generation of call graphs.

VII. Co n c l u s i o n

We have introduced a practical static approach for 

generating Python call graphs. Our method performs a 

context-insensitive inter-procedural analysis that identifies the 

flow of values through the construction of a graph that stores 

all assignment relationships among program identifiers. We 

used two benchmarks to evaluate our method, namely a micro- 

and a macro-benchmark suite. Our prototype showed high 

rates of both precision and recall. Also, our micro-benchmark 

suite can serve as a standard for the evaluation of future 

methods. Finally, we applied our approach in a real-world 

case scenario, to highlight how it can aid dependency impact 

analysis.
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