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ABSTRACT
GitHub projects can be easily replicated through the site’s fork
process or through a Git clone-push sequence. This is a problem for
empirical software engineering, because it can lead to skewed re-
sults or mistrained machine learning models. We provide a dataset
of 10.6 million GitHub projects that are copies of others, and link
each record with the project’s ultimate parent. The ultimate par-
ents were derived from a ranking along six metrics. The related
projects were calculated as the connected components of an 18.2
million node and 12 million edge denoised graph created by direct-
ing edges to ultimate parents. The graph was created by filtering
out more than 30 hand-picked and 2.3 million pattern-matched
clumping projects. Projects that introduced unwanted clumping
were identified by repeatedly visualizing shortest path distances
between unrelated important projects. Our dataset identified 30
thousand duplicate projects in an existing popular reference dataset
of 1.8 million projects. An evaluation of our dataset against another
created independently with different methods found a significant
overlap, but also differences attributed to the operational definition
of what projects are considered as related.
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• Software and its engineering→ Open source model; Soft-
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• General and reference→ Empirical studies.
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1 INTRODUCTION
Anyone can create a copy of a GitHub project through a single
effortless click on the project’s fork button. Similarly, one can also
create a repository copy with just two Git commands. Consequently,
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select distinct p1, p2 from (
select project_commits.project_id as p2,
first_value(project_commits.project_id) over (
partition by commit_id
order by mean_metric desc) as p1

from project_commits
inner join forkproj.all_project_mean_metric
on all_project_mean_metric.project_id =

project_commits.project_id) as shared_commits
where p1 != p2;

Listing 1: Identification of projects with common commits

GitHub contains many millions of copied projects. This is a prob-
lem for empirical software engineering. First, when data contain-
ing multiple copies of a repository are analyzed, the results can
end up skewed [27]. Second, when such data are used to train
machine learning models, the corresponding models can behave
incorrectly [2, 23].

In theory, it should be easy to filter away copied projects. The
project details provided by the GitHub API contain the field fork,
which is true for forked projects. They also include fields under
parent or source, which contain data concerning the fork source.

In practice, the challenges of detecting and grouping together
copied GitHub repositories are formidable. At the computational
level, they involve finding among hundreds of millions of projects
those that are near in a space of billions of dimensions (potentially
shared commits). The use of GitHub for courses and coursework
with hundreds of thousands of participants,1 for experimenting
with version control systems,2 and for all kinds of frivolous or
mischievous activity3 further complicates matters.

2 DATASET CREATION
An overview of the dataset’s construction process is depicted in an
extended version of this paper [39]. The projects were selected from
GitHub by analyzing the GHTorrent [11, 13] dataset (release 2019-
06-01) by means of the simple-rolap relational online analytical
processing and rdbunit relational unit testing frameworks [14].
Following published recommendations [22], the code and primary
data associated with this endeavor are openly available online,4
and can be used to replicate the dataset or construct an updated
version from newer data.

The GHTorrent dataset release we used contains details about
125 million (125 486 232) projects, one billion (1 368 235 072) indi-
vidual commits, and six billion (6 251 898 944) commits associated
with (possibly multiple, due to forks and merges) projects.

1https://github.com/rdpeng/ProgrammingAssignment2
2https://archive.softwareheritage.org/browse/search/?q=dvcsconnectortest&with_
visit&with_content
3https://github.com/illacceptanything/illacceptanything
4https://doi.org/10.5281/zenodo.3742818
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We first grouped shared commits to a single “attractor” project,
which was derived based on the geometric mean (Table all project
mean metric—125 486 232 records) of six quality attributes:5 recency
of the latest commit (Tablemost recent commit—100 366 312 records),
as well as the number of stars (Table project stars—10 317 662 records),
forks (Table project forks—6 958 551 records), commits (Table project
ncommits—100 366 312 records), issues (Table project issues—9 498 704
records), and pull requests (Table project pull requests—7 143 570
records). In addition, the project-id was used as a tie-breaker. To
avoid the information loss caused by zero values [20], we employed
the following formula proposed by del Cruz and Kref [9]:

Gϵ ,X (X ) = exp

(
1
n

n∑
i=1

log (xi + δ∗)

)
− δ∗

with δ∗ calculated to have the value of 0.001 for our data. We used a
query utilizing the SQLwindow functions in order to group together
shared commits (Table projects sharing commits—44 380 204 records)
without creating excessively large result sets (see Listing 1).

To cover holes in the coverage of shared commits, we comple-
mented the projects sharing commits table with projects related
by GitHub project forks, after removing a set of hand-picked and
heuristic-derived projects that mistakenly linked together unrelated
clusters (Table blacklisted projects—2 341 896 records). In addition,
we removed from the combined graph non-isolated nodes having
between two and five edges, in order to reduce unwanted merges
between unrelated shared commit and fork clusters. The method
for creating the blacklisting table, along with the details behind the
denoising process, are explained in Section 3.

We subsequently converted projects with shared commits or
shared fork ancestry into an (unweighted) graph to find its con-
nected components, which would be the groups of related projects.
We identified connected components using theGraphViz [10] ccomps
tool (Table acgroups—18 203 053 records). The final steps involved
determining the size of each group (Table group size—2 472 758
records), associating it with each project (Table project group size—
18 203 053 records) and its metrics (Table project metrics—18 203 053
records), obtaining the mean metric for the selected projects (Table
project mean metric—18 203 053 records), and associating with each
group the project excelling in the metric (Table highest mean in
group—7 553 705 records). This was then used to create the dedu-
plication table (Table deduplicate by mean—10 649 348 records) by
partnering each project with a sibling having the highest mean
value in the calculated metrics.

3 DOWN THE RABBIT HOLE
We arrived at the described process after numerous false starts, ex-
periments, and considerable manual effort. Here we provide details
regarding the technical difficulties associated with the dataset’s cre-
ation, the rationale for the design of the adopted processing pipeline,
and the process of the required hand-cleaning and denoising.

Our manual verification of large graph components uncovered
a mega-component of projects with 4 278 791 members. Among
the component’s projects were many seemingly unrelated popular
ones, such as the following ten: FreeCodeCamp/FreeCodeCamp,

5In the interest of readability, this text replaces the underscores in the table names
with spaces.

facebook/react, getify/You-Dont-Know-JS, robbyrussell/oh-my-zsh,
twbs/bootstrap, Microsoft/vscode, github/gitignore, torvalds/linux,
nodejs/node, and flutter/flutter.

We wrote a graph-processing script to remove from the graph
all but one edges from projects with up to five edges. We chose
five based on the average number of edges per node with more
than one edge (3.8) increased by one for safety. We also looked
at the effect of other values. Increasing the denoising limit up to
ten edges reduced the size of the mega-component only little to
2 523 841. Consequently, we kept it at five to avoid removing too
many duplicate projects. This improved somewhat the situation,
reducing the size of the mega-component to 2 881 473 members.

Studying the mega-component we observed that many attractor
projects were personal web sites.G1,6 Focusing on them we found
that apparently many clone a particular personal style builder, build
on it, force push the commits, and then repeat the process with
another builder project. For example, it seems that through this
process, wicky-info/wicky-info.github.io shares commits with 139
other projects.

Based on this insight we excluded projects with names indicating
web sites (all ending in github.io), and also removed from the graph
nodes having between two and five edges, considering them as
adding noise. This reduced considerably the mega-component size
in the graph of projects with shared commits, to the point where
the largest component consisted mostly of programming assign-
ments forked and copied thousands of times (jtleek/datasharing —
199k forks, rdpeng/ProgrammingAssignment2 — 119k, rdpeng/Rep-
Data_PeerAssessment1 — 32.3k).

We also joined the generation of the fork tree and the common
commit graph to reduce their interference, applying the denoising
algorithm to both. This reduced the clusters to very reasonable
sizes, breaking the mega-component to only include a few unrelated
projects,G2 which was further improved by blacklisting a couple of
Android Open Source Project repositories.G3

We manually inspected the five projects with the highest mean
ranking in each of the first 250 clusters, which comprise about 1.6
million projects. The most populous component (Linux) had 175 184
members and the last, least populous, component (vim) had 1912
members. Many cases of several high-ranked projects in the same
component involved genuine forks. This is for example the case
of MariaDB/server linking percona/percona-server, mysql/mysql-
server, and facebook/mysql-8.0, among others.G4 Where these re-
ferred to different projects, we drew a map of shortest path between
the 49 top-ranked projects and the first or 50th one, and blacklisted
low-ranked projects that were linking together unrelated reposito-
ries.

Resolved examples include the linking of Docker with Go,G5
Django with Ruby on Rails,G6 Google projects with zlib,G7 Dias-
pora with Arduino,G8 Elastic Search with Pandas,G9 Definitely
Types with RxJS,G10 Ansible with Puppet,G11 PantomJS with We-
bKit and Qt,G12 OpenStack projects,G13 Puppet modules,G14 doc-
umentation projects,G15 Docker registry with others,G16 Drupal
with Backdrop,G17 Python and Clojure koans,G18 Vimium with
Hubot,G19 as well as several ASP.NET projects.G20

6The referenced graph images GN are distributed with the paper’s replication package.
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For some clusters that failed to break up we repeated the exercise,
looking at paths in the opposite direction, removing additional
projects such as those linking Linux with Dagger,G21 Ruby with
JRuby, oh-my-zsh, Capistrano, and git-scm,G22 and Laravel with
Fuel.G23

In some cases the culprits were high-ranked projects, such as
boostorg/spirit, which links togethermore than ten Boost repositories,G7
apache/hadoop, which links with Intel-bigdata/SSM,G24 Definitely-
Typed/DefinitelyTyped, which links to Reactive-Extensions/RxJS,G10
ReactiveX/RxJava, which links several Netflix repositories,G25 jashke-
nas/underscore, which links with lodash/lodash,G26 jsbin/jsbin link-
ing to cdnjs/cdnjs,G27 ravendb/ravendb linking to SignalR/SignalR,G28
Kibana linked with Grafana,G29 CartoDB/carto linked with less/-
less.js.G30 Other projects, such as Swift and LLVM,G31 or Docker
with Containerd,G32 were too entangled to bring apart.

To further investigate what brings the component’s projects
together, we selected from the component one popular project
with relatively few forks (creationix/nvm), and applied Dijkstra’s
shortest path algorithm to find how other projects got connected
to it. We drew paths from that project to 30 other popular projects
belonging to the same component, and started verifying each one by
hand. We looked at the shared commits between unrelated projects
that we found connected, such as yui-knk/rails and seuros/django.

Some (very few) commits appear to be shared by an inordinate
number of projects. At the top, three commits are shared by 100 683
projects, another three by 67 280, and then four by 53 312. How-
ever, these numbers are not necessarily wrong, because there are
five projects with a correspondingly large number of forks: 125 491
(jtleek/datasharing), 124 326 (rdpeng/ProgrammingAssignment2),
111 986 (octocat/Spoon-Knife), 70 137 (tensorflow/tensorflow), and
66 066 (twbs/bootstrap). The first two commits are associated with
many (now defunct) projects of the user dvcsconnectortest (miss-
ingcommitsfixproof, missingcommitstest, and then missingcom-
mitstest_250_1393252414399) for many different trailing numbers.
However, the particular user is associated with very few commits,
namely 1240, so it is unlikely that these commits have poisoned
other components through transitive closure.

We later on improved the denoising to incorporate components
that could be trivially determined for isolation, by looking at just
the neighboring nodes. The algorithm we employed is applied to
all nodes n having between two and five edges; the ones we used to
consider as noise. It sums up as s being the number of edges of all
nodes n′ that were directly connected to n. If s is equal to the edges
leading to n, then n and its immediate neighbors form a component,
otherwise it is considered as adding noise and is disconnected from
its neighbors. For a graph with edges E the condition for a node n
being considered as noise, can be formally described as��(n,n′)|(n,n′) ∈ E

�� , ∑
∀n′ |(n,n′)∈E

��{(n′,n′′)|(n′,n′′) ∈ E}
��

Applying this algorithm decreased the number of ignored “noise
projects” marginally from 37 660 040 to 37 333 119, increasing, as
expected, the number of components by the same amount, from
2 145 837 to 2 472 758, and also increasing the number of projects
considered as clones by about double that amount, from 9 879 677
to 10 649 348.

Table 1: Dataset Comparison

Dataset
Metric CCFSC CDSC
Number of repositories 10 649 348 116 265 607
Number of independent projects 2 470 126 63 829 733
Size of largest cluster 174 919 244 707
Average cluster size 4.3 1.8
Cluster size standard deviation 169 44
Reaper duplicates 30 095 80 079

4 DATASET OVERVIEW
The dataset is provided7 as two files identifying GitHub reposito-
ries using the login-name/project-name convention. The file dedu-
plicate_names contains 10 649 348 tab-separated records mapping
a duplicated source project to a definitive target project. The file
forks_clones_noise_names is a 50 324 363 member superset of the
source projects, containing also projects that were excluded from
the mapping as noise.

The files are to be used as follows. After selecting some projects
for conducting an empirical software engineering studywithGitHub
projects, the first file should be used to map potentially duplicate
projects into a set of definitive ones. Then, any remaining projects
that appear in the second file should be removed as these are likely
to be low-value projects with a high probability of undesirable
duplication.

5 DUPLICATION IN EXISTING DATASETS
As an example of use of our dataset, we deduplicated the Reaper
dataset [31], which contains scores concerning seven software engi-
neering practices for about 1.8 million (1 853 205) GitHub projects.
The study has influenced various subsequent works [1, 6, 8, 35]
through the provided recommendations and filtering criteria for
curating collected repositories. The authors have excluded deleted
and forked projects, considering the latter as near duplicates.

Around 30 thousand (30 095) duplicate projects were identified
in the Reaper dataset using deduplicate_names. The deduplication
of the 800 hand-picked projects used in the classifiers’ training
and validation processes unveiled ten duplicate instances. Further
investigation is required to measure any potential impact of the
ten duplicate projects on the classification outcome. Nevertheless,
researchers selecting projects from Reaper for their work can bene-
fit from our dataset to filter out duplicate occurrences, to further
improve the quality of selected projects and avoid the problems
outlined in Section 1.

6 EVALUATION
We evaluated this dataset, which was constructed by identifying
connected components based on forks and shared commits (CCFSC),
through a quantitative and qualitative comparison with a similar
dataset constructed using community detection of shared commits
(CDSC) [30]. An overview of the basic characteristics of the two
datasets appears in Table 1. The two datasets share a substantial
overlap both in terms of source projects (8 157 317) and in terms
of cluster leaders (5 513 580). On the other hand, it is clear that
7https://doi.org/10.5281/zenodo.3653920
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CDSC is considerably more comprehensive than CCFSC in order
of magnitude, covering more repositories. An important factor
in its favor is that it covers other forges apart from GitHub, and
therefore its population is a superset of CCFSC’s. However, if one
also considers the projects that CCFSC considers as noise (personal
projects or projects with conflicting affiliations), the overlap swells
to 40 338 421, covering about a third of the total. Furthermore, the
fact that the increase in the Reaper dataset duplication in the CDSC
dataset is only about double that of the CCFSC dataset indicates
that the increased coverage of CCFSC may not be relevant for some
empirical software engineering studies. These factors validate to
some extent the dataset’s composition.

To get a better understanding of where and how the two datasets
vary, we also performed a qualitative evaluation. For this we se-
lected a subgraph induced by the 1000 projects with the highest geo-
metric mean score, and visualized the common and non-common
elements of the 431 clusters that contained different nodes.G33 In 301
cases the clusters shared at least one common element. The patterns
we encountered mainly concern the following cases: CCFSC links
more (and irrelevant) clusters compared to CDSC (e.g. FreeCode-
Camp/FreeCodeCamp, gatsbyjs/gatsby, robbyrussell/oh-my-zsh);
the converse happens (e.g. leveldb); CCFSC clusters related projects
that CDSC does not cluster (e.g. tgstation/tgstation, bitcoin/bitcoin);
the converse happens (e.g. hdl_qfs, t-s/blex); there is considerable
agreement between the two (e.g. Homebrew/homebrew-core with
afb/brew); there is considerable agreement but CDSC includes more
related projects (e.g. aspnet/Mvc with h2h/Mvc). In general, we no-
ticed that CDSC appears to be more precise at clustering than
CCFSC, but worse at naming the clusters.

7 RELATEDWORK
In distributed version control and source code management plat-
forms, such as GitHub, developers usually collaborate using the
pull request development model [12, 15–17], according to which
repositories are divided into base and forked [25]. This constitutes
one of the perils of mining GitHub: a repository is not necessar-
ily a project [25], with commits potentially differing between the
associated repositories.

Code duplication in GitHub was studied by Lopes et al. [27]
through file-level and inter-project analysis of a 4.5 million corpus
of non-forked projects. The overlap of files between projects, as
given by the files’ token hashes, was computed for certain thresh-
olds and programming languages. JavaScript prevails with 48% of
projects having at least 50% of files duplicated in other projects,
and 15% of projects being 100% duplicated. Project-level duplica-
tion includes appropriations that could be addressed by Git sub-
modules, abandoned derivative development, forks with additional
non-source code content, and unorthodox uses of GitHub, such as
unpushed changes. Code duplication can hamper the statistical rea-
soning in random selections of projects, and skew the conclusions
of studies performed on them, because the observations (projects)
are not independent, and diversity may be compromised. For the
converse problem of obtaining similar GitHub repositories see the
recent work by Phuong Nguyen and his colleagues [33] and the
references therein.

While it is common sense to select a sample that is representative
of a population, the importance of diversity is often overlooked,
yet as important [4]. Especially in software engineering, where
processes of empirical studies often depend on a large number
of relevant context variables, general conclusions are difficult to
extract [7]. According to Nagappan et al. [32], to provide a good
sample coverage, selected projects should be diverse rather than
similar to each other. Meanwhile, increasing the sample size does
not necessarily increase generality when projects are not carefully
selected.

Markovtsev and Kant in their work regarding topic modeling of
public repositories using names in source code [29], recognized that
duplicate projects contain few original changes and may introduce
noise into the overall names distribution. To exclude them and
accelerate the training time of the topic model, they applied Locality
Sensitive Hashing [26] on the bag-of-words model. According to
the analysis, duplicate repositories usually involve web sites, such
as github.io, blogs and Linux-based firmwares, which align with
our observations.

A duplication issue was also identified by Irolla and Dey [23]
in the Drebin dataset [5], which is often used to assess the perfor-
mance of malware detectors [18, 34] and classifiers [19, 38]. Half of
the samples in the dataset have other duplicate repackaged versions
of the same sequence of opcode. Consequently, a major part of the
testing set may also be found in the training, inflating the perfor-
mance of the designed algorithms. Experiments on classification
algorithms trained on the Drebin dataset by including and exclud-
ing duplicates suggested moderate to strong underrated inaccuracy,
and variation in the performance of the algorithms.

Similarly, Allamanis examined the adverse effects of code du-
plication in machine learning models of code [2]. By comparing
models trained on duplicated and deduplicated code corpora, Al-
lamanis concluded that performance metrics, from a user’s per-
spective, may be up to 100% inflated when duplicates are included.
The issue mainly applies to code completion [28, 37], type predic-
tion [21, 36] and code summarization [3, 24], where models provide
recommendations on new and unseen code.

8 RESEARCH AND IMPROVEMENT IDEAS
The main purpose of the presented dataset is to improve the qual-
ity of GitHub project samples that are used to conduct empirical
software engineering studies. It would be interesting to see how
such duplication affects published results by replicating existing
studies after deduplicating the projects by means of this dataset. In
addition, the dataset can be used for investigating the ecosystem of
duplicated projects in terms of activity, duplication methods (forks
vs commit pushes), tree depth, currency, or trustworthiness.

The dataset can be further improved by including projects from
other forges and by applying more sophisticated cleaning algo-
rithms.
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