
A Double-Edged Sword? Software Reuse
and Potential Security Vulnerabilities

Antonios Gkortzis1(B) , Daniel Feitosa2 , and Diomidis Spinellis1

1 Department of Management Science and Technology,
Athens University of Economics and Business, Athens, Greece

{antoniosgkortzis,dds}@aueb.gr
2 Data Research Centre, University of Groningen, Groningen, The Netherlands

d.feitosa@rug.nl

Abstract. Reuse is a common and often-advocated software develop-
ment practice. Significant efforts have been invested into facilitating
it, leading to advancements such as software forges, package managers,
and the widespread integration of open source components into propri-
etary software systems. Reused software can make a system more secure
through its maturity and extended vetting, or increase its vulnerabili-
ties through a larger attack surface or insecure coding practices. To shed
more light on this issue, we investigate the relationship between software
reuse and potential security vulnerabilities, as assessed through static
analysis. We empirically investigated 301 open source projects in a holis-
tic multiple-case methods study. In particular, we examined the distri-
bution of potential vulnerabilities between the native code created by a
project’s development team and external code reused through dependen-
cies, as well as the correlation between the ratio of reuse and the density
of vulnerabilities. The results suggest that the amount of potential vul-
nerabilities in both native and reused code increases with larger project
sizes. We also found a weak-to-moderate correlation between a higher
reuse ratio and a lower density of vulnerabilities. Based on these findings
it appears that code reuse is neither a frightening werewolf introducing
an excessive number of vulnerabilities nor a silver bullet for avoiding
them.

Keywords: Software reuse · Security vulnerabilities · Case study

1 Introduction

Code reuse is a widely advocated and adopted practice in software development.
A Linux distribution is a great example of software reuse, bundling together
several packages to provide the functionality of a modern operating system. In
a similar manner, the dominant mobile operating system, Android,1 is based
on a customized Linux kernel and bundles additional open source packages. To
1 https://www.android.com/.

c© Springer Nature Switzerland AG 2019
X. Peng et al. (Eds.): ICSR 2019, LNCS 11602, pp. 187–203, 2019.
https://doi.org/10.1007/978-3-030-22888-0_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22888-0_13&domain=pdf
http://orcid.org/0000-0002-7628-1780
http://orcid.org/0000-0001-9371-232X
http://orcid.org/0000-0003-4231-1897
https://www.android.com/
https://doi.org/10.1007/978-3-030-22888-0_13


188 A. Gkortzis et al.

develop user applications, the Android platform provides a set of more than 3
million Java libraries from the Maven repository.2

Nevertheless, similarly to any other design decision, code reuse has limita-
tions. A prominent side-effect of code reuse is the existence of serious poten-
tial security risks. Kula et al. [12] analyzed 4 659 open source software systems
and showed that more than 80% of them used outdated external libraries and
dependencies, while 69% of the developers they interviewed were unaware of any
security risks in their reused code.

As a concrete example, Heartbleed3 was a severe security vulnerability in the
OpenSSL cryptographic software library that allowed any user on the Internet to
read arbitrary memory contents. Through this vulnerable version of the library,
a malicious user could retrieve secret keys that protected communications, user-
names and passwords, personal emails, documents and messages. The bug was
detected two years after its introduction in the code. It affected the web servers
that were powering 66% of the active web sites at that time [1]. Another, more
recent, example is the Equifax incident [2], in which hackers exploited a known
vulnerability in a third-party Java library that Equifax knowingly used, and
stole personal private information of more than 147 million American citizens.
Various initiatives try to battle this problem. GitHub introduced the Security
Alert for Vulnerable Dependencies4 service aiming to increase users’ awareness
and mitigate the potential security risks. Similarly, any Linux or BSD system
by default notifies users for available security updates in vulnerable versions of
installed packages and system libraries.

Despite the existence of well-known security mishaps due to software reuse,
to the best of our knowledge there is a lack of large-scale studies that investigate
how security vulnerabilities are associated with code reuse in software systems.
This paper aims to contribute towards this direction by analyzing a large set of
open source software systems and comparing the levels of vulnerabilities between
the native application source code written by the software development team and
external source code introduced through dependencies on third-party libraries.
To achieve this, we collected a set of 301 Java projects and compared the native
and reused parts of the code with regards to potential security vulnerabilities,
which were detected based on static analysis.

The analysis of the produced data revealed a weak-to-moderate inverse corre-
lation between the code reuse ratio and the vulnerability density in open source
software systems. This means that software systems with higher reuse ratio tend
to have fewer potential vulnerabilities compared to projects where native code is
dominant. The main contribution of our work is that, although we observed that
the amount of potential vulnerabilities in both native and reused code increases
with larger project sizes, a higher reuse ratio is associated with a lower vul-
nerability density. Additionally, we contribute: (a) the construction process of

2 https://mvnrepository.com/repos/central.
3 https://nvd.nist.gov/vuln/detail/CVE-2014-0160.
4 https://help.github.com/articles/about-security-alerts-for-vulnerable-

dependencies/.

https://mvnrepository.com/repos/central
https://nvd.nist.gov/vuln/detail/CVE-2014-0160
https://help.github.com/articles/about-security-alerts-for-vulnerable-dependencies/
https://help.github.com/articles/about-security-alerts-for-vulnerable-dependencies/


A Double-Edged Sword? 189

a dataset that correlates the software reuse ratio of open source Java projects
with their potential security vulnerabilities, (b) the aforementioned dataset per
se, and (c) a statistical analysis of this dataset. The source code to reproduce
the process is available on GitHub5 and the dataset on Zenodo.6

The remainder of the paper is organized as follows. Section 2 presents the
related work. Section 3 describes the approach of our study regarding the dataset
construction and the analysis tools. Section 4 presents our findings, which we
further discuss in Sect. 5. Section 6 presents the limitations of our study and
Sect. 7 our conclusions.

2 Related Work

In this section, we present related work. We note that since we could not identify
studies that are directly related to ours, we broadened the scope of this section to
describe efforts dealing with software defects and vulnerabilities in reused code.

Pashchenko et al. [19] conducted a study on the SAP software ecosystem,
investigating how much of the reused code in SAP is affected by known vulner-
abilities. The authors, similarly to our study, analyzed the top 200 open source
Maven systems that SAP is reusing. Thus, their study is not affected by false posi-
tives. However, the nonexistence of known vulnerabilities does not guarantee the
absence of any other undetected vulnerabilities. The authors reported that 13%
of the direct and transitive libraries that were reused were affected by at least
one known vulnerability. In their analysis they excluded none-deployed depen-
dencies (e.g., test dependencies). Regarding vulnerable dependencies Neuhaus
et al. [18] investigated the Red Hat Linux (RHEL) distribution and provided
empirical evidence that certain packages are correlated to system vulnerabilities.

Shin et al. [23] studied that three software metrics, i.e., complexity, code
churn and developer activity, can be used in order to create a prediction model
for potentially vulnerable code chunks in RHEL kernel and in Mozilla Fire-
fox. Similarly, Meneely et al. [14] investigated the RHEL kernel and provided
empirical evidence that show files modified by more than nine developers or files
maintained by independent developer groups are more likely to have vulnerable
code compared to files developed by the main core or smaller groups.

Mohagheghi et al. [16] studied historical data of software defects for 12 con-
sequent releases of a large-scale telecom system developed by Ericsson. Their
goal was to investigate the impact of reuse on the defect density (defined as
defects per lines of code) and the stability of the system (defined as the degree
of modification). Their findings showed that reused code components had a lower
defect density compared to non-reused ones. Moreover, reused components had
a higher stability compared to the non-reused ones.

Additionally, Mitropoulos et al. [15] used FindBugs to statically examine
the Maven ecosystem and presented a dataset of the bugs (including security
bugs) of more than 17 000 libraries (155 000 considering all their versions). Their
5 https://github.com/AntonisGkortzis/Vulnerabilities-in-Reused-Software.
6 http://doi.org/10.5281/zenodo.2566055.

https://github.com/AntonisGkortzis/Vulnerabilities-in-Reused-Software
http://doi.org/10.5281/zenodo.2566055


190 A. Gkortzis et al.

dataset can be used to analyze the risk of using outdated libraries that exist in
the Maven Central repository. Although, this work does not examine reuse we
find it relevant to mention, since among the results, the authors reported a weak
correlation between potential security vulnerabilities and the project size.

Concerning the detection of vulnerable reused code, Pham et al. [20] intro-
duced SecureSync, an automatic approach that analyzes existing vulnerabilities,
in open source systems and creates models in order to detect suspicious pat-
terns in similar systems. The authors evaluated their approach by analyzing 176
releases of 119 open source projects and identified suspicious code in 51% of
them. Practitioners have also made significant contributions in this area. Ponta
et al. [21] presented their approach to identify exploitable vulnerabilities based
on function call graphs. Recently they made their tool7 available for detecting
known vulnerabilities in Java and Python software systems.

In Table 1, we highlight the main differences of our study compared to related
work. In particular, to the best of our knowledge, the study reported in this paper
is the first to investigate the association between code reuse and vulnerabilities,
as obtained by means of static analysis, in multiple open source systems.

Table 1. Comparison against related work

Study Context Focus

on

security

Number

of

projects

Source of

vulnerabilities

Relate security

to reuse

[19] Open source Yes 200 Manual analysis Yes

[16] Proprietary No 1 Defect reporting system Yes

[15] Open source Yes 17 505 Static analysis No

[20] Open source Yes 119 Static analysis and clone detection Yes

[21] Open source Yes 500 Static and dynamic analysis No

[14] Open Source Yes 1 Vulnerability reporting system No

[23] Open Source Yes 2 Vulnerability reporting system Partially

[18] Open Source Yes 1 Vulnerability reporting system Yes

Ours Open source Yes 301 Static analysis Yes

3 Study Design

In this section, we present the protocol of our case study, which was designed
according to the guidelines of Runeson et al. [22], and reported based on the
Linear Analytic Structure [22].

3.1 Objective and Research Questions

The goal of the study was formulated according to the Goal-Question-Metric
(GQM) approach [24], and is described as follows: “analyze native and reused
7 https://sap.github.io/vulnerabilityassessmenttool/.

https://sap.github.io/vulnerabilityassessmenttool/


A Double-Edged Sword? 191

code, for the purpose of evaluation, with respect to the differences in the
estimated levels of security, from the point of view of software developers,
in the context of open-source software.” To fulfill this objective, we have set
two research questions (RQs), as follows:

RQ1: What factors can group projects with regards to security vulnerabilities?

RQ1 aims at acquiring an overview of open-source projects with regards to the
security vulnerabilities identified through static analysis. This overview allows
the provision of demographics for the dataset and the identification of groups of
projects with similar features. This information is also useful to support decision-
making in software development activities related to reuse, and to drive future
research efforts.

RQ2: How is software reuse associated with security vulnerabilities?
RQ2.1: How does native code contribute to the overall amount of vulnerabil-

ities?
RQ2.2: How does reused code contribute to the overall amount of vulnerabil-

ities?

RQ2 aims at investigating an important question associated with software
reuse, namely the extent to which reuse influences the security of a project. For
that, we exploit static analysis to identify potential vulnerabilities and investi-
gate how native code developed by the project’s team and reused code stemming
from dependencies on third-party components contribute to the overall estimated
security level.

3.2 Cases and Unit of Analysis

To answer the aforementioned research questions, we designed a holistic multiple-
case study, i.e., one in which the multiple cases are also the units of analy-
sis [22]. For this study, we chose open source projects as cases and units of
analysis. We selected this particular type of study because the case granularity
(i.e., project-level) is sufficient, and multiple cases will provide statistical power
to the analysis. Moreover, the selected unit of analysis allows answering the set
research questions and pinpoint cases that researchers or practitioners may want
to investigate in more detail.

The cases were collected from Reaper [17], a subset of the GHTorrent data
set [8]. GHTorrent is a large openly-available database of GitHub metadata.
Reaper is a curated dataset comprising more than 2 million unique projects.
It retrieves information from GHTorrent and filters it on the following criteria:
(1) Select only projects that are of the Java, Python, PHP, Ruby, C++, C,
or C# programming languages. (2) The project’s repositories contain evidence
of an engineered software project such as, documentation, testing, and project
management. (3) This dataset contains only projects that are publicly accessible,
excluding forked and deleted repositories.



192 A. Gkortzis et al.

Dataset

Download 
repositories

d 2 Build projects 
and retrieve 

dependencies

s 3

Detect poten al 
vulnerabili es

i l
5

Successfully 
built projects

Parse vulnerability 
reports

li
6

open source projects

Filter 
projects

1

database
reaper
database

Local copiesProject list

Collect project 
informa on

t
4

Source lines 
of code (sloc) 

measurements

Vulnerability
reports

Fig. 1. The dataset construction procedure.

3.3 Variables and Data Collection

To address the research questions, we built a dataset containing two groups of
variables for each unit of analysis: (a) project information; and (b) vulnerability
information. We built the dataset by following a five-step procedure, which is
described in the following paragraphs together with the associated variables.
Figure 1 illustrates the data collection. A summary of the recorded variables is
presented in Table 2. We note that the complete procedure is automated in a set
of scripts available on GitHub.8

Step 1: Filter projects. First, we queried the Reaper database [17] and selected
the GitHub projects written in Java. We selected Java as a programming lan-
guage so as to take advantage of automated build support provided by Maven,
and the security violations identification capabilities of the SpotBugs9 tool. Thus,
we filtered the projects by selecting only those that were using the Apache Maven
automation tool.10 We applied this filter because this tool is well-known, and it
allowed us to automate the build process of multiple projects and retrieve their
dependencies. Both operations were necessary for collecting the potential vulner-
abilities. Finally, we sorted the projects based on their popularity, by retrieving
their stars using the GitHub api.11

Step 2: Download repositories. Next, using the Git tool, we cloned the top
1000 projects. We selected this amount to improve the representativeness of the
sample towards the population and strengthen the statistical analyses.
8 https://github.com/AntonisGkortzis/Vulnerabilities-in-Reused-Software.
9 https://spotbugs.github.io/.

10 https://maven.apache.org/.
11 https://developer.github.com/v3/.

https://github.com/AntonisGkortzis/Vulnerabilities-in-Reused-Software
https://spotbugs.github.io/
https://maven.apache.org/
https://developer.github.com/v3/


A Double-Edged Sword? 193

Table 2. List of recorded variables

Variable Description

Project Full project name

Cn Number of native classes

Cr Number of reused classes

Ln Number of source lines of code in native classes

Lr Number of source lines of code in reused classes

Vn Number of vulnerabilities in native code

Vr Number of vulnerabilities in reused code

V Cn Number of potentially vulnerable native classes

V Cr Number of potentially vulnerable reused classes

V Ln Number of source lines of code in potentially vulnerable native classes

V Lr Number of source lines of code in potentially vulnerable reused classes

Step 3: Build projects and retrieve dependencies. With the repositories at
hand, we built each project. During the building process, the generated compiled
package (i.e., a .jar or .war file) is placed in the local Maven repository (the
.m2 directory by default). The dependencies (third party packages or libraries)
of each project are also downloaded and placed in the local repository. From
the total 1000, we discarded 490 projects that failed to build. For the remaining
510 successful builds, we stored their tree, i.e., the paths to the packages of the
project and its dependencies.

Step 4: Collect project information. In this step, we analyzed each project’s
dependencies’ tree and collected the first groups of variables: project, Cn, Cr, Ln

and Lr. For that, we collected the class files from each package and also used
them to retrieve the source lines of code (sloc), which is estimated based on the
number of the statements. We discarded projects that had less than 1000 lines
of native code, which led us to a final dataset of 301 projects.

Step 5: Detect potential vulnerabilities. To perform this step we employed
static analysis. The benefit of using static analysis for detecting potential secu-
rity vulnerabilities is the ability to assess a large set of projects without the
need of test cases and execution scenarios. Static analyzers can look for patterns
in the code base of a system attempting to cover all possible execution paths.
Kulenovic et al. [13] studied several static analysis methods for detecting secu-
rity vulnerabilities. Their findings show that the algorithms used for detecting
security vulnerabilities with static analysis are improving constantly, and conse-
quently are increasing the accuracy and the precision of the static analyzers.

We used the static analyzer SpotBugs12 (v3.1.11) [10,25,27]. This tool con-
siders bug patterns as rules to identify violations of good coding practices [10].
The rules are organized into nine categories, two of them related to security:

12 This is the well-known FindBugs tool further developed under a new name.



194 A. Gkortzis et al.

Security and Malicious Code. Moreover, SpotBugs classifies the detected viola-
tions into three levels of confidence (low, medium, high) related to the likelihood
of their veracity. The tool has already been evaluated in independent studies
[6,10] and [4], which reported an average precision of 66%. The studies also
reported that the precision can be boosted by ignoring vulnerabilities with a
low level of confidence. Nevertheless, there is still a possibility that SpotBugs
introduces noise (false positives) to the data collection. However, other studies
showed that the detected vulnerabilities are valuable pointers to parts of the
system that need to be maintained [3,5,10,11,26,27].

Finally, to further improve the findings of SpotBugs, we included its plu-
gin FindSecBugs,13 which covers the Open Web Application Security Project
(OWASP) top-10 vulnerabilities14 and several other Common Weaknesses Enu-
merations (CWEs).15 CWE is a list of common security weaknesses, maintained
by the community, and serves as a common language for classifying vulnera-
bilities. To detect potential vulnerabilities, SpotBugs requires the path to the
compiled Java project and its dependencies. For that, we used the project trees
obtained in Step 3. The output of this analysis is a xml file that contains infor-
mation about the potential vulnerabilities among the native and reused classes.

Step 6: Collect vulnerability information. In this final step, we collected
the second groups of variables: Vn, Vr, V Cn, V Cr, V Ln, and V Lr. For that, we
parse each SpotBugs’ xml report that we generated in the previous step. From
these reports we select only the potential security vulnerabilities and we discard
all other data. Then, we aggregate the results separately for the native source
code and the reused source code.

3.4 Analysis Procedure

To investigate the collected data, we performed various statistical analyses. First,
to answer RQ1, we calculated the descriptive statistics on all collected variables,
and used scatter plots and box plots to aid the interpretation of the collected
dataset. To answer RQ2, we first calculated the ratio of reuse Rr and vulnera-
bilities density Dv as described in (1a) and (1b) below.

Rr =
Lr

Ln + Lr
(1a), and Dv =

Vn + Vr

Ln + Lr
(1b) (1)

Next, we used the Pearson correlation [7] to calculate the association between
reuse and security vulnerabilities. To further support this analysis, we created
scatter plots between the ratio of reuse and the amounts of both native-code and
reused-code vulnerabilities. We note that this complete procedure is automated
and available online together with all other scripts used in this study.16

13 https://find-sec-bugs.github.io/.
14 https://www.owasp.org/index.php/Top 10-2017 Top 10.
15 https://cwe.mitre.org/.
16 https://github.com/AntonisGkortzis/Vulnerabilities-in-Reused-Software.

https://find-sec-bugs.github.io/
https://www.owasp.org/index.php/Top_10-2017_Top_10
https://cwe.mitre.org/
https://github.com/AntonisGkortzis/Vulnerabilities-in-Reused-Software


A Double-Edged Sword? 195

4 Results

Here, we present the results obtained from the execution of the study design pre-
sented in the previous section. In particular, we first present the overall statis-
tics of our dataset. Then we address RQ1 by obtaining an overview of the built
dataset. Next, we examine RQ2 by analyzing the distribution of vulnerabilities
between native and reused code.

Table 3. Dataset size

Variable Value Variable Value

Projects 301 Vn 16 700

Reused dependencies 5 662 Vr 51 744

Cn 288 955 V Cn 7 820

Cr 1 082 995 V Cr 29 140

Ln 8 078 996 V Ln 987 421

Lr 35 279 947 V Lr 3 598 352

4.1 RQ1 Projects’ Overview

In Table 3, we present the overall size of the dataset regarding the variables we
presented in Sect. 3. Figure 2 illustrates the distribution of the six variables we
presented in Table 2. The Figure comprises six boxplots in a 2× 3 matrix. Each
column depicts a type of variable (e.g., number of vulnerabilities) and each row
the type of code that the variable regards The number of outliers varied for
each variable from 6% to 14% (with an average of 11%) of the total amount of
projects. For visualization purposes, we omit these outliers in the boxplots.

Table 4. Descriptive statistics

Variable Minimum Maximum Mean Median Std. deviation

Cn 3 36 587 960 132 3 641

Cr 4 118 110 3 598 1 715 7 836

Ln 1 002 798 308 26 841 3 710 88 054

Lr 92 2 525 867 117 209 59 679 192 377

Vn 0 2 230 55 5 222

Vr 0 4 175 172 48 351

V Cn 0 801 26 4 88

V Cr 0 2 660 97 28 211



196 A. Gkortzis et al.

In Fig. 2, we observe that most projects lie in the lowest range of values, a
trend that is also visible among all variables. This observation is in line with the
descriptive statistics we presented in Table 4, since the mean values are closer
to the minimum than to the maximum. Based on these findings, we hypothesize
that the number of vulnerabilities in source code increases with the size of the
project (measured in sloc).

We tested this hypothesis by performing independent T-tests. In our first set
of tests, we ordered the dataset based on size of native code (Ln) and compared
the means between the lower and upper half for: (a) the number of vulnerabilities
in native code (Vn) (statistic =−3.87, p-value< 0.01) and (b) the number of
vulnerabilities in reused code (Vr) (statistic =−2.26, p-value = 0.02) The results
of the tests show a statistical significant difference between the two halves, and
that a smaller design size (smaller sloc) also presents fewer vulnerabilities.
Similarly, for the second set of tests, we ordered the dataset based on the size of
the reused code (Lr) and compared the means between lower and upper half of
the dataset. The results are similar to the first test for both variables.

0

10

20

30

40

50

Number of vulnerabilities

0

5

10

15

20

25

Number of classes with vulnerabilities

0.0000

0.0002

0.0004

0.0006

0.0008

Vulnrabilities per SLOC

0

100

200

300

400

Reused

0

50

100

150

200

250

0.0000

0.0005

0.0010

0.0015
0.0020

0.0025
0.0030

0.0035
Native ReusedNative ReusedNative

Fig. 2. Boxplot of variables related to vulnerabilities

RQ1: The independent t-tests provide empirical evidence for the common belief
that the number of potential vulnerabilities increases along with the design size
(SLOC).

4.2 RQ2 - Association between Reuse and Vulnerabilities

Figure 3 depicts three boxplots that illustrate the distribution of the vulner-
ability density in the native, reused, and total code respectively. Comparing
the vulnerability density in the native code (left boxplot) and the vulnerability
density in the reused code (middle boxplot), we observe that the vulnerability
density median is similar on both cases. However, there are more projects with
higher vulnerability density in native code than in reused code. We also note
that the overall density (right boxplot) is similar to the density in reused code
compared to the native code. This is due to the fact that the size of reused code



A Double-Edged Sword? 197

0.000

0.001

0.002

0.003

0.004

0.005

0.006

Native
vu

ln
er

ab
ili

tie
s d

en
sit

y
Reused Overall

Fig. 3. Boxplots of vulnerability density in native code (left), reused code (center), and
overall (right)

is considerably larger than native code, and the normalization procedure is done
after the vulnerabilities are combined.

To investigate RQ2 with regards to the association between the reuse ratio
and the vulnerability density, we calculated the Pearson correlation between
these variables, which are defined in Sect. 3.4. The result shows a correlation coef-
ficient of −0.18 (p-value< 0.01), indicating a weak inverse correlation between
the reuse ratio and the vulnerability density in a project. Figure 4 illustrates
the distribution of the vulnerability density in the native code (left scatter plot)
and in the reused code (right scatter plot) respectively, with regard to the reuse
ratio. Despite the fact that there is more reused code than native, both cases
have similar tendency in term of accumulation of vulnerabilities. In particular,
there is a clear tendency towards a lower vulnerability density in both native
and reused code.

Fig. 4. Scatter plots of vulnerability density in native (left) and reused (right) code

RQ2: The median vulnerability density is similar in both native and reused
code. Additionally, the results show a weak inverse correlation between the
reuse ratio and the vulnerability density.



198 A. Gkortzis et al.

5 Discussion

In this section, we revisit and explain the findings presented in the previous
section, comparing them against related work where applicable. We also elab-
orate on the implications of these observations to both researchers and practi-
tioners.

5.1 Interpretation of the Results

In summary, we found that the amount of reused code is considerably larger com-
pared to native code. However, the vulnerability density is higher in native code,
i.e., it shows a higher count of vulnerabilities per sloc than reused code. These
observations culminate in the fact that the amount of vulnerabilities is mostly
associated with the reused code. Viewed simplistically this finding indicates that
more reuse leads to more vulnerabilities. However, more reuse is associated with
a lower vulnerability density. This result suggests that reused code is mature, and
has fewer vulnerabilities. Consequently, if we assume that reused code stands for
code that would otherwise have to be written from scratch, the increased reuse
of the more mature code may lead to a lower overall density of vulnerabilities.
These findings are in line with those of Mohagheghi et al. [16], who performed
a comparable study but in a industrial setting and also found a lower defect
density (which includes security vulnerabilities) in reused code when compared
to native code. Moreover, Mitropoulos et al. [15] found a positive correlation
between project size and the amount of vulnerabilities, which also aligns with
our findings related to native code.

Regarding the relatively larger amount of reused code, we note that this is
understandable due to the nature of our dataset, i.e., with multiple medium-
size projects. On one hand, dependencies (e.g., libraries) have a larger impact
on the project size as they may introduce a cascade of included dependencies.
On the other hand, the evolution of the project may not depend as much on
additional reuse, which decreases the reuse ratio. To assess that, we analyzed
the correlation between the reuse ratio and the size of native code (in sloc),
and found a moderate association (coefficient =−0.43, p-value< 0.01).

The results reported in this paper are based on abstractions observed on the
overall dataset. An interesting observation in the SpotBugs reports is type of
the most occurring types of security bugs. In Table 5, we list the top-5 most
recurrent types of vulnerabilities. We notice that both native and reused code
share the same types of vulnerabilities.

5.2 Implications for Researchers and Practitioners

Security assessment of source code is popular among practitioners and
researchers. In many cases, this process is executed before every release. In our
study, we provided evidence that code reuse has a positive impact on the secu-
rity of a software system. Our dataset provides information related to reuse ratio
and the existence of potential vulnerabilities in 301 projects. Practitioners can



A Double-Edged Sword? 199

Table 5. Most occurring types of vulnerabilities

Security bugs description Reported in code

May expose internal representation by returning/incorporating
reference to mutable object

Native & Reused

Field is not final but should be Native & Reused

Field should be package protected Native & Reused

Method invoked that should be only be invoked inside a
doPrivileged block

Native & Reused

Classloaders should only be created inside doPrivileged block Native

Field is a mutable collection which should be package protected Reused

consult the dataset and gain insight on projects of their interest. Software devel-
opers can use this information to prioritize bug fixing and assign resources to
improve their native code with regards to security. Moreover, practitioners can
employ the provided automation scripts to perform a similar analysis on their
own code base.

The findings of this study can also benefit researchers. In particular, the
provided dataset can be used to investigate research questions different from the
ones discussed in this study, e.g., clustering of projects based on one or more
of the available variables. Additionally, our proposed approach can be employed
to investigate other software quality attributes (e.g., correctness, performance)
since SpotBugs can also provide valuable information related to these quality
attributes. To examine this aspect, researchers can modify the provided scripts
to include bug reports from SpotBugs related to these attributes. Researchers
can also reuse our scripts to extend or create their own datasets.

6 Threats to Validity

In this section, we discuss the construct validity, the reliability, and the external
validity of our study. Threats to internal validity, are not applicable in this study
since it doesn’t examine causality. Construct validity examines the relationship
between the study’s observable object or phenomenon and its research questions.
Reliability examines if the study can be replicated and produce the same results.
Finally, external validity examines potential threats to generalizing the results
of this study to other cases.

Regrading construct validity, we can argue that static analysis can only detect
potential security defects and not actually exploitable vulnerabilities. However,
these reports are indicators of places that developers should focus when reviewing
the code. Furthermore, vulnerabilities reported in the reused code may not all
actually affect a project’s security, because some vulnerable elements may never
be executed by the native code. Moreover, the study can identify only black-box
reuse as defined by Heinemann et al. [9]. Black-box reuse requires developers to
include a binary version of the dependency, which in our case is a Java package



200 A. Gkortzis et al.

(jar or war file). White-box reuse is the incorporation of the third-party source
code into the native source code. This approach requires clone code-detection
like that performed by Heinemann et al. [9], which is out of the scope of this
study. Finally, projects were sorted based on their popularity (GitHub stars).
This criterion might not be indicative of the usage of these projects.

Concerning reliability, we put our best effort to make this study easy to
replicate. The source code, along with detailed instructions, are available in this
link.17 The dataset variable values may vary based on the date of the study.
To retrieve the same values researchers should revert the Git repositories to the
date of this study (February 10th 2019). To mitigate any reliability risk, two
developers were involved and reviewed the process and the actual scripting.

Finally, concerning external validity, we identified two potential risks. Firstly,
the project selection was limited to one programming language (Java), and thus
generalization of our findings in other languages requires further investigation.
Secondly, despite the fact that Maven provided us a straight-forward way of
building the projects and easy access to the dependencies, it also limited our
dataset. Almost 45% of the initial project selection (1 000) failed to build with
Maven or was partially built, and was therefore excluded from the analysis.

7 Conclusion

In this paper, we reported a holistic multiple-case method study with the goal of
investigating the association between security vulnerabilities and software reuse
in open source projects. In particular, we looked into the distribution of vulner-
abilities among native code created by a project’s development team and reused
code introduced through third-party dependencies, also identifying character-
istics of the studied projects. Moreover, we examined the correlation between
the ratio of reuse and the density of vulnerabilities. For that, we constructed
a dataset with 301 of the most popular projects in the Reaper repository, and
collected information regarding the size of both native and external code, as
well as vulnerability information obtained from the static analyzer SpotBugs.
Unsurprisingly, the results suggest that larger projects are associated with more
vulnerabilities in both native and reused code. However, they also show that
higher reuse ratio is correlated with a lower overall vulnerability density.

In light of our study design and findings, we envisage several opportunities of
future work. On the one hand, it is desirable to extend the provided dataset and
incorporate projects from other programming languages and automated build
systems, such as Ant, Gradle, npm and pip. The extended dataset could be
used for replication and extension studies. The former could mitigate threats to
the validity of our study by providing triangulation of data and results. Exten-
sion studies could encompass the current or evolved dataset, and explore more
in-depth research questions related to, for example, the features of larger and
smaller projects, or with more or less external code. On the other hand, the
automation scripts shared through this study could be turned into a tool that
17 https://github.com/AntonisGkortzis/Vulnerabilities-in-Reused-Software.

https://github.com/AntonisGkortzis/Vulnerabilities-in-Reused-Software


A Double-Edged Sword? 201

could benefit both practitioners and researchers by providing a workbench for
in-house analyses or future studies.

Acknowledgments. We express our appreciation to Paris Avgeriou for reviewing the
manuscript and providing us with feedback that improved its quality. The research
described has been carried out as part of the CROSSMINER Project, which has
received funding from the European Union’s Horizon 2020 Research and Innovation
Programme under grant agreement No. 732223.

References

1. April 2014 Web Server Survey—Netcraft. https://news.netcraft.com/archives/
2014/04/02/april-2014-web-server-survey.html

2. Cybersecurity Incident & Important Consumer Information—Equifax. https://
www.equifaxsecurity2017.com/

3. Ayewah, N., Pugh, W.: The Google FindBugs fixit. In: Proceedings of 19th Inter-
national Symposium on Software Testing and Analysis (ISSTA 2010), pp. 241–252.
ACM, Trento (2010). https://doi.org/10.1145/1831708.1831738

4. Ayewah, N., Pugh, W., Morgenthaler, J.D., Penix, J., Zhou, Y.: Evaluating static
analysis defect warnings on production software. In: Proceedings of 7th ACM
SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools and Engi-
neering (PASTE 2007), pp. 1–8. ACM Press, San Diego (2007). https://doi.org/
10.1145/1251535.1251536

5. Feitosa, D., Ampatzoglou, A., Avgeriou, P., Chatzigeorgiou, A., Nakagawa, E.:
What can violations of good practices tell about the relationship between GoF
patterns and run-time quality attributes? Inf. Softw. Technol. (2018). https://doi.
org/10.1016/j.infsof.2018.07.014

6. Feitosa, D., Ampatzoglou, A., Avgeriou, P., Nakagawa, E.Y.: Investigating qual-
ity trade-offs in open source critical embedded systems. In: Proceedings of 11th
International ACM SIGSOFT Conference on the Quality of Software Architec-
tures (QoSA 2015), pp. 113–122. ACM, Montreal (2015). https://doi.org/10.1145/
2737182.2737190

7. Field, A.: Discovering Statistics Using IBM SPSS Statistics, 4th edn. SAGE Pub-
lications Ltd., Thousand Oaks (2013)

8. Gousios, G., Spinellis, D.: GHTorrent: GitHub’s data from a firehose. In: Pro-
ceedings of 9th IEEE Working Conference on Mining Software Repositories (MSR
2012), pp. 12–21. IEEE, June 2012. https://doi.org/10.1109/MSR.2012.6224294

9. Heinemann, L., Deissenboeck, F., Gleirscher, M., Hummel, B., Irlbeck, M.: On
the extent and nature of software reuse in open source Java projects. In: Schmid,
K. (ed.) ICSR 2011. LNCS, vol. 6727, pp. 207–222. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-21347-2 16

10. Hovemeyer, D., Pugh, W.: Finding bugs is easy. ACM SIGPLAN Not. 39(12),
92–106 (2004). https://doi.org/10.1145/1052883.1052895

11. Khalid, H., Nagappan, M., Hassan, A.E.: Examining the relationship between Find-
Bugs warnings and app ratings. IEEE Softw. 33(4), 34–39 (2016). https://doi.org/
10.1109/MS.2015.29

12. Kula, R.G., German, D.M., Ouni, A., Ishio, T., Inoue, K.: Do developers update
their library dependencies? Empirical Softw. Eng. 23(1), 384–417 (2018). https://
doi.org/10.1007/s10664-017-9521-5

https://news.netcraft.com/archives/2014/04/02/april-2014-web-server-survey.html
https://news.netcraft.com/archives/2014/04/02/april-2014-web-server-survey.html
https://www.equifaxsecurity2017.com/
https://www.equifaxsecurity2017.com/
https://doi.org/10.1145/1831708.1831738
https://doi.org/10.1145/1251535.1251536
https://doi.org/10.1145/1251535.1251536
https://doi.org/10.1016/j.infsof.2018.07.014
https://doi.org/10.1016/j.infsof.2018.07.014
https://doi.org/10.1145/2737182.2737190
https://doi.org/10.1145/2737182.2737190
https://doi.org/10.1109/MSR.2012.6224294
https://doi.org/10.1007/978-3-642-21347-2_16
https://doi.org/10.1145/1052883.1052895
https://doi.org/10.1109/MS.2015.29
https://doi.org/10.1109/MS.2015.29
https://doi.org/10.1007/s10664-017-9521-5
https://doi.org/10.1007/s10664-017-9521-5


202 A. Gkortzis et al.

13. Kulenovic, M., Donko, D.: A survey of static code analysis methods for security
vulnerabilities detection. In: Proceedings of 37th International Convention on Infor-
mation and Communication Technology, Electronics and Microelectronics (MIPRO
2014), pp. 1381–1386, May 2014. https://doi.org/10.1109/MIPRO.2014.6859783

14. Meneely, A., Williams, L.: Secure open source collaboration: an empirical study of
Linus’ law. In: Proceedings of 16th ACM Conference on Computer and Commu-
nications Security, CCS 2009, pp. 453–462. ACM (2009). https://doi.org/10.1145/
1653662.1653717

15. Mitropoulos, D., Karakoidas, V., Louridas, P., Gousios, G., Spinellis, D.: The bug
catalog of the Maven ecosystem. In: Proceedings of 11th Working Conference on
Mining Software Repositories (MSR 2014), pp. 372–375. ACM, Hyderabad (2014).
https://doi.org/10.1145/2597073.2597123

16. Mohagheghi, P., Conradi, R., Killi, O.M., Schwarz, H.: An empirical study of
software reuse vs. defect-density and stability. In: Proceedings of 26th Interna-
tional Conference on Software Engineering (ICSE 2004), pp. 282–292. IEEE Com-
puter Society, Washington, DC (2004). http://dl.acm.org/citation.cfm?id=998675.
999433

17. Munaiah, N., Kroh, S., Cabrey, C., Nagappan, M.: Curating GitHub for engineered
software projects. Empirical Softw. Eng. 22(6), 3219–3253 (2017). https://doi.org/
10.1007/s10664-017-9512-6

18. Neuhaus, S., Zimmermann, T.: The beauty and the beast: vulnerabilities in red
hat’s packages. In: Proceedings of 2009 USENIX Annual Technical Conference
(USENIX 2009) (2009)

19. Pashchenko, I., Plate, H., Ponta, S.E., Sabetta, A., Massacci, F.: Vulnerable
open source dependencies: counting those that matter. In: Proceedings of 12th
ACM/IEEE Internatinal Symposium on Empirical Software Engineering and Mea-
surement (ESEM 2018), pp. 42:1–42:10. ACM, Oulu (2018). https://doi.org/10.
1145/3239235.3268920

20. Pham, N.H., Nguyen, T.T., Nguyen, H.A., Wang, X., Nguyen, A.T., Nguyen, T.N.:
Detecting recurring and similar software vulnerabilities. In: Proceedings of 32nd
ACM/IEEE International Conference on Software Engineering (ICSE 2010), pp.
227–230. ACM, Cape Town (2010). https://doi.org/10.1145/1810295.1810336

21. Ponta, S.E., Plate, H., Sabetta, A.: Beyond metadata: code-centric and usage-based
analysis of known vulnerabilities in open-source software. In: Proceedings of 34th
IEEE International Conference on Software Maintenance and Evolution (ICSME
2018), September 2018. https://doi.org/10.1109/ICSME.2018.00054

22. Runeson, P., Host, M., Rainer, A., Regnell, B.: Case Study Research in Software
Engineering: Guidelines and Examples. Wiley, Hoboken (2012)

23. Shin, Y., Meneely, A., Williams, L., Osborne, J.A.: Evaluating complexity, code
churn, and developer activity metrics as indicators of software vulnerabilities,
37(6), 772–787. https://doi.org/10.1109/TSE.2010.81

24. van Solingen, R., Basili, V., Caldiera, G., Rombach, H.D.: Goal question metric
(GQM) approach. In: Encyclopedia of Software Engineering, pp. 528–532. Wiley,
Hoboken (2002). https://doi.org/10.1002/0471028959.sof142

25. Tomassi, D.A.: Bugs in the wild: examining the effectiveness of static analyzers
at finding real-world bugs. In: Proceedings of 2018 26th ACM Joint Meeting on
European Software Engineering Conference on and Symposium on the Foundations
of Software Engineering (ESEC/FSE 2018), pp. 980–982. ACM, Lake Buena Vista
(2018). https://doi.org/10.1145/3236024.3275439

https://doi.org/10.1109/MIPRO.2014.6859783
https://doi.org/10.1145/1653662.1653717
https://doi.org/10.1145/1653662.1653717
https://doi.org/10.1145/2597073.2597123
http://dl.acm.org/citation.cfm?id=998675.999433
http://dl.acm.org/citation.cfm?id=998675.999433
https://doi.org/10.1007/s10664-017-9512-6
https://doi.org/10.1007/s10664-017-9512-6
https://doi.org/10.1145/3239235.3268920
https://doi.org/10.1145/3239235.3268920
https://doi.org/10.1145/1810295.1810336
https://doi.org/10.1109/ICSME.2018.00054
https://doi.org/10.1109/TSE.2010.81
https://doi.org/10.1002/0471028959.sof142
https://doi.org/10.1145/3236024.3275439


A Double-Edged Sword? 203

26. Tripathi, A.K., Gupta, A.: A controlled experiment to evaluate the effectiveness
and the efficiency of four static program analysis tools for Java programs. In:
Proceedings of 18th Interantional Conference on Evaluation and Assessment in
Software Engineering (EASE 2014), pp. 23:1–23:4. ACM, London (2014). https://
doi.org/10.1145/2601248.2601288

27. Zheng, J., Williams, L., Nagappan, N., Snipes, W., Hudepohl, J.P., on Vouk,
M.A.S.E.I.T.: On the value of static analysis for fault detection in software. IEEE
Trans. Softw. Eng. 32(4), 240–253 (2006). https://doi.org/10.1109/TSE.2006.38

https://doi.org/10.1145/2601248.2601288
https://doi.org/10.1145/2601248.2601288
https://doi.org/10.1109/TSE.2006.38

	Preface
	Organization
	Contents
	Software Reuse Practice
	A Flexible and Efficient Approach to Component Test in Time-Critical Scenarios
	1 Introduction
	2 Integrated Solution
	2.1 Component Definition
	2.2 Test Definition
	2.3 Execution Service

	3 Engineering Practice
	4 Related Work
	5 Conclusion and Future Work
	References

	Software Product Line and Requirements Reuse
	Extending FragOP Domain Reusable Components to Support Product Customization in the Context of Software Product Lines
	Abstract
	1 Introduction
	2 Fragment-Oriented Programming
	3 VariaMos (FragOP) Main Capabilities
	3.1 Assembling Capability
	3.2 Customization Capability
	3.3 Derivation Results

	4 Usability Evaluation
	4.1 Procedure
	4.2 Metrics
	4.3 Results
	4.4 Threats to Validity

	5 Related Work
	6 Conclusions
	References

	Towards a Software System for Facilitating the Reuse of Business Processes
	Abstract
	1 Introduction
	2 Domain Analysis and Toolset’s Objectives
	3 Development of the Toolset
	3.1 Introducing BPMML
	3.2 Developing the IDE and BPMML’s Graphical Tool

	4 Challenges and Future Work
	References

	Automated Support to Capture Creative Requirements via Requirements Reuse
	1 Introduction
	2 Background
	2.1 Requirement Boilerplate
	2.2 NLP Techniques
	2.3 Language Model

	3 Our Framework
	3.1 Collecting Requirements
	3.2 Clustering Requirements
	3.3 Generating Requirements
	3.4 Selecting Candidate Requirements

	4 Human Subject Evaluation
	4.1 Research Questions
	4.2 Study Setup
	4.3 Results and Analysis

	5 Discussion
	5.1 Insights on Certain Observations
	5.2 Limitations

	6 Related Work
	6.1 Creativity in Requirements Engineering
	6.2 Automated Creation of Software Requirements

	7 Conclusions
	References

	A Comparative Analysis of Game Engines to Develop Core Assets for a Software Product Line of Mini-Games
	1 Introduction
	2 Context
	3 Comparison Among Video Game Engines
	3.1 Reuse
	3.2 Automatic Assembly
	3.3 Performance
	3.4 Learning Curve
	3.5 Licensing Terms

	4 Lessons Learned
	5 Related Works
	6 Conclusions and Future Work
	References

	Reuse and Design and Evolution
	Behavioral Evolution of Design Patterns: Understanding Software Reuse Through the Evolution of Pattern Behavior
	1 Introduction
	1.1 Research Problem
	1.2 Research Objective
	1.3 Contributions

	2 Background and Related Work
	2.1 Design Pattern Formalization
	2.2 Design Pattern Decay

	3 Research Approach
	3.1 GQM
	3.2 Study Design

	4 Results
	5 Discussion
	6 Threats to Validity
	7 Conclusion
	References

	Developing a Flexible Simulation-Optimization Framework to Facilitate Sustainable Urban Drainage Systems Designs Through Software Reuse
	Abstract
	1 Introduction
	2 Methods and Materials
	3 Results and Discussions
	4 Conclusions
	Acknowledgements
	References

	Automatically Extracting Bug Reproducing Steps from Android Bug Reports
	1 Introduction
	2 A Motivating Example
	3 S2RMiner Approach
	3.1 Phase 1: HTML Parsing
	3.2 Phase 2: S2R Extraction

	4 Evaluation
	4.1 Datasets
	4.2 Experiment Design
	4.3 Threats to Validity

	5 Results and Analysis
	6 Related Work
	7 Conclusion
	References

	Intelligent Software Reuse
	Searching Software Knowledge Graph with Question
	1 Introduction
	2 Overview
	2.1 Extracting Software Project Knowledge Graph Meta-Model
	2.2 Parsing and Matching Natural Language Question
	2.3 Generating and Measuring Inference Sub-Graph
	2.4 Constructing Cypher Query Statement

	3 Generating and Measuring Inference Sub-Graph
	3.1 Generating Inference Sub-Graph
	3.2 Measuring Inference Sub-Graphs

	4 Experiment and Evaluation
	4.1 Software Project Knowledge Graph
	4.2 Question Example
	4.3 RQ1: Q&A Effectiveness Evaluation
	4.4 RQ2: Inference Sub-Graph Effectiveness Evaluation
	4.5 RQ3: Measurement Strategy Comparison Evaluation

	5 Related Work
	6 Conclusion
	References

	SemiTagRec: A Semi-supervised Learning Based Tag Recommendation Approach for Docker Repositories
	Abstract
	1 Introduction
	2 Background and Problem Analysis
	2.1 Background
	2.2 Problem Analysis

	3 Approach Details
	3.1 Predictor
	3.2 Extender
	3.3 Evaluator
	3.4 Integrator

	4 Experimental Setup
	4.1 Dataset
	4.2 Evaluation Metrics
	4.3 Research Questions
	4.4 Parameter Settings

	5 Evaluation
	5.1 RQ1
	5.2 RQ2
	5.3 RQ3
	5.4 Threats to Validity

	6 Related Work
	6.1 Researches Focusing on Docker
	6.2 Tag Recommendation

	7 Conclusion
	Acknowledgement
	References

	Slicing Based Code Recommendation for Type Based Instance Retrieval
	1 Introduction
	2 Motivating Example
	3 Approach
	3.1 Overview
	3.2 Searching
	3.3 Slicing
	3.4 Merging
	3.5 Removing Duplicate Code Snippets
	3.6 Ranking

	4 Evaluation
	4.1 Research Questions
	4.2 Type Based Instance Retrieval Requests and Code Repository
	4.3 RQ1: Type Based Instance Retrieval Code Snippets in Programs
	4.4 RQ2: Comparison Against Existing Approaches
	4.5 RQ3: Influence of Code Slicing
	4.6 RQ4: Influence of Ranking
	4.7 Threats to Validity

	5 Related Work
	6 Conclusion
	References

	NLI2Code: Reusing Libraries with Natural Language Interface
	1 Introduction
	2 Framework
	2.1 Overview
	2.2 Functional Feature Extraction
	2.3 Code Pattern Mining
	2.4 Synthesizer

	3 Implementation
	3.1 Functional Feature Extractor
	3.2 Code Pattern Miner
	3.3 Synthesizer

	4 Preliminary Evaluation
	4.1 Experiment Design
	4.2 RQ1-Functional Feature Accuracy and Completeness
	4.3 RQ2-Code Implementation Accuracy

	5 Related Work
	6 Conclusion
	References

	Domain-Specific Software Development
	A Double-Edged Sword? Software Reuse and Potential Security Vulnerabilities
	1 Introduction
	2 Related Work
	3 Study Design
	3.1 Objective and Research Questions
	3.2 Cases and Unit of Analysis
	3.3 Variables and Data Collection
	3.4 Analysis Procedure

	4 Results
	4.1 RQ1 Projects' Overview
	4.2 RQ2 - Association between Reuse and Vulnerabilities

	5 Discussion
	5.1 Interpretation of the Results
	5.2 Implications for Researchers and Practitioners

	6 Threats to Validity
	7 Conclusion
	References

	ACO-RR: Ant Colony Optimization Ridge Regression in Reuse of Smart City System
	1 Introduction
	2 Related Work
	3 Proposed ACO-RR Model
	3.1 ACO-RR Algorithm Flow
	3.2 Algorithm Principle

	4 Experiments
	4.1 Experimental Data
	4.2 Experimental Methods and Processes
	4.3 Experimental Results and Analysis

	5 Conclusion
	References

	An Improved Approach for Complex Activity Recognition in Smart Homes
	Abstract
	1 Introduction
	2 Literature Review
	3 Proposed Approach
	4 Results and Discussion
	5 Conclusion and Future Work
	References

	Examining the Reusability of Smart Home Applications: A Case Study on Eclipse Smart Home
	Abstract
	1 Introduction
	2 Related Work
	3 Case Study Design and Evaluation
	3.1 Research Objectives and Questions
	3.2 Case Selection
	3.3 Data Collection
	3.4 Data Analysis

	4 Results
	5 Discussion
	6 Conclusions
	Acknowledgement
	References

	Post Papers
	“Reuse on Steroids”: Reuse of Code, Compliance Tools, and Clearing Results
	Abstract
	References

	Sustainable Software Reuse in Complex Industrial Software Ecosystem: The Practice in CFETSIT

	Author Index

