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Abstract—We introduce, what is to the best of our knowledge, 
the first approach for systematically testing Object-Relational 
Mapping (ORM) systems. Our approach leverages differential 
testing to establish a test oracle for ORM-specific bugs. Specifi-
cally, we first generate random relational database schemas, set 
up the respective databases, and then, we query these databases 
using the APIs of the ORM systems under test. To tackle the 
challenge that ORMs lack a common input language, we generate 
queries written in an abstract query language. These abstract 
queries are translated into concrete, executable ORM queries, 
which are ultimately used to differentially test the correctness 
of target implementations. The effectiveness of our method 
heavily relies on the data inserted to the underlying databases. 
Therefore, we employ a solver-based approach for producing 
targeted database records with respect to the constraints of the 
generated queries. We implement our approach as a tool, called 
CYNTHIA, which found 28 bugs in five popular ORM systems. 
The vast majority of these bugs are confirmed (25 / 28), more 
than half were fixed (20 / 28), and three were marked as release 
blockers by the corresponding developers.

Index Terms—Object-Relational Mapping, Differential Testing, 
Automated Testing

I. In t r o d u c t i o n

Object-Relational Mapping (ORM) is an established pro-
gramming technique [1], [2], [3] that has emerged as a solution 
to the Object-Relational Impedance Mismatch problem [4], 
[5]. ORM provides an object-oriented interface atop relational 
databases. Through that, the objects of a program can be 
easily saved and retrieved from the secondary storage without 
requiring boilerplate code for mapping application data to 
database records. ORM not only boosts developer productivity 
and reduces maintenance costs [4], [6], but also promotes 
portability because it abstracts away differences of Database 
Management Systems (DBMS) [4], [6].

Currently, there is a plethora of ORM implementations: 
through a simple Github search, one runs into more than 50 
ORM frameworks, written for almost every language. Indica-
tive examples include Django and SQLAlchemy for Python, 
Hibernate for Java, ActiveRecord for Ruby, and Sequelize for

JavaScript. These systems are used by millions of applica-
tions [7] and are adopted by many popular organizations, such 
as Dropbox, Gitlab, and OpenStack [8], [9], [10].

Despite their wide industrial adoption, the automated testing 
of ORM systems is an overlooked problem. Current testing 
efforts mainly use manually-written test suites, which, as we 
demonstrate, are often insufficient for ensuring the correctness 
of ORM implementations. Yet, ORM implementations are 
complex [4] (typically consist of thousands lines of code) and, 
unfortunately, involve a high density of bugs. For example, 
the ORM implementation in the Django web framework is 
the component that suffers from the most bugs [11]: 23% of 
the reported bugs in Django are related to the ORM compo-
nent, and they are significantly more than the reported bugs 
associated with the secondly affected component (8%). Such 
ORM bugs lead to incorrect interactions with the underlying 
database and cause frustrating crashes [12], wrong store and 
retrieval of data [13], and even security vulnerabilities [14], 
[15].

To detect bugs in ORM implementations, we propose a 
differential testing approach. At a high-level, our approach 
exercises ORM systems by constructing equivalent queries 
written in the target ORM implementations, and then compares 
query results for mismatches. We begin by generating a ran-
dom database schema used to set up databases across multiple 
DBMSs. We test the functionality of ORMs by querying 
the databases using each ORM's API. However, since ORM 
systems do not share a common input format, we design an 
abstract query language which is close to ORM APIs. This 
allows us to build expressive queries that exercise diverse func-
tionality combinations across ORM implementations. Finally, 
we use ORM-specific translators to convert abstract queries 
into concrete ones, which are executable in the corresponding 
ORM implementations.

Our differential testing approach is data-oriented: beyond 
queries, it is the data inserted to the underlying databases 
that affect the effectiveness of the testing efforts. We em-
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1 f ro m  django.db im p o r t  models
2 c l a s s  Person(models.Model):
3 age = models.IntegerField()
4 name = models.CharField(max_length=20)
5 ...
6 pi = Person(age=31, name="John")
7 pi.save()
8 p2 = Person.objects.get(age=32)
9 p2.delete()

Fig. 1: Example CRUD operations using the Django ORM.

ploy a solver-based approach for generating targeted database 
records with respect to the constraints of the generated ab-
stract queries. This improves the effectiveness of differential 
testing because it minimizes the number of queries where 
ORMs return empty results. Our approach goes beyond the 
existing body of work in compiler and programming language 
testing [16], [17], [18], [19], [20], and addresses several 
challenges specific to ORM systems, such as lack of a common 
input, data generation, database schema generation, or DBMS 
setup. Specifically, we make the following contributions:
• We introduce the first automatic, data-oriented differential 

testing approach for ORM system implementations.
• We implement C Y N TH IA, an extensible open-source frame-

work for systematically testing well-established ORM im-
plementations.

• We provide experimental evidence showing that our solver- 
based approach is an effective technique to generate data 
that are useful for differential testing.

• We use CYN THIA to test five popular ORM systems on four 
widely-used database engines, and find 28 unique bugs. The 
vast majority of these bugs are confirmed (25 / 28), more 
than half were fixed (20 / 28), and three were marked as 
release blockers by the corresponding developers.

Availability. Our system, C Y N TH IA, is available as open- 
source software under the GNU General Public License v3.0 
at https://github.com/theosotr/cynthia. The research artifact is 
available at https://doi.org/10.5281/zenodo.4455486.

II. Ba c k g r o u n d  & Mo t i v a t i o n  

We provide a brief overview of object-relational mapping 
and an illustrative example of bugs that our approach can 
detect in the related tools and frameworks. Then, we briefly 
explain why we adopt differential testing for detecting these 
bugs. Finally we enumerate the main challenges associated 
with differential testing of object-relational mapping systems.

A. Object-Relational Mapping Systems
Object-Relational Mapping provides an abstraction over 

relational data that enables programmers to interact with their 
databases through the object-oriented programming paradigm. 
In this context, a database schema (tables and their inter-
relationships) is abstracted through classes, called models, and 
the associated database records are represented via objects 
of these classes. ORM systems then provide a rich API for 
basic Create, Read, Update, and Delete (CRUD) operations 
on database records as well as more advanced features, such 
as transaction management or query caching.

1 qi = T1.objects.using("mysql")
2 q2 = T2.objects.using("mysql")
3 q3 = T3.objects.using("mysql")
4 //ProgrammingError: "You have an error in your

SQL syntax"
5 qi.union(q2).union(q3)
6 // Generated SQL
7 (SELECT 'tl'.'id' FROM 't1')
8 UNION (
9 (SELECT 't2'.'id' FROM 't2')
10 UNION
11 (SELECT 't3'.'id' FROM 't3'))

Fig. 2: Django generates MySQL query with invalid syntax.

Figure 1 shows an example of database interactions using 
the Django ORM system [9]. The code first declares a class 
that maps to a table and to its associated columns in the 
underlying database (lines 2-4). Using this class, the code 
then runs simple queries. Specifically, the code creates a class 
object (line 6), and based on this object, creates a new database 
record by calling the s a v e ( )  method (line 7). Then, the code 
fetches a single record from the database matching certain 
criteria (line 8), and then deletes this record (line 9).

ORM system APIs provide a higher level of abstraction that 
hides the mechanics of SQL queries from the programmer. For 
example, the s a v e ( )  method results in an SQL IN S E R T  

statement, which remains transparent to the programmer.

B. Bugs in Object-Relational Mapping Systems
To motivate the design of our testing approach, we discuss 

two indicative bugs found in well-established ORM systems.
Bug in Django. Consider the Django query shown in 

Figure 2 (lines 1-5). This query first fetches the records 
of tables t i , t 2 , and t 3  (lines 1-3), and it then per-
forms a chain of unions (line 5) in order to combine the 
results of the individual queries. When we run this Django 
code on MySQL (version 8.0.4), Django produces and runs 
the SQL query shown on lines 7-11. This SQL query is 
invalid on MySQL and the Django program crashes with 
a django.db.utils.ProgrammingError: (1064, “Error in SQL 
syntax; check the manual that corresponds to your MySQL 
server version for the right syntax to use near ’UNION’”). 
This bug was detected by our approach, and was confirmed 
by the Django developers.

When the Django code shown in Figure 2 is run on another 
DBMS, such as SQLite or PostgreSQL, Django produces a 
valid SQL query. Such inconsistencies indicate that ORM bugs 
may appear (or not) depending on the underlying DBMS. 
Although DBMSs share common functionality, they differ 
significantly from each other [21]. Therefore, an ORM needs 
to abstract away such differences and take care of running the 
same ORM code on different DBMSs reliably. Unfortunately, 
this complicates the design of ORMs: bugs may occur when 
an ORM fails to produce a valid SQL query with respect to a 
certain DBMS.

Bug in peewee. Figure 3 shows another ORM bug detected 
by our approach. On lines 1-3, the code creates a simple 
query using the peewee ORM. The query defines a simple
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1 expr = (1 + T.col)
2 squared = (expr * expr)
3 T.select(fn.sum(expr), fn.avg(squared)).all()
4 // Generated SQL
5 SELECT SUM(1 + "t"."col"),
6 AVG(1 + "t"."col" * 1 + "t". "col")
7 FROM "t" AS "t"

Fig. 3: Logic error detected in peewee ORM.

expression e x p r  given by the addition of a table’s column 
with 1 (line 1). The code then forms a simple query that 
applies the function SUM to e x p r , and AVG to the square of 
e x p r  (lines 2, 3). The peewee ORM translates this high-level 
query into the incorrect SQL query shown on lines 5-7. In this 
SQL query, the expression passed to the aggregate function 
AVG is not in the expected format because the sub-expressions 
are not wrapped in parentheses: peewee incorrectly produces 
A V G(1 +  col * 1 +  col) instead of A V G((1 +  col) * (1 +  col)). 
This bug was confirmed and fixed by the peewee developers 
immediately after our report.

Unlike the Django bug discussed earlier, this peewee bug is 
more subtle: Although peewee generates a grammatically and 
semantically valid SQL query, this query produces incorrect 
results. Unlike crashes, such subtle bugs cannot be detected 
through a naive fuzzing approach. This explains our primary 
design choice to adopt differential testing.

C. Differential Testing of ORM Systems
To find bugs similar to the ones discussed above, we need 

to systematically determine whether the SQL query generated 
by an ORM system is correct or not. To do so, we need to 
define a test oracle. Nevertheless, establishing a test oracle for 
ORM-specific bugs is not straightforward. For example, we are 
unable to decide whether the SQL query generated by Django 
(Figure 2) is incorrect, unless we have domain knowledge 
that nested unions are indeed supported by MySQL, and 
therefore, it is a bug from Django which failed to produce 
a grammatically correct SQL query involving nested unions. 
Worse, there is no an easy way to tell that the peewee bug of 
Figure 3 is buggy. Although this query runs successfully on 
all DBMSs, we cannot be sure that this query indeed fetches 
the expected results from the database.

To address the test oracle problem, we employ differential 
testing[22], a generally-applicable method for testing equiv-
alent implementations. Differential testing provides us with 
an oracle as follows. We feed the same test input (e.g., 
query) to two equivalent implementations (e.g., Django and 
peewee), and then compare their results. A mismatch found 
in the results of the implementations under test indicates a 
potential bug in at least one of them. For example, through 
differential testing, we run the query associated with nested 
unions (Figure 2) on MySQL, this time using the API of 
peewee. Peewee executes the given query on MySQL without 
errors. This helps us to identify that there is a bug in Django 
implementation. Similarly, for the peewee query shown in 
Figure 3, we construct its counterpart written in Django, only 
to see that Django and peewee produce different results.

D. Challenges
Our approach is inspired by prior work on compiler and 

programming language testing [16], [17], [18], [19], [20], a 
domain where differential testing has been successfully used 
in the past. However, applying differential testing on ORM 
systems is not straightforward, and it involves several new 
challenges.

Challenge 1: Lack of a common specification and input 
language. ORM systems do not implement a common spec-
ification or standard. Therefore, differences in ORM results 
may be due to valid but inconsistent implementations and not 
due to actual bugs. Furthermore, each ORM offers its own 
APIs and, to make matters worse, these APIs may even be 
exposed through different programming languages. As a result, 
differential testing cannot be uniformly applied to test ORM 
systems in a straightforward manner.

Challenge 2: Non-deterministic query results. In some 
ORM systems, it is possible to write a query that leads to an 
SQL statement that produces a non-deterministic result, i.e., 
the result depends on the implementation of the underlying 
DBMS. An example of such query is when the results are not 
ordered. In this case, the DBMS is free to return results in any 
order. Another example is when the resulting SQL query has 
a column a and an aggregate function in the S E L E C T  part, 
but the query does not define a GROUP BY clause on the 
column a . According to the SQL standard, selecting a column 
and an aggregate function, without specifying a GROUP BY 

clause leads to an ambiguous query whose results are not 
deterministic. To compare the results of the ORM systems 
under test in a meaningful way, we have to deal with this 
non-determinism.

Challenge 3: DBMS-dependent results. As shown previ-
ously (Figure 2), there are ORM bugs that are DBMS-specific, 
i.e., the bugs are triggered only when the ORM code works 
on a certain DBMS. To effectively capture such bugs, we need 
to differentially test the ORM systems on multiple DBMSs. 
At the same time, though, differences between the underlying 
DBMSs (e.g., two DBMSs may have different semantics on 
arithmetic expressions) must not affect the comparisons of 
ORMs. Finally, for performing safe comparisons, the ORM 
code needs to run on a common reference, i.e., the ORM 
queries need to run on the same database.

Challenge 4: Data generation. Beyond ORM queries, we 
have to generate appropriate data to populate the databases 
so that ORM systems produce non-trivial results in response 
to given queries. In this way, we can reveal logic errors that 
cause ORMs to fetch the wrong data from the database. For 
example, it is impossible to detect the peewee bug of Figure 3 
when the underlying database contains no records.

III. Te s t i n g  Ap p r o a c h

Our approach for testing ORMs is automated as shown 
in Figure 4. It takes as input the ORM systems to test, 
and the DBMSs where the ORM queries will run. Schema 
Generation is an initial phase where we generate a number of 
relational database schemas. During the Setup phase, we build
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Fig. 4: Overview of our approach for automatically testing ORMs.
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the different databases—one for each provided DBMS—with 
respect to the schema generated during the first step. Then, 
we proceed to the Abstract Query Generation phase which in-
volves the generation of queries written in the Abstract Query 
Language (AQL). We design this language to abstract ORM- 
and SQL-specific details and provide a common reference for 
testing ORMs, thus addressing “Challenge 1”. By design, AQL 
queries never lead to ambiguous ORM queries (“Challenge 
2”). However, AQL queries may be unordered. In this case, we 
interpret query results as a set of rows rather than a sequence 
(see also Section III-D). In the Concretization of Abstract 
Query phase we use ORM-specific translators to translate each 
query into a concrete one. To deal with “Challenge 4” and 
minimize the number of cases where ORMs produce empty 
results, we synthesize database records using a solver-based 
approach. In the last step, i.e. Bug Detection, we execute the 
ORM queries on diverse DBMSs, and compare their results. A 
mismatch in the outputs indicates a potential bug in at least one 
ORM. Notably, testing the ORM code across different DBMSs 
enables us to find DBMS-dependent bugs (“Challenge 3”).

A. Schema Generation & Setup
We generate a number of schemas that capture the structure 

of the databases on which each ORM under test operates. Each 
schema s is a collection of tables and their associated columns. 
Each column has a type that can be a serial (primary key of 
the table), a number (i.e., integer or real), a string, or foreign t 
which indicates a table’s relationship with another table t of 
the schema. We omit schema details such as indexes, views or 
column constraints (e.g., unique), as these constructs do not 
affect the querying and translation mechanisms of ORMs, and 
therefore, are beyond the scope of this paper.

Our method randomly generates a user-defined number of 
schemas. For each table, the schema generation algorithm 
creates a serial column named “id” that stands for the primary 
key of the table, to guarantee that each record in the table 
is unique and that there is no ambiguity in the data inserted 
into the table. The remaining fields of the table are randomly 
generated (optionally based on a deterministic procedure).

We use the schemas generated in the previous step to set up 
and instantiate the respective DBMSs and ORMs. To set up 
DBMSs, we automatically construct an SQL script containing 
all CREATE TABLE statements for creating the tables defined 
in a provided schema along with their columns. Then, we

q £  Q u e ry  : :=  eval qs | qs[i] | qs[i : i] | fo ld  { ( l : a e) + } qs
qs £ Q u e ry S e t : : =  n ew  t | ap p ly  A qs | qs U qs

| qs Pi qs
A £ F u n c : : =  filter  p | m ap  d | u n iq u e  0 

| sort (0 asc) | sort (0 desc)

d £ F ie ld D e c l  : : =  l : e | h id d en  l : e | d; d 
p £ P r e d  : : =  0 0  e | p A p | p V p | —p
e £ E x p r  : : =  c | 0 | a e  | e +  e | e — e | e * e | e/e
0 £ F ie ld  : : =  t.c | l | 0.c 

a £ A g g rF u n c  : :=  cou n t | su m  | avg  | m a x  | m in  

0  £ B in a r y O p  : : =  =  | > | >  | < | <

| con ta in s  | startsw ith  | en d sw ith

Fig. 5: The syntax of the Abstract Query Language (AQL).

automatically generate the models for each ORM under test 
by examining the structure of the newly-created databases. 
To this end, we leverage tools used to ease ORM porting 
to existing databases. These tools make a connection to an 
existing database, introspect its structure, and automatically 
construct the respective ORM model classes. An example of 
such tool is the command m anage.py  in s p e c td b  found 
in the Django project [23].

B. Abstract Query Generation

Following the Schema Generation & Setup phases, we 
start a testing session for each individual schema. A testing 
session involves the generation of multiple valid queries (with 
respect to the provided schema) that are likely to reveal bugs 
in the ORMs under test. These queries are represented in 
the Abstract Query Language (AQL), which is close to the 
APIs and the functionality of ORMs, and provides a wide 
range of operations (through a functional notation) that are 
commonly supported by the querying mechanism of ORMs. 
AQL operations include filtering, sorting, aggregate functions, 
creation of compound expressions, field aliasing, or union 
and intersection of queries. By contrast, raw SQL dialect 
is too low-level and many ORMs are not aware of SQL 
constructs. Also, the SQL language is not rich enough to 
express and capture the different API calls of ORMs. For 
example, the same SQL query can be produced by calling 
different combinations of ORM’s API methods. Since our 
focus is on detecting bugs in ORMs by exercising different 
combinations of their API calls, we design AQL.

1) Abstract Query Language: Figure 5 shows the syntax of 
AQL. A query in AQL is the evaluation of a query set (eval qs).
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1 apply (filter "addCol" > 5
2 apply (map "addCol": tl.colA + t1.t2.colB
3 new tl))
4
5 SELECT t2.colA + t2.colB AS "addCol"
6 FROM tl as "tl"
7 JOIN t2 AS "t2" ON (t1.t2_id = t2.id)
8 WHERE (t2.colA + t2.colB > 5)

Fig. 6: Example AQL query and its equivalent SQL query.

Conceptually, a query set evaluates to a set or to a sequence of 
records (in case the query set is ordered). Operations such as 
indexing or slicing, can be applied to the result of a query set, 
while AQL also supports folding. The function fold aggregates 
the result of a query set into labeled scalar values by applying 
one or more aggregate functions.

The simplest form of a query set is new t , which creates a 
new query set from the specified table t . When this query is 
evaluated, it returns all records of the table t . Then, various 
operations can be applied to a query set through the apply 
construct. In particular, AQL provides the filter p function 
that returns all records of the query set that satisfy the given 
predicate p . The map function is used to create new compound 
fields using existing fields found in the given query set. 
Specifically, map expects a sequence of field declarations of 
the form l : e. This declaration creates a new field in the 
current query set by binding the expression e to the label 
l. Optionally, a field can be marked as hidden meaning that 
it is not part of the query set, but it is used for creating 
other fields (hidden fields are similar to temporary variables). 
The function sort, sorts the provided query set according to 
the field ^ in an ascending or a descending order, while 
the unique primitive removes duplicate records with respect to 
the provided field >̂. Finally, AQL supports the combination of 
two query sets through the union and intersection operations.

A predicate consists of comparison operators (i.e., ^ © e) 
which are used to compare the value of a field ^ with the 
result of an expression e. A predicate may also contain the 
usual logical operators. An expression can be a constant c, 
a field reference >̂, an application of an aggregate function, 
or an expression derived from the usual arithmetic operators. 
Finally, a field ^ e Field may be a reference to a column of 
a table, i.e., t.c, a label l created by the map function, or a 
reference to a column of a table’s relationship (e.g., t 1.t2.c).

Figure 6 shows an example query written in AQL and its 
equivalent query written in SQL. In this AQL query, we apply 
two functions. First, we apply map to the query set given 
by n e w  t l  (lines 2-3) in order to create a new field named 
“addCol” given by the addition between the t l . c o l A  and 
t l . t 2 . c o l B  columns. Notice that since the latter column 
refers to a column of the table t 2 , which has a relationship 
with the original table t l , in SQL this is interpreted as a J O I N  

between t l  and t 2  (line 7). Finally, we apply f i l t e r  to get 
the records satisfying a d d C o l  > 5 (line 1).

Remark. AQL currently supports only read operations. The 
implementations of ORM API methods associated with read 
operations are much more complex than those related to write

Algorithm 1: Generating Abstract Queries
1 fun g en Q u e ry S e t(a, m in , m a x ) =
2 s to p C o n d  ^  a [d e p th] >  m in A (a [depth] > m a x V

ra n d B o o l())
3 if s to p C o n d then a [qs]
4 else
5 match ch o o s e F r o m (o [ q sN o d e s] ) with
6 case N e w N o d e  ̂
7 t  ^ ch o o seT a b le(o [sc h e m a ])
8 o2 ^  o[qs ^  N e w ( t ) , t  ^  t]
9 g e n Q u e ry S e t(o2++, m in , m a x )

10 case F ilte rN o d e ̂
11 p  ̂ g e n P r e d ( o++, m in , m a x )
12 o 2 ^  o [q s  ^  A pp ly (filte r , p , o [q s])]
13 g e n Q u e ry S e t(o2++, m in , m a x )
14 case ... ^

16 fun g e n P re d (a, m in , m a x ) =
17 match ch o o s e F r o m (o [ p re d N o d e s ]) with
18 case E q P re d N o d e  ̂
19 f  ^ ch o o sse F ie ld (o )
20 E q (f , g en E x p r(o++, m in , m a x ) )
21 case ... ^
22

23 fun g en E x p r(o, m in , m a x )  =
24 match ch o o seF ro m (e xp rN o d es) with
25 case F ie ld R e fN o d e ̂
26 F ie ld (ch o o seF ie ld (  o  ))
27 case ... ^

operations (a write operation is straightforwardly translated 
into IN S E R T , D E L E T E  or U PD A TE queries). Thus, examining 
read operations for finding bugs is more promising. Note 
though that AQL can be easily extended for supporting write 
queries. Also, supporting write operations would not require 
to take into account schema properties that we are currently 
ignoring (e.g., column constraints), because such properties 
affect the configuration of ORM models and not the way an 
ORM translates a write query into an SQL statement.

2) Generating AQL Queries: Algorithm 1 shows how 
we generate random AQL queries. Our algorithm generates 
queries that exercise all of the features supported by AQL, as 
well as different combinations of them. The main component 
of Algorithm 1 is the g e n Q u e r y S e t  function (lines 1-14). 
This function generates an AQL query set by recursively 
constructing a valid AST node based on the syntax of Figure 5. 
The algorithm ensures that the depth of the resulting query set 
ranges within specific limits specified by the user-provided pa-
rameters min and max (see stopCond, line 2). The parameter a 
keeps track of the state of the query set that is being generated. 
The initial state contains the schema (a[schema\) based on 
which the algorithm creates table and column references. For 
what follows, the operation a++ results in a new state where 
the value of a[depth\ is incremented.

Our algorithm first constructs a new query set (new t) that 
queries a certain table (lines 6-9). To do so, we randomly 
choose a table to query from the underlying schema (line 7). 
Then, the algorithm updates the state a  in order to properly 
build the next available AST node in the next iteration. In 
particular, it initializes the AST of the current query set to
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P (c , i ) - c

P (f , i ) - +  f i

P (ei 0  e2, i ) -g P (ei , i ) 0  P (e2 , i )
A (c ,g ) - c

A (f , g ) - P (f ,  i ) i £ g

A (count e , g ) - len(g)

A (sum e, g ) - + £  P (e, i )
ieg

A (avg e, g ) - (E  P  (e , i ))/ len(g)
i e g

A (max e , g ) - A max(e, g)
A (min e , g ) - A min(e, g)

A (ei 0  e2 , g ) - g  A (ei , g ) 0  A (e2 , g )

(P (e , i )  g =  {i}

max(e,g) =  < ite(P(e, i) >  P (e ,  j ) , P ( e , i ) , P ( e , j ) )  g =  {i, j}

I ite(P (e ,  i) >  max(e, g ') ,  P (e ,  i) , max(e, g ') )  g =  i - g' 
min(e, g) =  . . .

Fig. 7: Translating AQL expressions into SMT formulae.

New(t), while it sets the queried table to t (line 8). Then, it re-
cursively calls g e n Q u e r y S e t  to construct the next available 
AST nodes (line 9). For example, on lines 10-13, the algorithm 
applies filter to the current query set given by a[qs]. To achieve 
this, the algorithm randomly generates a predicate p using the 
function g e n P r e d  (lines 11, 16-21), and then extends the 
AST of the current query set to Applyfilter p, a[qs\) (line 12). 
The AQL predicates and expressions are generated in a similar 
manner (see lines 16-21, 23-27). Finally, after producing a 
valid query set qs, we randomly decide for any operations 
applied to qs, i.e., slicing, indexing, or folding.

C. Concretization of Abstract Queries

During this phase, our approach derives multiple, concrete 
ORM queries (one for each target ORM) using ORM-specific 
translators (Section III-C2). Before producing these queries, 
our method populates the underlying databases with targeted 
data in order to enable differential testing (Section III-C1).

1) Generating Database Records: We follow a solver-based 
approach for generating a small number of targeted database 
records that satisfy the constraints of a given AQL query. 
Specifically, we model an AQL query and its constraints 
into Satisfiability Modulo Theories (SMT) formulae which we 
pass to a theorem prover. The theorem prover then solves the 
given SMT formulae and generates assignments that stand for 
the records inserted into the database. This approach improves 
the effectiveness of differential testing, as the corresponding 
ORMs will likely return non-empty results which in turn, can 
be used for detecting discrepancies in ORM outputs. In the 
following, we explain how we model an AQL query to SMT 
formulae.

Modeling table columns. We introduce a sequence of 
variables for every column of the queried table. Each variable 
in this sequence, namely xj, represents the value of the column 
x in the ith record of the table, where 1 < i < n, and n 
is a specified number of records inserted into the database. 
After declaring these variables, we model the uniqueness of the

table’s id. To this end, we introduce the following constraint: 
idi =  idj for 1 < i < n, where idi  refers to the id of the i th 
record. Now, for what follows, F ( t1, t 2)i  is the value of the 
foreign key defined in t 1 and refers to the table t2, in the i th 
record of t 1, while V  (t) gives the set of columns defined in 
table t, except for its id column.

Modeling joins. An AQL query may refer to columns 
defined in tables joined with the initial one. We traverse 
the AST of the given AQL query to identify such column 
references and compute the set of joins. For example, when 
encountering the t 1 .t2 .c reference, we know that there is join 
from table t 1 to t2. After computing the set of joins, we 
introduce new variables for the columns of every joined table 
as we did for the root table. Then, for a join between two tables 
t 1, t2, we create the following constraints, for 1 < i < j  < n:

•  F  (tG ^ i  = id(t2)i
•  F ( t1, t2)i  = F ( t1, t2) j  ^  A v e V (t2) vi =  vj
The first constraint indicates that the foreign key of the source 
table t 1 must be the same with the id of the target table t 2 for 
all the records of t 1 . The second constraint denotes that when 
there are two records in t 1 , namely i and j  , where the values 
of the foreign keys for t 2 are equal, all column values of the 
joined table t 2 must be also equal in the respective rows (e.g., 
vi  = vj  for v e V(t2)). The last constraint ensures that two 
records of t 2 with the same id are identical.

Modeling AQL predicates. We model AQL predicates 
using two different ways, depending on whether the given 
predicate contains expressions consisting of an aggregate 
function (e.g., sum) or not. The simplest case is when a 
predicate does not contain an aggregate function. Such a 
predicate operates on all the records of the table. Converting 
a non-aggregate predicate is straightforward. For example, we 
convert the AQL equality predicate t.c =  e into:

3i. t.ci  = P (e, i) for 1 < i < n 

In the above formula, t.c i  is the SMT variable that represents 
the value of the column t.c in the i th record of the table, while 
the function P(e, i) encodes the given AQL expression e into 
a logical formula as shown in Figure 7. The above logical 
formula encodes the constraint that there must be at least one 
record in the table where the value of the column t.c is equal 
with the value of the expression e.

An AQL predicate containing an aggregate function works 
on aggregated data formed by groups of records, and is 
conceptually similar to a condition that appears in the H A V IN G  

clause of an SQL query. To model such predicates as logical 
formulae, we first create a set G, consisting of a specified 
number of groups of records. Each group g e G includes all 
records that are identical based on a set of grouping fields 
GF. To compute the set of grouping fields GF, we traverse 
the AST of the given AQL query and add all column references 
that are not passed to an aggregate function. We then generate 
constraints so that the records of the same group are identical 
with respect to each field found in GF. Finally, we model 
aggregate predicates and their AQL expressions using the
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1 import os, django
2 from django.db.models import *
3 os.environ.setdefault("DJANGO_SETTINGS_MODULE",
4 "djangoproject.settings")
5 django.setup()
6 from project.models import *
7
8 addCol = F("colA") + F("t2__colB")
9 q = Tl.objects.using("sqlite")\
10 .annotate(addCol=addCol).filter(addCol gt=5)\
11 .values("addCol")
12 for r in q:
13 print("addCol", r["addCol"])

Fig. 8: The Django code related to the AQL query of Figure 6.

function A(e, g) as defined in Figure 7. For example, the AQL 
predicate t.a =  sum t.b is translated into:

3g e G. A(t.a, g) =  A(sum t.b, g)

In the example above, A(t.a, g) gives the SMT variable of the 
column t.a associated with a random record of the group g. 
This is because t.a is a grouping field (it is not part of an 
aggregate function) and all the records of g are the same with 
respect to the value of t.a. On the other hand, A(sum t.b, g) 
aggregates all records of the group g based on the column t.b, 
i.e., X!ieg P(t.b, i). As Figure 7 indicates, the main difference 
between the functions P (e,i) and A(e, g) is that the former 
encodes the expression e as an SMT formula with regards to 
the record i, while the latter reasons about a group of records.

Modeling Unions & Intersections. Modeling unions and 
intersections is straightforward. Each sub-query of such an 
operation (e.g., qs1 U qs2) is translated into an SMT formula 
separately. Then the individual formulae are combined through 
logical operators. For unions, we use the disjunction operator 
(V), while we use A in case of intersection.

2) From Abstract Queries to Concrete ORM Queries: A 
translator takes an AQL query, converts it into an ORM query, 
and produces an executable file that runs the ORM query 
on a specified DBMS. Hence, a translator produces multiple 
executable files, one for each provided DBMS.

Every translator consists of three components. The first 
component adds the necessary boilerplate code for running 
the ORM query (e.g., imports, creating the connection with the 
database, etc.). The second component performs the transla-
tion. Specifically, it uses the API of the corresponding ORM to 
generate the actual ORM query. The last component dumps the 
results of the query to standard output, again by using the API 
of the specified ORM. When the query produces a sequence 
of records, the translator produces code that iterates over each 
element of the sequence and prints this element to standard 
output. To properly dump a record, the translator emits code 
that prints the value of every field defined in the AQL query. 
For example, when the query contains an application of map, 
the translator produces code that prints the value of every non-
hidden field defined in map. When the given query does not 
apply map, then the id of the fetched records is printed. Finally, 
for queries returning scalar values (i.e., fold), the translator 
emits code that prints these scalar values.

Figure 8 shows the executable file that corresponds to the 
AQL query of Figure 6 and is produced by the Django trans-
lator. Notice that this file runs the Django query on SQLite. 
Lines 1-6 contain the necessary setup code for running the 
query, the actual Django query is on lines 8-11, while on 
lines 12-13, we print the results of the query.

D. Bug Detection
The last step of our testing approach is to run the exe-

cutables produced by the translators and compare the output 
of these executables for mismatches. To do so, we run every 
executable and capture its standard output and standard error.

Our approach makes DBMS-specific comparisons: the out-
put of a query q written in ORM o1 and run on DBMS 
x is compared against the same query q written in another 
ORM o2 and run on the same DBMS x. We do this because 
certain query features may be unsupported by some DBMS 
(e.g., MySQL does not support intersection queries.) Based 
on the above, our approach identifies mismatches and flags 
them as bugs, when one of the following conditions holds: 
(1) the same query written in two different ORMs produces 
different results on the same DBMS, or (2) a query written in 
a certain ORM runs successfully on a specific DBMS, but the 
same query written in another ORM fails on the same DBMS. 
The second condition allows us to detect cases where an ORM 
produced either a grammatically or semantically invalid SQL 
query with regards to a certain DBMS.

Remark. To make safe comparisons between unordered 
queries, our approach first sorts the outputs of these queries, 
and then compares them.

E. Implementation Details
We have implemented our data-oriented testing approach as 

a Scala command-line tool called C Y N TH IA.1 The interface 
of CYN THIA takes as input the names of the ORMs to test 
along with a set of DBMS on which CYN THIA runs the ORM 
code. The tool implements the steps described in Figure 4. 
For efficiency, CYN THIA processes testing sessions and ORM 
queries in parallel using Scala futures [24]. Optionally, CYN-
THIA may also receive a random seed (i.e., a number) from 
the user to make the testing procedure deterministic.

CYN THIA also provides a replay mode, which is used to 
replay a testing session (i.e., repeat the execution of existing 
AQL queries) for either debugging purposes or experiment-
ing with different settings (e.g., running existing queries on 
different DBMSs). Finally, to generate database records, our 
tool uses the Z3 theorem prover [25], configured with a user- 
specified timeout.

Regarding the implementation effort of ORM translators, 
each translator consists of roughly 300-400 lines of Scala 
code. Every translator traverses the AST of AQL queries and 
emits code that uses the API of the corresponding ORM. 
Adding a new translator is guided by extending and imple-
menting an abstract Scala class.

! In Greek mythology, Cynthia was the epithet of Artemis, the goddess of 
the hunt.
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TABLE I: The ORM systems examined in our evaluation.

ORM Language LoC(k) Stars(k) Used By(k)

ActiveRecord (Rails) Ruby 49.2 46.2 1400
Django Python 37.7 51.3 466
Sequelize JavaScript 25.3 22.6 211
SQLAlchemy Python 150 2.6 182
peewee Python 7.6 7.7 10

IV. Ev a l u a t i o n

We seek answers to the following research questions:

RQ1 Is CYN THIA effective in finding new bugs in established 
ORM systems? (Section IV-B)

RQ2 What are the characteristics of the bugs discovered by 
C Y N TH IA? (Section IV-C)

RQ3 Is solver-based approach effective in generating appro-
priate data for differential testing? (Section IV-D)

A. Experimental Setup
Target ORM systems. We applied CYNTHIA to the five 

ORM systems listed in Table I. We selected these ORMs based 
on the following criteria:
• Usage: the ORM should be established and widely-used.
• High-level Logic: the ORM should expose a high-level API 

that abstracts SQL-specific details.
• Automation: the ORM must provide tools for easy setup and 

utilities for generating model classes (recall Section III-A).

According to the Github’s statistics, all ORMs incorporated 
in our evaluation are used by millions of applications. For 
example, ActiveRecord, which is part of the Rails web frame-
work, is employed by more than 1400k Github repositories. 
Further, many popular applications and services rely on them. 
For example, “Nova”, OpenStack’s cloud computing service, 
uses SQLAlchemy for interacting with the database. Finally, 
exposing high-level APIs from programmers can be prone to 
bugs / errors [26]. Notably, Django, which provides the most 
expressive API has the most bugs as we will see later.

DBMS. We ran the ORM queries on four DBMSs: SQLite, 
MySQL, PostgreSQL, and Microsoft’s SQL Server (MSSQL). 
The first three DBMSs are extensively used by the open- 
source community and are supported by all the examined 
ORMs. Although MSSQL is supported by a subset of ORMs 
(i.e., Django, SQLAlchemy, Sequelize), we selected it because 
is one of the most popular proprietary DBMSs.

Cynthia Configuration. We ran CYN THIA on a regular 
basis, and tested the “master” version of the selected ORMs. 
In each run, CYN THIA generated five random schemas. After 
setting up the databases, CYN THIA spawned a testing ses-
sion, and processed each testing session separately until a 
specific timeout was reached (eight hours). For every query, 
Z3 produced 5 records, while we set the solver timeout to 5 
seconds. After each run, we manually inspected the reported 
mismatches for new bugs, and report them to the developers.

B. RQ1: New Bugs Found
CYN THIA found 28 bugs in total, out of which, 20 were 

fixed by the developers, 5 were confirmed but are not yet fixed, 
3 are still unconfirmed, while one confirmed bug in Django

TABLE II: Bugs detected by C Y N TH IA.

ORM Total Fixed Confirmed Unconfirmed

Django 10 6 3 1
SQLAlchemy 8 8 0 0

Sequelize 5 2 1 2
peewee 4 4 0 0

ActiveRecord 1 0 1 0
Total 28 20 5 3

TABLE III: The types of the detected bugs and the DBMSs 
where the bugs manifest themselves.

Type #Bugs All DBMS SQLite MySQL PostgreSQL M SSQL
Logic Error 12 11 0 0 0 1
Invalid SQL 11 3 1 3 2 3

Crash 5 3 0 0 2 0

Total 28 17 1 3 4 4

was previously known and marked as duplicate. Table II sum-
marizes the bug detection results. Django is the system where 
we detected the most bugs (10), followed by SQLAlchemy 
(8), Sequelize (5), peewee (4), and finally ActiveRecord (1).

71% (20 / 28) of the reported bugs have already been fixed 
by the developers demonstrating the correctness and impor-
tance of the reported issues. We were particularly impressed 
by the prompt fixes of SQLAlchemy and peewee developers: 
they fixed most of the bugs within six hours after our bug 
report. Furthermore, three Django bugs were marked as release 
blockers by the corresponding developers.

C. RQ2: Characteristics of Discovered Bugs
We classify the detected bugs into three categories. The 

first category (logic errors) contains cases where an ORM 
produced a grammatically and semantically valid SQL query, 
but this query did not fetch the right data from the database. 
The second category (invalid SQL) contains cases where an 
ORM yielded either a grammatically or semantically invalid 
SQL query. The third category (crashes) contains cases where 
an ORM crashed unexpectedly, without even producing an 
SQL query. Most of the discovered bugs (12) were logic 
ones (Table III). unlike differential testing, a naive fuzzing 
technique is unable to identify such bugs. In a significant 
number of cases (11), the ORM generated an invalid SQL 
query, while the remaining cases (5) are related to crashes.

Table III also presents how many bugs are DBMS- 
dependent. Almost all logic errors (11 / 12) are DBMS- 
independent, i.e., they appear regardless of the underlying 
DBMS. By constrast, the majority of “Invalid SQL” bugs 
are DBMS-dependent. For example, two instances of “In-
valid SQL” bugs happen when the code operates on Post- 
greSQL. Overall, 17 / 28 of the reported bugs are DBMS- 
independent. Yet, there is a large number of DBMS-dependent 
bugs (11 / 28). This validates our intuition to test ORMs across 
multiple database engines.

Based on the feature that ORMs fail to handle correctly, we 
further classify the discovered bugs into six categories.

Expression-related bugs. Expression-related bugs are the 
most common ones (7/28). This category involves cases where 
ORMs fail to produce an SQL expression that respects the
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1 Comment.new(:rating => 4)
2 Comment.new(:rating => 4)
3 # It incorrectly applies AVG

to duplicate records.
4 Comment.select(”comments.

rating”).distinct.average 
"comments.rating" )

(a) A bug in ActiveRecord associated with
D I S T I N C T .

1 // WHERE Comment.text LIKE

2 Comment.findAll({
3 where: {
4 text: {[Op.substring]: "_"}
5 })
6 })

(b) A buggy Sequelize query associated 
with incorrect string comparison.

1 cons = ExpressionWrapper(
2 Value(3),...)
3 # GROUP BY Comment.text, 3
4 Comment.objects\
5 .annotate(cons=cons)\
6 .values("cons", "text")\
7 .annotate(sum=Sum("rating"))

(c) A buggy Django query associated with 
GROUP BY.

Fig. 9: A collection of bugs discovered by C Y N TH IA.

original ORM query. As an example of this category, consider 
the peewee bug (Figure 3) discussed in Section III-D. In this 
bug, peewee produces an SQL expression (i.e., 1+col*1+col) 
that is not equivalent with the high-level peewee expression 
written by the programmer (see Figure 3, lines 1, 2).

Distinct-related bugs. D I S T I N C T  is a keyword in SQL 
that when present, it removes all duplicate records from the 
result set. ORM systems expose this functionality through a 
simple method call (typically called d i s t i n c t ( ) ). Although 
the use of this feature looks simple, we detected six bugs 
related to this functionality. Figure 9a shows a buggy query 
in ActiveRecord associated with D I S T I N C T . The intended 
functionality of this query is to fetch all the records of the table 
“Comments”, remove the duplicates, and then apply AVG to a 
column named “rating”. However, ActiveRecord produces an 
SQL query that ignores the call of d i s t i n c t , and therefore, 
it applies AVG to the entire set of records.

Combined-query-related bugs. SQL supports the com-
bination of individual queries using the U N IO N  and 
IN T E R S E C T  keywords. ORM systems support this feature 
by implementing the u n i o n  and i n t e r s e c t  methods. Five 
bugs discovered by CYN THIA are associated with this func-
tionality of ORMs. An example of this category of bugs has 
been already discussed in Section III-D (Recall Figure 2). In 
particular, Django is unable to produce a valid sequence of 
U N IO N  operations when using MySQL as the database engine.

String-comparison-related bugs. String comparisons in 
SQL are typically done via the L IK E  operator. These op-
erators expect a pattern which SQL matches the value of 
a string against. There are two characters (namely ‘%’ and 
‘_ ’) that have special semantics when used as part of a 
L IK E  pattern. For example, ‘%’ is a wildcard character that 
matches any sequence of characters. ORMs typically abstract 
L IK E  with high-level methods, such as c o n t a i n s ( ) . ORMs 
must escape the aforementioned characters when passed as 
an argument to these methods. We found four cases where 
ORMs fail to escape these characters leading to wrong string 
comparisons in the SQL part.

Consider Figure 9b that presents a bug in Sequelize. The 
Sequelize query shown in this figure attempts to fetch the 
records of “Comments” where the column “text” contains the 
character " _ " . Sequelize produces the SQL condition shown 
on line 1. Although the character " _ "  has a special meaning 
(it matches every single character), Sequelize does not escape 
it. As a result, the generated SQL query incorrectly retrieves

all the records of the table.
Aliasing-related bugs. SQL allows column aliasing through 

the A S construct. ORM systems also support aliasing. CYN-
THIA uncovered four bugs where the corresponding ORMs 
either do not construct the alias correctly, or do not make a 
reference to a legal alias.

As an example of an aliasing-related bug, 
consider the SQLAlchemy query: s e s s i o n . q u e r y (

M o d e l . c o l u m n . l a b e l ( " e x i s t s " ) )  . When running 
this query on SQLite, SQLAlchemy generates the following 
SQL code: S E L E C T  " m o d e l " . " c o l u m n "  A S e x i s t s  

FROM m o d e l . Unfortunately, this SQL query is invalid 
because “e x i s t s ” is a reserved keyword in SQLite. 
As a result, the execution of this query throws an 
“sqlite3.OperationalError: near ’’exists”: syntax error” 
message. To fix this bug, the developers of SQLAlchemy 
wrapped the reserved word with quotes (i.e., A S " e x i s t s " ).

Group-by-related bugs. The G R O U P B Y  clause is used 
when selecting or referencing a table’s column together with 
aggregated data. GROUP BY comes with some caveats that 
ORMs need to consider in order to properly handle this SQL 
feature. We ran into three bugs caused by incorrect handling 
of the GROUP BY functionality.

Consider the Django query shown in Figure 9c. Django 
builds three expressions: the constant 3 (lines 1, 5), a reference 
to the column “text”, and an aggregate function SUM applied 
to the column “rating”. Django places all non-aggregate ex-
pressions on GROUP BY as shown on line 3. Integer constants 
have special semantics when they are part of GROUP BY. For 
example, GROUP BY 3 means to group by the third expression 
of the S E L E C T  clause of the query (i.e., S U M ( " r a t i n g " ) ). 
This makes the generated SQL query invalid, leading to 
“ProgrammingError: aggregate functions are not allowed in 
GROUP BY”. The developers fixed this by ignoring constant 
expressions from the set of grouping fields.

D. RQ3: Effectiveness of Solver-Based Data Generation

For effectively identifying mismatches between the out-
puts of ORMs, it is important that ORMs return non-empty 
results for the given queries. Empty results indicate that 
the corresponding query was unsatisfied with respect to the 
data inserted to the database. Empty results can potentially 
hide logic errors that otherwise would be uncovered if the 
corresponding ORMs could get some data from the database 
and we were able to notice differences in their results.
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Fig. 10: Percentage of the unsatisfied queries per data gener-
ation strategy using a sample of 20 testing sessions.

To demonstrate the effectiveness of our solver-based data 
generation approach and its suitability for differential testing, 
we compare it against a simplistic approach that populates 
the database with random records a-priori [21], [27], i.e., it 
inserts data while setting up the tables, without considering 
the constraints of the generated queries.

We used CYNTHIA to spawn 20 testing sessions. For each 
testing session, we generated 100 queries and compared the 
results of ORMs as usual. At the end of each testing session, 
we measured in how many queries the ORMs returned empty 
results. We then replayed each testing session, using a naive 
data generation strategy, and tried out different settings: gen-
erating 50 random records, 100, 300, 500 and finally 1000.

Figure 10 illustrates the comparison results. The y-axis 
shows the percentage of the unsatisfied queries. Every box plot 
contains the observations taken from the 20 testing sessions, 
along with the median (horizontal line), the mean (black 
triangle), and the maximum and minimum values. The solver- 
based approach leads to significantly fewer unsatisfied queries 
(median: 7.5%, mean: 8.9%) than the naive approach (mean 
and median values are roughly 38% for all the different 
settings). The reason why there is still a number of unsatisfied 
queries even with the solver-based approach is because either 
the corresponding AQL query was unsatisfiable or the solver 
timed out. Regarding the naive data generation, increasing 
the number of the records inserted to the database does not 
improve the effectiveness of this method at all, i.e., generating 
50 records is almost identical to generating 1000 records.

We also tried to reproduce the discovered bugs using the 
naive data generation strategy. This strategy missed 3 out of 
the 12 logic errors previously detected by C Y N TH IA, because 
it failed to generate appropriate data for the database. In these 
cases, the differential testing was meaningless, as the ORMs 
returned empty results. We did not consider the rest categories 
(e.g., invalid SQL), as in these cases the corresponding ORMs 
produce an error message regardless of the data stored in the 
database. Overall, our findings suggest that it is the quality of 
the inserted data that matters, and not the quantity: it is better 
to produce 5 targeted records than 1000 random records.

E. Discussion & Threats to Validity
Regression Bugs. Running CYN THIA on the master version

of ORMs enabled us to find a couple of interesting regression 
bugs. Regression bugs indicate that a feature that worked 
properly in previous versions, is broken in the current im-
plementation. These bugs were of paramount importance for 
the developers. For example, Django developers marked our 
regression bugs as release blockers. Also, SQLAlchemy de-
velopers commented: “it’s very useful if you are in fact alpha 
testing it.” (i.e., master branch). We also noticed that some 
bugs that were allegedly fixed were triggered again by new 
queries. This observation was confirmed by the developers, 
who, indeed reopened and fixed old bugs reported by us.

ORMs. Although it is the de-facto framework for Python, 
the Django ORM is the system where our approach detected 
the most bugs. One may wonder why we detected so many 
bugs in Django, while we uncovered only one bug in Ac- 
tiveRecord. The reason is that Django is a more high-level 
ORM than ActiveRecord: it hides every single SQL-detail 
via its API. On the other hand, ActiveRecord’s API provides 
some functionalities that are closer to SQL. For example, 
ActiveRecord supports arithmetic operations and aliasing by 
writing plain SQL. Thus, ActiveRecord does not employ any 
sophisticated translation mechanism and in many cases, the 
input of the programmer is passed directly to the SQL code.

DBMSs. CYN THIA identified four PostgreSQL- and 
MSSQL-related bugs. These ORM bugs are triggered only 
when the DBMS is switched to PostgreSQL or MSSQL. On 
the other hand, only one ORM bug is related to SQLite. This 
happens because PostgreSQL and MSSQL are much stricter 
than SQLite (and even MySQL). For example, unlike MySQL 
and SQLite, PostgreSQL has a strict type system, and comes 
with many restrictions that ORMs need to take into account 
when producing SQL code. Also, we note that during our 
testing efforts, we discovered one bug in SQLite. The bug was 
already known and fixed in a later version of SQLite though. 
This implies that with some tuning, our approach may be also 
useful for testing DBMSs.

Threats to Validity. A threat to the internal validity of our 
approach, involves correctness bugs in the implementation of 
our translators. In this case, a mismatch in ORM results may 
be caused due to a bug in our translators and not in ORMs 
themselves. To mitigate this threat, before reporting a bug to 
the developers, the first two authors carefully examined each 
mismatch to verify that it was not generated by an error in the 
translators.

A threat to external validity is related to the representa-
tiveness of the examined ORMs. All the selected ORMs are 
popular and used by millions of applications. There is no 
fundamental limitation on supporting other ORM implemen-
tations. As our prototype gains developer traction, we will 
implement more translators (e.g., for JPA implementations).

Finally, a threat to construct validity concerns the general- 
izability of our approach. Our approach targets to find bugs 
associated with the translation of ORM API calls into SQL 
queries. An ORM though, may suffer from other kinds of 
bugs, such as performance issues, transaction management, 
or configuration of model classes.
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V. Re l a t e d  Wo r k

Quality in ORM-based Applications. A number of tools 
and studies have been proposed to improve the quality of 
ORM-based applications. Chen et al. [2] introduced a static 
analysis framework for identifying ORM queries in Java ap-
plications that degrade the response times of database engines. 
Their approach first explores the paths of the program to 
identify database accesses, and then detects performance anti-
patterns through a rule-based approach. Furthermore, their 
technique provides an assessment mechanism for prioritizing 
the fixes of the detected performance issues. Subsequent 
work [28], [29] focused on fixing performance issues through 
automated means. In particular, Singh et al. [29] introduced 
a genetic algorithm for tuning the configuration of ORM 
systems to achieve better performance. Davar et al. [28] 
proposed a refactoring framework by applying a set of known 
transformation rules to inefficient ORM-based code. Unlike 
prior work that finds issues in the ORM-based applications, our 
work is the first to find issues in the ORM implementations.

Testing of DBMSs. The work of Slutz [30] is the first to un-
cover bugs in DBMSs using a differential testing approach. To 
safely compare results, his method generates random queries 
on a small subset of the SQL language that is common across 
DBMSs. Over the past decade, there have been numerous 
approaches for generating (targeted) SQL queries in order to 
effectively test DBMSs [31], [32], [33], [34]. The most recent 
approaches are SQLsmith [35] and SQLfuzz [36], two SQL 
query generators that respectively target crashes and regression 
bugs in popular DBMSs. Our approach differs from all these 
query generators because it produces queries in a higher-level 
query language (AQL) and adopts differential testing to detect 
logic errors beyond crashes or regression bugs. Khalek et 
al. [37], [34] followed a solver-based approach for testing 
DBMSs. Their work employs a relational constraint solver to 
generate valid database records with respect to a given SQL 
query and database schema. Besides populating the database, 
their method also determines the expected results of an SQL 
query and the authors use this oracle to find bugs. We also 
use an SMT-solver to populate the database, but we specify 
the test oracle by adopting a differential testing approach.

More recently, Rigger et al. [21] proposed the Pivoted Query 
Synthesis (PQS) technique for testing database engines. PQS 
generates SQL queries so that they fetch a specific record from 
the database. In this way, PQS forms the test oracle: failing 
to fetch the expected record reveals a potential bug in DBMS. 
Unlike this work, our approach adopts differential testing for 
determining the oracle. Also, beyond reasoning about a single 
record, our approach is able to detect bugs involving operations 
on result sets (e.g., aggregate functions, sorting, distinct). In 
an attempt to find optimization bugs in database systems, 
their subsequent work introduced a metamorphic testing tech-
nique called Non-Optimizing Reference Engine Construction 
(NoREC) [27]. At a high-level, NoREC applies a semantics-
preserving transformation to a given SQL query in way that the 
various optimizations performed by the DBMS are disabled.

Finally, NoREC compares the results of the original and the 
resulting queries for mismatches. In their most recent work, 
they propose Ternary Logic Partitioning (TLP) [38]. Given 
an SQL query, TLP derives multiple queries that compute 
a partial result of the initial query, and then combines the 
results of each individual query using a U N IO N  operation. If 
the result of the combined query does not match that of the 
initial one, then a bug is found. TLP is suitable for testing the 
implementation of the W HERE, H A V IN G , D I S T I N C T  clauses, 
or aggregate functions.

All these previous approaches are tailored to testing 
DBMSs, i.e., they aim to find DBMS-specific bugs (e.g., opti-
mization bugs, bugs associated with the evaluation of WHERE 

clauses). ORM systems differ from database engines, and 
suffer from other types of bugs.

Differential Testing. Differential testing [22], [39] is a 
generally-applicable testing technique that aims to find bugs 
in software implementations by addressing the oracle prob-
lem [40]. Differential testing has been successfully applied 
to various domains, most notably compilers and runtime 
systems [16], [19], [17], [18], [20]. Following this success, 
differential testing has been applied to many other domains, 
from program analyzers, such as model checkers [41], debug-
gers [42], and symbolic execution engines [43], to probabilistic 
programming languages [44], and software libraries and ser-
vices [45], [46], [47], [48]. Inspired by this work, we also 
employ differential testing for finding bugs in ORM systems.

VI. Co n c l u s i o n

A fundamental requirement for differential testing is that the 
implementations under test must be equivalent. By introducing 
an appropriate layer of abstraction that hides the implemen-
tation differences (AQL), we showed that differential testing 
can be also applicable in systems with (seemingly) dissimilar 
interfaces, such as ORMs.

Further, we addressed an ORM-specific challenge: the gen-
eration of data that are likely to produce non-trivial results in 
response to given queries. To do so, we employed an SMT 
solver to synthesize targeted records, dependant on the con-
straints of the generated inputs. Our findings showed that when 
compared to other simplistic data generation strategies, the 
solver-based approach enhances the bug detection capability.

We demonstrated the importance and practicality of our 
approach by systematically testing five popular open-source 
ORM systems. We discovered 28 bugs, most of which have 
been fixed by the developers. The effectiveness of our method 
can be further improved by considering other forms of queries 
and functionalities, such as insert or update operations, and 
transaction management.
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