
A Dataset for GitHub Repository Deduplication
Diomidis Spinellis

Zoe Kotti
{dds,zoekotti}@aueb.gr

Athens University of Economics and Business

Audris Mockus
audris@mockus.org

University of Tennessee

ABSTRACT
GitHub projects can be easily replicated through the site’s fork
process or through a Git clone-push sequence. This is a problem for
empirical software engineering, because it can lead to skewed re-
sults or mistrained machine learning models. We provide a dataset
of 10.6 million GitHub projects that are copies of others, and link
each record with the project’s ultimate parent. The ultimate par-
ents were derived from a ranking along six metrics. The related
projects were calculated as the connected components of an 18.2
million node and 12 million edge denoised graph created by direct-
ing edges to ultimate parents. The graph was created by filtering
out more than 30 hand-picked and 2.3 million pattern-matched
clumping projects. Projects that introduced unwanted clumping
were identified by repeatedly visualizing shortest path distances
between unrelated important projects. Our dataset identified 30
thousand duplicate projects in an existing popular reference dataset
of 1.8 million projects. An evaluation of our dataset against another
created independently with different methods found a significant
overlap, but also differences attributed to the operational definition
of what projects are considered as related.

CCS CONCEPTS
• Software and its engineering→ Open source model; Soft-

ware configurationmanagement and version control systems;
• General and reference→ Empirical studies.
KEYWORDS

Deduplication, fork, project clone, GitHub, dataset

ACM Reference Format:
Diomidis Spinellis, Zoe Kotti, and Audris Mockus. 2020. A Dataset for
GitHub Repository Deduplication. In 17th International Conference onMining
Software Repositories (MSR ’20), October 5–6, 2020, Seoul, Republic of Korea.
ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/3379597.3387496

1 INTRODUCTION
Anyone can create a copy of a GitHub project through a single
effortless click on the project’s fork button. Similarly, one can also
create a repository copy with just two Git commands. Consequently,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MSR ’20, October 5–6, 2020, Seoul, Republic of Korea
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7517-7/20/05. . . $15.00
https://doi.org/10.1145/3379597.3387496

select distinct p1, p2 from (
select project_commits.project_id as p2,
first_value(project_commits.project_id) over (
partition by commit_id
order by mean_metric desc) as p1

from project_commits
inner join forkproj.all_project_mean_metric
on all_project_mean_metric.project_id =

project_commits.project_id) as shared_commits
where p1 != p2;

Listing 1: Identification of projects with common commits

GitHub contains many millions of copied projects. This is a prob-
lem for empirical software engineering. First, when data contain-
ing multiple copies of a repository are analyzed, the results can
end up skewed [27]. Second, when such data are used to train
machine learning models, the corresponding models can behave
incorrectly [2, 23].

In theory, it should be easy to filter away copied projects. The
project details provided by the GitHub API contain the field fork,
which is true for forked projects. They also include fields under
parent or source, which contain data concerning the fork source.

In practice, the challenges of detecting and grouping together
copied GitHub repositories are formidable. At the computational
level, they involve finding among hundreds of millions of projects
those that are near in a space of billions of dimensions (potentially
shared commits). The use of GitHub for courses and coursework
with hundreds of thousands of participants,1 for experimenting
with version control systems,2 and for all kinds of frivolous or
mischievous activity3 further complicates matters.

2 DATASET CREATION
An overview of the dataset’s construction process is depicted in an
extended version of this paper [39]. The projects were selected from
GitHub by analyzing the GHTorrent [11, 13] dataset (release 2019-
06-01) by means of the simple-rolap relational online analytical
processing and rdbunit relational unit testing frameworks [14].
Following published recommendations [22], the code and primary
data associated with this endeavor are openly available online,4
and can be used to replicate the dataset or construct an updated
version from newer data.

The GHTorrent dataset release we used contains details about
125 million (125 486 232) projects, one billion (1 368 235 072) indi-
vidual commits, and six billion (6 251 898 944) commits associated
with (possibly multiple, due to forks and merges) projects.

1https://github.com/rdpeng/ProgrammingAssignment2
2https://archive.softwareheritage.org/browse/search/?q=dvcsconnectortest&with_
visit&with_content
3https://github.com/illacceptanything/illacceptanything
4https://doi.org/10.5281/zenodo.3742818

https://doi.org/10.1145/3379597.3387496
https://doi.org/10.1145/3379597.3387496
https://github.com/rdpeng/ProgrammingAssignment2
https://archive.softwareheritage.org/browse/search/?q=dvcsconnectortest&with_visit&with_content
https://archive.softwareheritage.org/browse/search/?q=dvcsconnectortest&with_visit&with_content
https://github.com/illacceptanything/illacceptanything
https://doi.org/10.5281/zenodo.3742818

MSR ’20, October 5–6, 2020, Seoul, Republic of Korea Spinellis, Kotti, and Mockus

We first grouped shared commits to a single “attractor” project,
which was derived based on the geometric mean (Table all project
mean metric—125 486 232 records) of six quality attributes:5 recency
of the latest commit (Tablemost recent commit—100 366 312 records),
as well as the number of stars (Table project stars—10 317 662 records),
forks (Table project forks—6 958 551 records), commits (Table project
ncommits—100 366 312 records), issues (Table project issues—9 498 704
records), and pull requests (Table project pull requests—7 143 570
records). In addition, the project-id was used as a tie-breaker. To
avoid the information loss caused by zero values [20], we employed
the following formula proposed by del Cruz and Kref [9]:

Gϵ ,X (X) = exp

(
1
n

n∑
i=1

log (xi + δ∗)

)
− δ∗

with δ∗ calculated to have the value of 0.001 for our data. We used a
query utilizing the SQLwindow functions in order to group together
shared commits (Table projects sharing commits—44 380 204 records)
without creating excessively large result sets (see Listing 1).

To cover holes in the coverage of shared commits, we comple-
mented the projects sharing commits table with projects related
by GitHub project forks, after removing a set of hand-picked and
heuristic-derived projects that mistakenly linked together unrelated
clusters (Table blacklisted projects—2 341 896 records). In addition,
we removed from the combined graph non-isolated nodes having
between two and five edges, in order to reduce unwanted merges
between unrelated shared commit and fork clusters. The method
for creating the blacklisting table, along with the details behind the
denoising process, are explained in Section 3.

We subsequently converted projects with shared commits or
shared fork ancestry into an (unweighted) graph to find its con-
nected components, which would be the groups of related projects.
We identified connected components using theGraphViz [10] ccomps
tool (Table acgroups—18 203 053 records). The final steps involved
determining the size of each group (Table group size—2 472 758
records), associating it with each project (Table project group size—
18 203 053 records) and its metrics (Table project metrics—18 203 053
records), obtaining the mean metric for the selected projects (Table
project mean metric—18 203 053 records), and associating with each
group the project excelling in the metric (Table highest mean in
group—7 553 705 records). This was then used to create the dedu-
plication table (Table deduplicate by mean—10 649 348 records) by
partnering each project with a sibling having the highest mean
value in the calculated metrics.

3 DOWN THE RABBIT HOLE
We arrived at the described process after numerous false starts, ex-
periments, and considerable manual effort. Here we provide details
regarding the technical difficulties associated with the dataset’s cre-
ation, the rationale for the design of the adopted processing pipeline,
and the process of the required hand-cleaning and denoising.

Our manual verification of large graph components uncovered
a mega-component of projects with 4 278 791 members. Among
the component’s projects were many seemingly unrelated popular
ones, such as the following ten: FreeCodeCamp/FreeCodeCamp,

5In the interest of readability, this text replaces the underscores in the table names
with spaces.

facebook/react, getify/You-Dont-Know-JS, robbyrussell/oh-my-zsh,
twbs/bootstrap, Microsoft/vscode, github/gitignore, torvalds/linux,
nodejs/node, and flutter/flutter.

We wrote a graph-processing script to remove from the graph
all but one edges from projects with up to five edges. We chose
five based on the average number of edges per node with more
than one edge (3.8) increased by one for safety. We also looked
at the effect of other values. Increasing the denoising limit up to
ten edges reduced the size of the mega-component only little to
2 523 841. Consequently, we kept it at five to avoid removing too
many duplicate projects. This improved somewhat the situation,
reducing the size of the mega-component to 2 881 473 members.

Studying the mega-component we observed that many attractor
projects were personal web sites.G1,6 Focusing on them we found
that apparently many clone a particular personal style builder, build
on it, force push the commits, and then repeat the process with
another builder project. For example, it seems that through this
process, wicky-info/wicky-info.github.io shares commits with 139
other projects.

Based on this insight we excluded projects with names indicating
web sites (all ending in github.io), and also removed from the graph
nodes having between two and five edges, considering them as
adding noise. This reduced considerably the mega-component size
in the graph of projects with shared commits, to the point where
the largest component consisted mostly of programming assign-
ments forked and copied thousands of times (jtleek/datasharing —
199k forks, rdpeng/ProgrammingAssignment2 — 119k, rdpeng/Rep-
Data_PeerAssessment1 — 32.3k).

We also joined the generation of the fork tree and the common
commit graph to reduce their interference, applying the denoising
algorithm to both. This reduced the clusters to very reasonable
sizes, breaking the mega-component to only include a few unrelated
projects,G2 which was further improved by blacklisting a couple of
Android Open Source Project repositories.G3

We manually inspected the five projects with the highest mean
ranking in each of the first 250 clusters, which comprise about 1.6
million projects. The most populous component (Linux) had 175 184
members and the last, least populous, component (vim) had 1912
members. Many cases of several high-ranked projects in the same
component involved genuine forks. This is for example the case
of MariaDB/server linking percona/percona-server, mysql/mysql-
server, and facebook/mysql-8.0, among others.G4 Where these re-
ferred to different projects, we drew a map of shortest path between
the 49 top-ranked projects and the first or 50th one, and blacklisted
low-ranked projects that were linking together unrelated reposito-
ries.

Resolved examples include the linking of Docker with Go,G5
Django with Ruby on Rails,G6 Google projects with zlib,G7 Dias-
pora with Arduino,G8 Elastic Search with Pandas,G9 Definitely
Types with RxJS,G10 Ansible with Puppet,G11 PantomJS with We-
bKit and Qt,G12 OpenStack projects,G13 Puppet modules,G14 doc-
umentation projects,G15 Docker registry with others,G16 Drupal
with Backdrop,G17 Python and Clojure koans,G18 Vimium with
Hubot,G19 as well as several ASP.NET projects.G20

6The referenced graph images GN are distributed with the paper’s replication package.

A Dataset for GitHub Repository Deduplication MSR ’20, October 5–6, 2020, Seoul, Republic of Korea

For some clusters that failed to break up we repeated the exercise,
looking at paths in the opposite direction, removing additional
projects such as those linking Linux with Dagger,G21 Ruby with
JRuby, oh-my-zsh, Capistrano, and git-scm,G22 and Laravel with
Fuel.G23

In some cases the culprits were high-ranked projects, such as
boostorg/spirit, which links togethermore than ten Boost repositories,G7
apache/hadoop, which links with Intel-bigdata/SSM,G24 Definitely-
Typed/DefinitelyTyped, which links to Reactive-Extensions/RxJS,G10
ReactiveX/RxJava, which links several Netflix repositories,G25 jashke-
nas/underscore, which links with lodash/lodash,G26 jsbin/jsbin link-
ing to cdnjs/cdnjs,G27 ravendb/ravendb linking to SignalR/SignalR,G28
Kibana linked with Grafana,G29 CartoDB/carto linked with less/-
less.js.G30 Other projects, such as Swift and LLVM,G31 or Docker
with Containerd,G32 were too entangled to bring apart.

To further investigate what brings the component’s projects
together, we selected from the component one popular project
with relatively few forks (creationix/nvm), and applied Dijkstra’s
shortest path algorithm to find how other projects got connected
to it. We drew paths from that project to 30 other popular projects
belonging to the same component, and started verifying each one by
hand. We looked at the shared commits between unrelated projects
that we found connected, such as yui-knk/rails and seuros/django.

Some (very few) commits appear to be shared by an inordinate
number of projects. At the top, three commits are shared by 100 683
projects, another three by 67 280, and then four by 53 312. How-
ever, these numbers are not necessarily wrong, because there are
five projects with a correspondingly large number of forks: 125 491
(jtleek/datasharing), 124 326 (rdpeng/ProgrammingAssignment2),
111 986 (octocat/Spoon-Knife), 70 137 (tensorflow/tensorflow), and
66 066 (twbs/bootstrap). The first two commits are associated with
many (now defunct) projects of the user dvcsconnectortest (miss-
ingcommitsfixproof, missingcommitstest, and then missingcom-
mitstest_250_1393252414399) for many different trailing numbers.
However, the particular user is associated with very few commits,
namely 1240, so it is unlikely that these commits have poisoned
other components through transitive closure.

We later on improved the denoising to incorporate components
that could be trivially determined for isolation, by looking at just
the neighboring nodes. The algorithm we employed is applied to
all nodes n having between two and five edges; the ones we used to
consider as noise. It sums up as s being the number of edges of all
nodes n′ that were directly connected to n. If s is equal to the edges
leading to n, then n and its immediate neighbors form a component,
otherwise it is considered as adding noise and is disconnected from
its neighbors. For a graph with edges E the condition for a node n
being considered as noise, can be formally described as��(n,n′)|(n,n′) ∈ E

�� , ∑
∀n′ |(n,n′)∈E

��{(n′,n′′)|(n′,n′′) ∈ E}
��

Applying this algorithm decreased the number of ignored “noise
projects” marginally from 37 660 040 to 37 333 119, increasing, as
expected, the number of components by the same amount, from
2 145 837 to 2 472 758, and also increasing the number of projects
considered as clones by about double that amount, from 9 879 677
to 10 649 348.

Table 1: Dataset Comparison

Dataset
Metric CCFSC CDSC
Number of repositories 10 649 348 116 265 607
Number of independent projects 2 470 126 63 829 733
Size of largest cluster 174 919 244 707
Average cluster size 4.3 1.8
Cluster size standard deviation 169 44
Reaper duplicates 30 095 80 079

4 DATASET OVERVIEW
The dataset is provided7 as two files identifying GitHub reposito-
ries using the login-name/project-name convention. The file dedu-
plicate_names contains 10 649 348 tab-separated records mapping
a duplicated source project to a definitive target project. The file
forks_clones_noise_names is a 50 324 363 member superset of the
source projects, containing also projects that were excluded from
the mapping as noise.

The files are to be used as follows. After selecting some projects
for conducting an empirical software engineering studywithGitHub
projects, the first file should be used to map potentially duplicate
projects into a set of definitive ones. Then, any remaining projects
that appear in the second file should be removed as these are likely
to be low-value projects with a high probability of undesirable
duplication.

5 DUPLICATION IN EXISTING DATASETS
As an example of use of our dataset, we deduplicated the Reaper
dataset [31], which contains scores concerning seven software engi-
neering practices for about 1.8 million (1 853 205) GitHub projects.
The study has influenced various subsequent works [1, 6, 8, 35]
through the provided recommendations and filtering criteria for
curating collected repositories. The authors have excluded deleted
and forked projects, considering the latter as near duplicates.

Around 30 thousand (30 095) duplicate projects were identified
in the Reaper dataset using deduplicate_names. The deduplication
of the 800 hand-picked projects used in the classifiers’ training
and validation processes unveiled ten duplicate instances. Further
investigation is required to measure any potential impact of the
ten duplicate projects on the classification outcome. Nevertheless,
researchers selecting projects from Reaper for their work can bene-
fit from our dataset to filter out duplicate occurrences, to further
improve the quality of selected projects and avoid the problems
outlined in Section 1.

6 EVALUATION
We evaluated this dataset, which was constructed by identifying
connected components based on forks and shared commits (CCFSC),
through a quantitative and qualitative comparison with a similar
dataset constructed using community detection of shared commits
(CDSC) [30]. An overview of the basic characteristics of the two
datasets appears in Table 1. The two datasets share a substantial
overlap both in terms of source projects (8 157 317) and in terms
of cluster leaders (5 513 580). On the other hand, it is clear that
7https://doi.org/10.5281/zenodo.3653920

https://doi.org/10.5281/zenodo.3653920

MSR ’20, October 5–6, 2020, Seoul, Republic of Korea Spinellis, Kotti, and Mockus

CDSC is considerably more comprehensive than CCFSC in order
of magnitude, covering more repositories. An important factor
in its favor is that it covers other forges apart from GitHub, and
therefore its population is a superset of CCFSC’s. However, if one
also considers the projects that CCFSC considers as noise (personal
projects or projects with conflicting affiliations), the overlap swells
to 40 338 421, covering about a third of the total. Furthermore, the
fact that the increase in the Reaper dataset duplication in the CDSC
dataset is only about double that of the CCFSC dataset indicates
that the increased coverage of CCFSC may not be relevant for some
empirical software engineering studies. These factors validate to
some extent the dataset’s composition.

To get a better understanding of where and how the two datasets
vary, we also performed a qualitative evaluation. For this we se-
lected a subgraph induced by the 1000 projects with the highest geo-
metric mean score, and visualized the common and non-common
elements of the 431 clusters that contained different nodes.G33 In 301
cases the clusters shared at least one common element. The patterns
we encountered mainly concern the following cases: CCFSC links
more (and irrelevant) clusters compared to CDSC (e.g. FreeCode-
Camp/FreeCodeCamp, gatsbyjs/gatsby, robbyrussell/oh-my-zsh);
the converse happens (e.g. leveldb); CCFSC clusters related projects
that CDSC does not cluster (e.g. tgstation/tgstation, bitcoin/bitcoin);
the converse happens (e.g. hdl_qfs, t-s/blex); there is considerable
agreement between the two (e.g. Homebrew/homebrew-core with
afb/brew); there is considerable agreement but CDSC includes more
related projects (e.g. aspnet/Mvc with h2h/Mvc). In general, we no-
ticed that CDSC appears to be more precise at clustering than
CCFSC, but worse at naming the clusters.

7 RELATEDWORK
In distributed version control and source code management plat-
forms, such as GitHub, developers usually collaborate using the
pull request development model [12, 15–17], according to which
repositories are divided into base and forked [25]. This constitutes
one of the perils of mining GitHub: a repository is not necessar-
ily a project [25], with commits potentially differing between the
associated repositories.

Code duplication in GitHub was studied by Lopes et al. [27]
through file-level and inter-project analysis of a 4.5 million corpus
of non-forked projects. The overlap of files between projects, as
given by the files’ token hashes, was computed for certain thresh-
olds and programming languages. JavaScript prevails with 48% of
projects having at least 50% of files duplicated in other projects,
and 15% of projects being 100% duplicated. Project-level duplica-
tion includes appropriations that could be addressed by Git sub-
modules, abandoned derivative development, forks with additional
non-source code content, and unorthodox uses of GitHub, such as
unpushed changes. Code duplication can hamper the statistical rea-
soning in random selections of projects, and skew the conclusions
of studies performed on them, because the observations (projects)
are not independent, and diversity may be compromised. For the
converse problem of obtaining similar GitHub repositories see the
recent work by Phuong Nguyen and his colleagues [33] and the
references therein.

While it is common sense to select a sample that is representative
of a population, the importance of diversity is often overlooked,
yet as important [4]. Especially in software engineering, where
processes of empirical studies often depend on a large number
of relevant context variables, general conclusions are difficult to
extract [7]. According to Nagappan et al. [32], to provide a good
sample coverage, selected projects should be diverse rather than
similar to each other. Meanwhile, increasing the sample size does
not necessarily increase generality when projects are not carefully
selected.

Markovtsev and Kant in their work regarding topic modeling of
public repositories using names in source code [29], recognized that
duplicate projects contain few original changes and may introduce
noise into the overall names distribution. To exclude them and
accelerate the training time of the topic model, they applied Locality
Sensitive Hashing [26] on the bag-of-words model. According to
the analysis, duplicate repositories usually involve web sites, such
as github.io, blogs and Linux-based firmwares, which align with
our observations.

A duplication issue was also identified by Irolla and Dey [23]
in the Drebin dataset [5], which is often used to assess the perfor-
mance of malware detectors [18, 34] and classifiers [19, 38]. Half of
the samples in the dataset have other duplicate repackaged versions
of the same sequence of opcode. Consequently, a major part of the
testing set may also be found in the training, inflating the perfor-
mance of the designed algorithms. Experiments on classification
algorithms trained on the Drebin dataset by including and exclud-
ing duplicates suggested moderate to strong underrated inaccuracy,
and variation in the performance of the algorithms.

Similarly, Allamanis examined the adverse effects of code du-
plication in machine learning models of code [2]. By comparing
models trained on duplicated and deduplicated code corpora, Al-
lamanis concluded that performance metrics, from a user’s per-
spective, may be up to 100% inflated when duplicates are included.
The issue mainly applies to code completion [28, 37], type predic-
tion [21, 36] and code summarization [3, 24], where models provide
recommendations on new and unseen code.

8 RESEARCH AND IMPROVEMENT IDEAS
The main purpose of the presented dataset is to improve the qual-
ity of GitHub project samples that are used to conduct empirical
software engineering studies. It would be interesting to see how
such duplication affects published results by replicating existing
studies after deduplicating the projects by means of this dataset. In
addition, the dataset can be used for investigating the ecosystem of
duplicated projects in terms of activity, duplication methods (forks
vs commit pushes), tree depth, currency, or trustworthiness.

The dataset can be further improved by including projects from
other forges and by applying more sophisticated cleaning algo-
rithms.

ACKNOWLEDGMENTS
This work has received funding from the European Union’s Horizon
2020 research and innovation programme under grant agreement
No. 825328.

A Dataset for GitHub Repository Deduplication MSR ’20, October 5–6, 2020, Seoul, Republic of Korea

REFERENCES
[1] Amritanshu Agrawal, Akond Rahman, Rahul Krishna, Alexander Sobran, and

Tim Menzies. 2018. We Don’t Need Another Hero? The Impact of "Heroes" on
Software Development. In Proceedings of the 40th International Conference on
Software Engineering: Software Engineering in Practice (ICSE-SEIP ’18). Association
for Computing Machinery, New York, NY, USA, 245–253. https://doi.org/10.
1145/3183519.3183549

[2] Miltiadis Allamanis. 2019. The Adverse Effects of Code Duplication in Machine
Learning Models of Code. In Proceedings of the 2019 ACM SIGPLAN International
Symposium on New Ideas, New Paradigms, and Reflections on Programming and
Software (Onward! ’19). Association for Computing Machinery, New York, NY,
USA, 143–153. https://doi.org/10.1145/3359591.3359735

[3] Miltiadis Allamanis, Hao Peng, and Charles Sutton. 2016. A Convolutional
Attention Network for Extreme Summarization of Source Code. In International
Conference on Machine Learning (ICML ’16). 2091–2100. https://arxiv.org/pdf/
1602.03001.pdf

[4] Peter Allmark. 2004. Should Research Samples Reflect the Diversity of the
Population? Journal of medical ethics 30 (May 2004), 185–189. https://doi.org/10.
1136/jme.2003.004374

[5] Daniel Arp, Michael Spreitzenbarth, Hugo Gascon, and Konrad Rieck. 2014.
Drebin: Effective and Explainable Detection of Android Malware in your Pocket.
In Proceedings of the 21st Annual Network and Distributed System Security Sympo-
sium (NDSS ’14). The Internet Society. http://user.informatik.uni-goettingen.de/
%7Ekrieck/docs/2014-ndss.pdf

[6] Sebastian Baltes and Stephan Diehl. 2019. Usage and Attribution of Stack Over-
flow Code Snippets in GitHub Projects. Empirical Software Engineering 24, 3
(June 2019), 1259–1295. https://doi.org/10.1007/s10664-018-9650-5

[7] Victor R. Basili, Forrest Shull, and Filippo Lanubile. 1999. Building Knowledge
through Families of Experiments. IEEE Trans. Softw. Eng. 25, 4 (July 1999), 456–473.
https://doi.org/10.1109/32.799939

[8] John Businge, Moses Openja, Sarah Nadi, Engineer Bainomugisha, and Thorsten
Berger. 2018. Clone-Based Variability Management in the Android Ecosystem. In
Proceedings of the 2018 IEEE International Conference on Software Maintenance
and Evolution (ICSME ’18). 625–634. https://doi.org/10.1109/ICSME.2018.00072

[9] Roberto de la Cruz and Jan-Ulrich Kreft. 2018. Geometric mean extension
for data sets with zeros. Available online https://arxiv.org/abs/1806.06403.
arXiv:stat.AP/1806.06403

[10] Emden R. Gansner and Stephen C. North. 2000. An Open Graph Visualization
System and its Applications to Software Engineering. Software: Practice and
Experience 30, 11 (2000), 1203–1233. https://doi.org/10.1002/1097-024X(200009)
30:11<1203::AID-SPE338>3.3.CO;2-E

[11] Georgios Gousios. 2013. The GHTorrent dataset and tool suite. In Proceedings
of the 10th Working Conference on Mining Software Repositories (MSR ’13). IEEE
Press, Piscataway, NJ, USA, 233–236. https://doi.org/10.5555/2487085.2487132

[12] Georgios Gousios, Martin Pinzger, and Arie van Deursen. 2014. An Exploratory
Study of the Pull-Based Software Development Model. In Proceedings of the
36th International Conference on Software Engineering (ICSE ’14). Association for
Computing Machinery, New York, NY, USA, 345–355. https://doi.org/10.1145/
2568225.2568260

[13] Georgios Gousios and Diomidis Spinellis. 2012. GHTorrent: Github’s Data from
a Firehose. In 9th IEEE Working Conference on Mining Software Repositories (MSR),
Michele Lanza, Massimiliano Di Penta, and Tao Xie (Eds.). IEEE, 12–21. https:
//doi.org/10.1109/MSR.2012.6224294

[14] Georgios Gousios and Diomidis Spinellis. 2017. Mining Software Engineering
Data from GitHub. In Proceedings of the 39th International Conference on Software
Engineering Companion (ICSE-C ’17). IEEE Press, Piscataway, NJ, USA, 501–502.
https://doi.org/10.1109/ICSE-C.2017.164 Technical Briefing.

[15] Georgios Gousios, Margaret-Anne Storey, and Alberto Bacchelli. 2016. Work
Practices and Challenges in Pull-Based Development: The Contributor’s Perspec-
tive. In Proceedings of the 38th International Conference on Software Engineering
(ICSE ’16). ACM, 285–296. https://doi.org/10.1145/2884781.2884826

[16] Georgios Gousios and Andy Zaidman. 2014. A Dataset for Pull-Based Develop-
ment Research. In Proceedings of the 11th Working Conference on Mining Software
Repositories (MSR ’14). Association for Computing Machinery, New York, NY,
USA, 368–371. https://doi.org/10.1145/2597073.2597122

[17] Georgios Gousios, Andy Zaidman, Margaret-Anne Storey, and Arie van Deursen.
2015. Work Practices and Challenges in Pull-Based Development: The Integra-
tor’s Perspective. In Proceedings of the 37th International Conference on Software
Engineering (ICSE ’15), Vol. 1. 358–368. https://doi.org/10.1109/ICSE.2015.55

[18] Kathrin Grosse, Praveen Manoharan, Nicolas Papernot, Michael Backes, and
Patrick D. McDaniel. 2017. On the (Statistical) Detection of Adversarial Examples.
ArXiv abs/1702.06280 (2017).

[19] Kathrin Grosse, Nicolas Papernot, Praveen Manoharan, Michael Backes, and
Patrick D. McDaniel. 2016. Adversarial Perturbations Against Deep Neural
Networks for Malware Classification. CoRR abs/1606.04435 (2016). http://arxiv.
org/abs/1606.04435

[20] Elsayed AE Habib. 2012. Geometric Mean for Negative and Zero Values. Interna-
tional Journal of Research and Reviews in Applied Sciences 11, 3 (2012), 419–32.

[21] Vincent J. Hellendoorn, Christian Bird, Earl T. Barr, and Miltiadis Allamanis. 2018.
Deep Learning Type Inference. In Proceedings of the 2018 26th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering (ESEC/FSE ’18). Association for Computing Machinery,
New York, NY, USA, 152–162. https://doi.org/10.1145/3236024.3236051

[22] Darrel C Ince, Leslie Hatton, and John Graham-Cumming. 2012. The Case for
Open Computer Programs. Nature 482, 7386 (2012), 485–488.

[23] Paul Irolla and Alexandre Dey. 2018. The Duplication Issue within the Drebin
Dataset. Journal of Computer Virology and Hacking Techniques 14, 3 (01 Aug.
2018), 245–249. https://doi.org/10.1007/s11416-018-0316-z

[24] Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and Luke Zettlemoyer. 2016.
Summarizing Source Code using a Neural Attention Model. In Proceedings of
the 54th Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers). Association for Computational Linguistics, Berlin, Germany,
2073–2083. https://doi.org/10.18653/v1/P16-1195

[25] Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer, Daniel M.
German, and Daniela Damian. 2016. An In-Depth Study of the Promises and
Perils of mining GitHub. Empirical Software Engineering 21, 5 (01 Oct. 2016),
2035–2071. https://doi.org/10.1007/s10664-015-9393-5

[26] Jure Leskovec, Anand Rajaraman, and Jeff Ullman. 2020. Chapter 3. Finding
Similar Items. Cambridge University Press, New York, NY, USA. http://infolab.
stanford.edu/~ullman/mmds/book0n.pdf

[27] Cristina V. Lopes, Petr Maj, Pedro Martins, Vaibhav Saini, Di Yang, Jakub Zitny,
Hitesh Sajnani, and Jan Vitek. 2017. DéjàVu: A Map of Code Duplicates on
GitHub. Proc. ACM Program. Lang. 1, OOPSLA, Article Article 84 (Oct. 2017),
28 pages. https://doi.org/10.1145/3133908

[28] Chris J. Maddison and Daniel Tarlow. 2014. Structured Generative Models of
Natural Source Code. In Proceedings of the 31st International Conference on In-
ternational Conference on Machine Learning - Volume 32 (ICML ’14). JMLR.org,
649–657.

[29] Vadim Markovtsev and Eiso Kant. 2017. Topic Modeling of Public Repositories at
Scale using Names in Source Code. CoRR abs/1704.00135 (2017). arXiv:1704.00135
http://arxiv.org/abs/1704.00135

[30] Audris Mockus, Zoe Kotti, Diomidis Spinellis, and Gabriel Dusing. 2020. A
Complete Set of Related Git Repositories Identified via Community Detection
Approaches Based on Shared Commits. In 17th International Conference on Mining
Software Repositories (MSR ’20). Association for Computing Machinery, New York,
NY, USA. https://doi.org/10.1145/3379597.3387499

[31] Nuthan Munaiah, Steven Kroh, Craig Cabrey, and Meiyappan Nagappan. 2017.
Curating GitHub for Engineered Software Projects. Empirical Software Engineer-
ing 22, 6 (01 Dec 2017), 3219–3253. https://doi.org/10.1007/s10664-017-9512-6

[32] Meiyappan Nagappan, Thomas Zimmermann, and Christian Bird. 2013. Diversity
in Software Engineering Research. In Proceedings of the 2013 9th Joint Meeting
on Foundations of Software Engineering (ESEC/FSE ’13). Association for Comput-
ing Machinery, New York, NY, USA, 466–476. https://doi.org/10.1145/2491411.
2491415

[33] Phuong T. Nguyen, Juri Di Rocco, Riccardo Rubei, and Davide Di Ruscio. 2020.
An automated approach to assess the similarity of GitHub repositories. Software
Quality Journal (Feb. 2020). https://doi.org/10.1007/s11219-019-09483-0

[34] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. 2017. DeepXplore: Auto-
mated Whitebox Testing of Deep Learning Systems. In Proceedings of the 26th
Symposium on Operating Systems Principles (SOSP ’17). Association for Computing
Machinery, New York, NY, USA, 1–18. https://doi.org/10.1145/3132747.3132785

[35] Akond Rahman, Chris Parnin, and LaurieWilliams. 2019. The Seven Sins: Security
Smells in Infrastructure as Code Scripts. In Proceedings of the 41st International
Conference on Software Engineering (ICSE ’19). IEEE Press, 164–175. https:
//doi.org/10.1109/ICSE.2019.00033

[36] Veselin Raychev, Martin Vechev, and Andreas Krause. 2015. Predicting Program
Properties from "Big Code". In Proceedings of the 42nd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL ’15). As-
sociation for Computing Machinery, New York, NY, USA, 111–124. https:
//doi.org/10.1145/2676726.2677009

[37] Veselin Raychev, Martin Vechev, and Eran Yahav. 2014. Code Completion with
Statistical Language Models. In Proceedings of the 35th ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI ’14). Association for
Computing Machinery, New York, NY, USA, 419–428. https://doi.org/10.1145/
2594291.2594321

[38] Marcos Sebastián, Richard Rivera, Platon Kotzias, and Juan Caballero. 2016. AV-
class: A Tool for Massive Malware Labeling. In Research in Attacks, Intrusions, and
Defenses, FabianMonrose, Marc Dacier, Gregory Blanc, and Joaquin Garcia-Alfaro
(Eds.). Springer International Publishing, Cham, 230–253.

[39] Diomidis Spinellis, Zoe Kotti, and Audris Mockus. 2020. A Dataset for GitHub
Repository Deduplication: Extended Description. https://doi.org/10.5281/zenodo.
3740595

https://doi.org/10.1145/3183519.3183549
https://doi.org/10.1145/3183519.3183549
https://doi.org/10.1145/3359591.3359735
https://arxiv.org/pdf/1602.03001.pdf
https://arxiv.org/pdf/1602.03001.pdf
https://doi.org/10.1136/jme.2003.004374
https://doi.org/10.1136/jme.2003.004374
http://user.informatik.uni-goettingen.de/%7Ekrieck/docs/2014-ndss.pdf
http://user.informatik.uni-goettingen.de/%7Ekrieck/docs/2014-ndss.pdf
https://doi.org/10.1007/s10664-018-9650-5
https://doi.org/10.1109/32.799939
https://doi.org/10.1109/ICSME.2018.00072
https://arxiv.org/abs/1806.06403
http://arxiv.org/abs/stat.AP/1806.06403
https://doi.org/10.1002/1097-024X(200009)30:11<1203::AID-SPE338>3.3.CO;2-E
https://doi.org/10.1002/1097-024X(200009)30:11<1203::AID-SPE338>3.3.CO;2-E
https://doi.org/10.5555/2487085.2487132
https://doi.org/10.1145/2568225.2568260
https://doi.org/10.1145/2568225.2568260
https://doi.org/10.1109/MSR.2012.6224294
https://doi.org/10.1109/MSR.2012.6224294
https://doi.org/10.1109/ICSE-C.2017.164
https://doi.org/10.1145/2884781.2884826
https://doi.org/10.1145/2597073.2597122
https://doi.org/10.1109/ICSE.2015.55
http://arxiv.org/abs/1606.04435
http://arxiv.org/abs/1606.04435
https://doi.org/10.1145/3236024.3236051
https://doi.org/10.1007/s11416-018-0316-z
https://doi.org/10.18653/v1/P16-1195
https://doi.org/10.1007/s10664-015-9393-5
http://infolab.stanford.edu/~ullman/mmds/book0n.pdf
http://infolab.stanford.edu/~ullman/mmds/book0n.pdf
https://doi.org/10.1145/3133908
http://arxiv.org/abs/1704.00135
http://arxiv.org/abs/1704.00135
https://doi.org/10.1145/3379597.3387499
https://doi.org/10.1007/s10664-017-9512-6
https://doi.org/10.1145/2491411.2491415
https://doi.org/10.1145/2491411.2491415
https://doi.org/10.1007/s11219-019-09483-0
https://doi.org/10.1145/3132747.3132785
https://doi.org/10.1109/ICSE.2019.00033
https://doi.org/10.1109/ICSE.2019.00033
https://doi.org/10.1145/2676726.2677009
https://doi.org/10.1145/2676726.2677009
https://doi.org/10.1145/2594291.2594321
https://doi.org/10.1145/2594291.2594321
https://doi.org/10.5281/zenodo.3740595
https://doi.org/10.5281/zenodo.3740595

	Abstract
	1 Introduction
	2 Dataset Creation
	3 Down the Rabbit Hole
	4 Dataset Overview
	5 Duplication in Existing Datasets
	6 Evaluation
	7 Related Work
	8 Research and Improvement Ideas
	Acknowledgments
	References

