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ABSTRACT

Motivation: Even though many studies examine the energy effi-

ciency of hardware and embedded systems, those that investigate

the energy consumption of software applications are still limited,

and mostly focused on mobile applications. As modern applications

become even more complex and heterogeneous a need arises for

methods that can accurately assess their energy consumption.

Goal:Measure the energy consumption and run-time performance

of commonly used programming tasks implemented in different

programming languages and executed on a variety of platforms to

help developers to choose appropriate implementation platforms.

Method: Obtain measurements to calculate the Energy Delay Prod-

uct, a weighted function that takes into account a task’s energy

consumption and run-time performance. We perform our tests by

calculating the Energy Delay Product of 25 programming tasks,

found in the Rosetta Code Repository, which are implemented in

14 programming languages and run on three different computer

platforms, a server, a laptop, and an embedded system.

Results: Compiled programming languages are outperforming the

interpreted ones for most, but not for all tasks. C, C#, and JavaScript

are on average the best performing compiled, semi-compiled, and

interpreted programming languages for the Energy Delay Product,

and Rust appears to be well-placed for i/o-intensive operations,

such as file handling. We also find that a good behaviour, energy-

wise, can be the result of clever optimizations and design choices

in seemingly unexpected programming languages.

CCS CONCEPTS

• Hardware → Power estimation and optimization; • Soft-

ware and its engineering→ Software libraries and repositories;

Software design tradeoffs;
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1 INTRODUCTION

Nowadays, energy consumption1 mattes more than ever before—

given that modern software applications should be able to run on

devices with particular characteristics (e.g., regarding their main

memory and processor). Although hardware design and utilization

is undoubtedly a key factor affecting energy consumption, there is

much evidence that software can also significantly influence the

energy usage of computer platforms [7, 16, 18].

Today, software practitioners can select from a large pool of pro-

gramming languages to develop software applications and systems.

Each of these programming languages comes with a number of

features and characteristics that can affect the energy consumption

and run-time performance of programming tasks implemented in

such languages. With the advent of cloud computing, data centers,

and mobile platforms, the same programming tasks can run on

distinct platforms consuming energy in different ways. In this con-

text, there is limited work available that examines the energy and

performance implications of particular programming tasks that are

written in different languages and run on different platforms.

In this paper, we measure the Energy Delay Product (edp), a

weighted function of the energy consumption and run-time perfor-

mance product, for a sample of commonly used programming tasks.

We do this to identify which programming language implementa-

tions (i.e., programming tasks developed in particular programming

languages) are more efficient. The usage of a metric like edp can

help us to make suggestions regarding the programming languages

that should be used for the development of particular program-

ming tasks, which are dependent on the energy or performance

requirements of the software systems and applications the tasks

1Although in the physical sense energy cannot be consumed, we will use the terms
energy “demands”, “consumption”, and “usage” to refer to the conversion of electrical
energy by computers to thermal energy dissipated to the environment. Correspond-
ingly, we will use the term energy “savings”, “efficiency”, and “optimization” to refer
to reduced consumption.
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belong to. At the same time, the edp metric can help us to investi-

gate how the type of the execution environment, where particular

implementations run on, affects their efficiency.

To achieve our goals, we make use of a large publicly avail-

able repository that is used for programming chrestomathy,2 the

Rosetta Code Repository [29]. Conducting an empirical study on

this data set, we elicit edp results from small programming tasks

implemented across popular programming languages. In our ex-

periments, we include different programming paradigms, such as

procedural, object-oriented, and functional. Our results highlight

the edp implications of a particular programming language’s im-

plementations. We also analyze the collected results to derive con-

clusions on the behaviour of different computing platforms (i.e.,

embedded, laptop, and server system) viz-a-viz edp.

The paper makes the following contributions:

• a customized and extended data set that can be used as a
benchmark for similar studies to ours,

• a set of publicly available tools for measuring the edp of
various programming tasks implemented in different pro-

gramming languages,

• an empirical study on programming language edp implica-
tions, by using different types of programming tasks and

software platforms, and

• a programming language-based ranking catalogue, in the
form of heat maps, where developers can find which pro-

gramming language to pick for particular tasks and plat-

forms; when energy or run-time performance are important.

Our results show that C is the most edp efficient language when

it comes to computational-intensive tasks for almost all of our

platforms. Go outperforms most implementations for sorting algo-

rithms, Rust seems tomake themost edp efficient file-i/o operations,

JavaScript performs better for regular expression tasks, and C++

is the most efficient for function composition. On average, C, C#,

and JavaScript are the most edp efficient programming languages,

while Swift, Java, and R show the weakest performance among

the compiled, semi-compiled (i.e., compiled into intermediate code

and executed on virtual machines), and interpreted groups, respec-

tively. Our analysis also shows that the average edp of the same

programming language is significantly different, in statistical terms,

between the embedded and the laptop platforms. However, we

could not detect a statistically significant difference between the

embedded and the server or the laptop and server platforms.

2 METHODS

In this section, we provide details regarding our objectives, research

questions, and samples. We also present our automated approach

for calculating programs’ edp, its input parameters, as well as its

threats and limitations.

2.1 Research Questions

Previous studies have claimed that compiled programming

languages such as C and C++ are the most energy and performance

efficient, while semi-compiled and interpreted languages are the

least efficient [1, 10, 33]. We attempt to investigate whether the

2An ancient Greek word meaning “desire to learn”.

above statement is true by conducting a large scale empirical

study on a sample of 25 programming tasks implemented in 14

programming languages. In addition to that, our focus is to intro-

duce an automatic approach that software practitioners can use to

calculate the edp of a selected programming language for a certain

task type, e.g., i/o- or cpu-intensive applications, running on spe-

cific computer systems.We define our research questions as follows:

RQ1.Which programming languages are the most edp efficient

and inefficient for particular tasks?—Our objective here is to rank

the selected programming languages based on the edp of the

implemented programming tasks. By answering this research

question, we will guide practitioners on which programming

languages they should avoid or consider when developing soft-

ware applications that require to be edp efficient for particular tasks.

RQ2. Which types of programming languages are, on average,

more edp efficient and inefficient for each of the selected platforms?—

Our goal here is to evaluate the efficiency of different programming

languages’ families (i.e., compiled, interpreted, and semi-compiled)

based on the average edp of their implementations, when the latter

are running on particular software platforms (i.e., server, laptop,

and embedded system). By answering this research question, we

will determine which types of programming languages can on

average produce better edp results when running on specific

platforms.

RQ3. How much does the edp of each programming language

differ among the selected platforms?—For answering this research

question, we plan to examine whether the average edp of the se-

lected tasks, which are implemented in a particular programming

language, differs when these tasks run on different software plat-

forms (i.e., server, laptop, and embedded system). By answering

this research question, we will define whether programming tasks

implemented in a specific programming language have similar edp

behavior when running on different software platforms.

2.2 Selection of Subject Systems

Data Set.We made use of the Rosetta Code Repository, a publicly

available repository for programming chrestomathy. Rosetta Code

offers 868 tasks, 204 draft tasks, and has implementations in 675

programming languages [29]. However, not all tasks are developed

in all programming languages that we have selected for our exper-

iments. To retrieve the online data set, we used a public Github

Repository [3] that contains all the currently developed tasks listed

in Rosetta Code’s web-page.

Since there is a large number of programming languages’ imple-

mentations available in Rosetta Code, we consulted the Tiobe [38]

website to elicit the most popular languages. Tiobe offers a monthly

rating index of programming languages’ popularity, by estimat-

ing the number of hits for a given search query on the internet.

The search query is applied on 25 of the highest ranked search

engines (according to Alexa) and it searches for programming lan-

guage hits across the web that: 1) refer to at least 5,000 hits for the

Google search engine, 2) are Turing complete, and 3) have their own

Wikipedia page [39]. Taking Tiobe October’s 2017 index rating, we
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Table 1: Programming Languages, Compiler and In-

terpreter Versions, and Run-Time Performance Op-

timization Flags

Categories Programming Compilers & Interpreters Optimization
Languages Embedded Laptop Server Flags

C 6.3.0 6.4.1 6.4.1 -O3
C++ 6.3.0 6.4.1 6.4.1 -O3

Compiled Go 1.4.3 1.7.6 1.7.6 –
Rust 1.20.0 1.18.0 1.21.0 -O
Swift 3.1.1 3.0.2 3.0.2 -O

Semi- C# 4.6.2 4.6.2 4.6.2 -optimize+
Compiled vb.net 4.6.2 4.6.2 4.6.2 -optimize+

Java 1.8.0 1.8.0 1.8.0 –

JavaScript 9.0.4 8.9.3 8.9.3 –
Perl 5.24.1 5.24.1 5.24.1 –

Interpeted php 5.6.30 7.0.25 7.0.25 –
Python 2.7.23 2.7.13 2.7.13 -O
R 3.3.3 3.4.2 3.4.2 –
Ruby 2.4.2 2.4.1 2.4.1 –

selected the top 14 programming languages. We excluded from our

initial list programming languages such as assembly, Scratch, Mat-

lab, and Objective Pascal, that have particular limitations, i.e., they

are architectural, visually oriented, proprietary, and os dependent,

respectively. On the contrary, we included programming languages

such as R, Swift, Go, and Rust, although they were not among the

top 14.We have selected R and Swift because they had the next high-

est popularity in Tiobe. Also, we chose Go and Rust because they

had one of the highest rise in ratings in a year and are considered to

be promising according to Tiobe [38]. The selected programming

language categories (compiled, interpreted, and semi-compiled),

along with their names, compilers and interpreters’ versions, and

compile-time performance optimization flags are shown in Table 1.

We selected the highest possible performance optimization flags,

since some languages (e.g., Go) by default apply the highest degree

of optimizations. Regarding run-time configurations, we did not

use or tune any environmental variables.

After retrieving our data set, we had to filter, crop, and modify

it to adapt it to our study’s needs. For instance, consider that most

of the categories found in Rosetta Code, such as arithmetic and

string manipulation, offer more than one task. However, we had

to use a balanced data set of different types of tasks. Therefore, we

developed a script that extracts all the tasks that are implemented

in at least half of the selected 14 programming languages. We ended

up with the 25 tasks shown in Table 2. Table’s 2 first and second

columns list the selected categories and the names of the tasks, as

they were found in Rosetta Code. The third column explains the

tasks and the fourth column provides the inputs that were used

for each task; we tried to keep the original inputs as given from

the Rosetta Code task Wiki-pages. The fifth column shows the task

name abbreviations as they are used in Figure 1, 2a, 2b, and 2c.

Handling theData Set. To properly use the above-mentioned data

set, we had to do several amendments. Initially, we had to add each

task to a for loop for making the run-time execution of each task
to last more than a second—since our power analyzer, i.e., Watts

Up Pro [41], has a sampling rate of a second (rate lowest). The for
loop’s iterations among the tasks vary between a thousand to two

billion of times. It is important to note that some implementations

last significantly longer. For instance, the exponentiation-operator

for C and R took 4.5 seconds and 109 minutes, respectively, to exe-

cute the task two billion of times. In addition, consider that some

compilers and interpreters offer aggressive source code optimiza-

tions. Then, once they find out that the same function is being

repeated multiple of times, they optimize their native code to avoid

unnecessary calculations. To handle the above issue and execute the

same tasks multiple times, we made the programming tasks’ loop

variable dependent to enforce different outcomes each time. We

also used volatile variables (whenever a programming language
offered such an option), whose value may change between different

accesses. Furthermore, some of the tasks developed in a specific

language offered more than one implementation. Here, we chose

the one that was most similar with the implementations in the other

selected programming languages. For example, we added any re-

quired scaffolding, such as a main function or libraries that needed
to be installed and configured. We also developed from scratch the

tasks that were not implemented for all the programming languages

of our selection whenever it was possible (e.g., multiple inheritance

is not applicable in C#).

To execute all the tasks and collect the results, we developed a

number of scripts that are available for public use in our Github

Repository [19]. In total, wewrote 2,799 lines of source code in bash,

Python, and Java to compile, execute, collect, filter, and plot our

results. Moreover, we wrote 1,373 lines of source code to implement

the missing tasks for programming languages including C, C#,

JavaScript, Perl, php, R, Rust, Swift, and vb.net.

Experimental Platform. To perform our experiments, we used a

Dell Vostro 470 (with 16 gb ram) server [12], an hp EliteBook 840

G3 Notebook laptop [25], and two Raspberry Pi 3b model [34], with

an Intel i7-3770, an Intel i7-6500U, and a quad-core arm Cortex-A53

micro-processors, respectively.

From hereafter, we refer to the server, laptop, and one of the

rpis as Computer Node (cn) and to the Watts Up Pro as wup. The

cns responsibility is to execute the tasks and to retrieve their ex-

ecution time using time [15]. In addition, we note that we used
one of the two rpis (the one is not acting as a cn) to retrieve the

energy measurements from wup’s internal memory. We will refer

to it as an Energy Monitoring (em) system. Finally, to extract the

collected measurements from wup’s internal memory, we used an

open source Linux utility-based interface available in GitHub [5].

2.3 Research Method

Our calculations are based on edp, an equation introduced by

Horowitz et. al [24] and applied as a weighted function by Cameron

et. al [6]. The edp is defined as follows:

E × Tw (1)

Using the term E, we denote the total energy consumed by a

particular task from the start until its finish time. T is the total

execution time of a task. The exponent w denotes weights, and it

can take the following values: 1 for energy efficiency when energy

is of major concern; 2 for balanced, when both energy consump-

tion and performance are important; 3 for performance efficiency,

when performance is most important. Here, we kept the exponent

w equal to 1 (to compare energy/performance in equal terms) to
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Table 2: Selected Categories, Tasks, Explanation, Input Test, and HeatMap Abbreviations

Categories Names Explanation Input Test Abbreviations

Arithmetic exponentiation-operator exponentiates integer and float 201712, 19.8812 exp.-operat.

numerical-integration calculates the definite integral by using f (x ) =
∫ 1
0
x3, 102 num.-integ.

methods rectangular{left,right,midpoint}, f (x ) =
∫ 100
1
1/x , 103

trapezium, and Simpson’s for 10x f (x ) =
∫ 5000
0

x , 5 × 105
approximations f (x ) =

∫ 6000
0

x , 6 × 105
Compression huffman-coding encodes and decodes a string “huffman example” huffman

lzw-compression encodes and decodes a string “Rosetta Code” lzw-compr.

Concurrent concurrent-computing threads creation and printing [Enjoy,Rosetta,Code] conc.-comp.

synchronous-concurrency shares data between 2 threads Random text file synch.-conc.

Data array-concatenation concats two integer arrays [1,2,3,4,5], [6,7,8,9,0] array

structures json serializes and loads json in data structure “foo”:1,“bar”:[“10”, “apples”]” json

File handling file-input-output reads from A and writes to B 10,000 unique binary files file-i/o

Recursion factorial factorial of n (10!) factorial

ackermann-function examples of a total computable function A(m,n) = n + 1,A(m,n) = A(m − 1, 1), ackermann

that is not primitive recursive A(m,n) = A(m − 1,A(m − 1, 1))
palindrome-detection finds if word is palindrome “saippuakivikauppias” palindrome

Regular regular-expression matches a word from a sentence and then “this is a matching string" regex

Expression replaces a word

Sorting {selection, insertion, sorts an array of 100 random elements [the same 100 random selection, insertion,

algorithms merge, bubble,quick} elements for all cases] merge ,bubble, quick

String url-encoding encode a string “http://foo bar/” url-encode

manipulation url-decoding decode a string “http%3A%2F%2 ffoo+bar%2fabcd” url-decode

Object call-an-object-method calls a method from an object obj-method

Oriented classes creates an object classes

inheritance-multiple invokes inherited classes methods inher.-multi.

inheritance-single invokes inherited class method inher.-single

Functional function-composition pipes a function’s result into another sin(asin(0.5)) func.-comp.

address RQ1 and RQ3, and we used all three weights (to see how

performance affects the average edp) to answer RQ2 in Section 3.

We chose edp among other energy metrics (e.g., Greenup,

Speedup, and Powerup [2]) because normalized edp can offer fair

comparisons among programming implementations, which run

on different execution platforms. Contrary to Abdulsalam’s et al.

study [2], we do not evaluate the efficiency of optimizations, where

performance and energy is measured separately.

Before collecting our measurements, at the cn’s boot time, we

had to ensure a stable condition (where the energy usage is stable)

before starting to retrieve measurements—we defined a waiting

period of five to minutes to avoid adding overhead to our results.)

As it is suggested by Hindle [23], we tried to shut down background

processes found in modern operating systems, such as disk defrag-

mentation, virus scanning, cron jobs, automatic updates, disk and

document indexing, and so on, to minimize possible interference

to our measurements. Additionally, to ensure our systems’ sta-

ble condition, we used the Linux-monitoring sensors tool, i.e., the

lm_sensors [35] for the server and laptop platforms and vcgencmd
[17] for the rpi. We used lm_sensors and vcgencmd to retrieve
the systems’ temperature. If the systems’ temperature was found

high compared to its idle temperature, it could be possible that the

system was using its fans to cool down (thus consuming additional

energy) and the processor’s clock speed might scale down (reducing

run-time performance) to avoid overheating. On such occasions,

our script stalled the execution of the next task’s implementation

until they reach a stable condition.

Upon reaching a stable condition, our script initiated the execu-

tion of the tasks. Before the execution of a task the cn sent an ssh

command to the em device to start retrieving energy measurements

from the wup’s internal memory. By the end of the whole use case,

the em has collected and sent the energy measurements to the cn

through the scp utility. When the results were received by the cn,

a plotting script depicted them in the form of heat maps.

2.4 Threats to Validity

Internal validity. Internal validity refers to possible issues of our

techniques that can lead to false positives and imprecision. Here,

we reveal the sources of such problems.

First, we used cabled instead of wireless connection, because the

former is more energy efficient. However, the use of different pro-

tocols provided by the network connection might cause additional

overhead. Also, the laptop we used has irremovable battery and in

case of discharge, the power supply immediately starts charging.

This may also introduce additional overhead.

Second, wup offers aggregate sampling and reports a sample per

second. This means that the energy consumption of the operations

that last less than a second is not reported. Therefore, such cases
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Figure 1: Server’s Platform EDP Results

are excluded from our final results. Having full control over the os’

workload and background operations is hard, because, at any time,

different daemons may operate. This could affect our calculations,

too. Lastly, given that there exist several compiler and run-time ver-

sions of the programming languages we used, we cannot precisely

calculate their impact on edp.

Third, in Rosetta Code, not all tasks are implemented in all pro-

gramming languages. For example, the classes and call-an-object-

method tasks are not applicable to programming languages such

as C, Rust, and Go. We have tried to keep the original snippets of

Rosetta Code intact and apply only minor changes when needed

e.g., adding a main function, changing from iterative to recursion,
and using structs. Consequently, some of the tasks might not
reflect their most efficient and optimal implementations, resulting

to higher edp.

External validity. External validity refers to the extent to which

the results of our study can be generalized to other programming

implementations. Here, we present the limitations of our study.

According to Sahin et al. empirical studies that use real applica-

tions (e.g., mobile ones) show different energy consumption results

from studies that use micro benchmarks (i.e., traditional desktop

software) [36]. This mostly occurs because desktop or data center

software are cpu bound, whereasmobile applications aremore inter-

active. In addition, for mobile devices, screen, radios, and sensors—

and not the cpu—consume most of the device’s battery. Admittedly,

since our study’s results are based on a benchmark, our findings

could be different for real software.

Finally, we have evaluated the edp of 25 programming imple-

mentations written in 14 programming languages, and running on

three platforms. Thus, it is currently difficult for us to generalize

our arguments for other programming languages and platforms.

3 RESULTS

In this section, we discuss the edp results for the selected platforms

and tasks. We also compare their edp when the implementations

run on different software platforms.

Before plotting the heat maps, we ranked the tasks based on their

edp. For each particular task, we took the lowest edp value and we

used it to normalize the measurements of similar tasks. Some of the

resulting values varied a lot among for all the selected platforms.

Therefore, we used the base ten logarithm to reduce the influence

of extreme values or outliers in the data without removing them

from the data set.

Figure 1 illustrates the logarithmic base 10 edp results for the

server platform when performance is more important than energy.

The y and x axes show the programming languages and the tasks,
respectively. To this end, entries with 0 in Figure 1, correspond to

the programming languages that achieved the lowest score of edp

for particular tasks, as 0 = log 1 after normalizing. The green color

in the heat map shows higher efficiency, in terms of edp, while red

shows lower efficiency. The programming languages’ scores for

each task are sorted from top to bottom and the tasks from left to

right, starting from the lowest to the highest average edp.

Due to space constraints, we only added one of the nine plotted

heat maps. The remaining heat maps can be found in our GitHub

repository [20].
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3.1 RQ1. Which programming languages are
the most EDP efficient and inefficient for
particular tasks?

To answer this research question we, initially, we discuss the re-

sults of each platform by grouping them into categories. We identify

in which categories, in Table 2, specific programming languages

show efficient or inefficient results. Then, we present program-

ming languages’ edp implications that cannot be grouped into

categories. Note that for the tasks classes and call-an-object-method,

if a non-object-oriented implementation achieved better results, we

excluded it and we picked the next one that had a better edp result.

Table 3 lists results by giving the task’s name, the most (min)

and least (max) edp efficient programming language implementa-

tions for the relevant task, and the corresponding difference. The

difference is shown as the number of times a particular implemen-

tation is more edp efficient than the other, in terms of the base ten

logarithm edp value. The difference between the most and least

efficient raw values differed significantly, even close to billions of

times in some cases. For instance, if the edp’s raw value difference

between the minimum and the maximum is equal to 10,000,000,

that would result in a logarithm of 7. We therefore used the base

ten logarithm of the following ratio:

log(p/pmin) (2)

Where p is the measurement and pmin is the minimum value of edp
for each task. If x = log(p/pmin), the language givingpmin is x times
more efficient than p’s implementation in logarithmic terms, that is,
10x times more efficient. Finally, we use show in Figure 2 the score

of edp results all programming languages, for each taask, using box

plots.

3.1.1 Embedded System Results. Grouped into Categories.

The collected results, in Table 3 for the embedded system, show

that C and Rust provide better edp results then Perl, Swift, vb.net,

and R for tasks located under the category of arithmetic, compres-

sion, and data structures. C also performs more efficiently for the

tasks falling under the concurrency category, by being 4.79 times

more efficient than Perl. In terms of file-handling, Rust offers the

best efficiency against Swift by 4.27 times. JavaScript is the pro-

gramming language that achieves 3.88 times better edp results for

the regular expression category, compared to Java. For almost all

sorting tasks, Go implementations are 3.98 to 6.52 times more edp

efficient compared to Swift, R, and Ruby. For performing functional

tasks, C++ is proven to be 7.96 times more efficient than Swift.

Uncategorized Implications. The most edp efficient implementa-

tions for the tasks falling under the recursion category are provided

by the Go, vb.net, and Swift implementations. More specifically, Go

performs 4.77 times more efficiently for ackermann-function than

R, vb.net outperforms R by 3.66 times for palindrome-detection,

and Swift outruns php by 4.03 times for the factorial task. For the

url-encoding and decoding tasks, C and php achieve edp efficiency

of 6.36 and 7.38 times more than Java and R, respectively. For the oo

tasks, the most efficient implementations vary: 1) C++ outperforms

Python 5.62 times for the call-an-object-method task; 2) JavaScript

outperforms R 5.1 times for the classes task; 3) Ruby outperforms

JavaScript 7.94 times for the inheritance-multiple task; and 4) C++

outperforms JavaScript 3.6 times for the inheritance-single task.

3.1.2 Laptop System Results. Grouped into Categories. Ta-

ble 3 shows the results for the laptop platform where C performs

4.1 to 5.81 times more efficiently for the tasks grouped under arith-

metic and compression. The file-handling category, which includes

i/o operations, performs better in Rust’s implementation, which

is 4.44 times more edp efficient than vb.net’s. Recursion category

implementations (ackermann-function, palindrome-detection, and

factorial) prove to be 4.42 to 5.06 times more edp efficient when

using the .net framework (for C# and vb.net) in contrast to R. For

the regular expression category, JavaScript’s pattern matching and

replacing operations performs 4.4 times better than R’s. Likewise,

for the tasks classes and call-an-object-method, found under the

oo category, JavaScript offers the most edp efficient implementa-

tions by being 6.86 to 7.16 times more efficient than R and Perl,

correspondingly. For the remaining tasks under the oo category

(multiple and single inheritance), C++ has the best implementations.

Also, C++ outperforms Perl for the functional category by being

5.62 times more edp efficient.

Uncategorized Implications. For the tasks concurrent-computing

and synchronous-concurrency, C and C++ achieve the best efficiency

against C++ and Java by being 6 and 1.88 times more efficient, re-

spectively. C and php outperform Java by being 4.41 and 4.98 times

more edp efficient for the array-concatenation and json tasks, corre-

spondingly. For sorting tasks like insertion and selection, JavaScript

outruns R by 4.21 and 3.6 times. In addition, C# shows 4.6 and 5.48

times more edp efficient results in contrast to R for bubble and

quick sorting. Also, Go performs 4.74 times more efficiently for

merge sorting compared to Swift. For the tasks of url-decoding and

encoding, C++ and php perform 4.87 and 5.64 times better than R.

3.1.3 Server System Results. Grouping into Categories. Ta-

ble 3 for server system, shows that C is the programming language

with the most efficient edp implementations for the compression,

concurrency, and file-handling categories. Regarding the regular

expression category, JavaScript offers the best performance by be-

ing 4.38 times more efficient than Java. For most of tasks falling

under the sorting category, Go performs 4.68 to 5.55 times more

efficiently against R and Swift. C++ outperforms JavaScript and

Java for oo tasks such as single and multiple inheritance by 1.68

and 3.32 times respectively. In addition, C++ performs 4.48 times

better for the functional category compared to Java.

Uncategorized Implications. For the server platform, Go and

C achieve the best efficiency for the exponentiation-operator and

numerical-integration tasks, respectively. C and vb.net outrun Java

by being 4.35 and 4.46 timesmore efficient for the data structures cat-

egory, correspondingly. C#, Perl, and C achieve, 4.46, 5.06, and 5.01

times better results for the recursion category than R. Moreover, C

performs more efficiently for url-decoding and php for url-encoding

against Java and R.

308



What Are Your Programming Language’s Energy-Delay Implications? MSR ’18, May 28–29, 2018, Gothenburg, Sweden

Table 3: All System Tasks EDP

Embedded Laptop Server

Task’s Name Implementations Logarithmic Implementations Logarithmic Implementations Logarithmic

Min Max Ratio Min Max Ratio Min Max Ratio

exponentiation-operator C R 6.84 C R 5.81 Go Python 4.74

numerical-integration Rust Perl 5.6 C vb.net 4.2 C vb.net 3.35

huffman-coding C vb.net 4.94 C vb.net 4.54 C vb.net 4.38

lzw-compression Rust Swift 9.56 C Java 4.1 C Java 4.46

concurrent-computing C Perl 4.79 C C++ 6 C Rust 5.05

synchronous-concurrency C Perl 0.57 C++ vb.net 1.88 C vb.net 2.12

array-concatenation C R 4.34 C Java 4.41 C Java 4.35

json Rust Swift 4.93 php Java 4.9 vb.net Java 4.46

file-input-output Rust Swift 4.27 Rust vb.net 4.44 C Swift 4.68

factorial Swift php 4.03 vb.net R 4.42 C# R 4.46

ackermann-function Go R 4.77 C# R 4.88 Perl R 5.06

palindrome-detection vb.net R 3.66 vb.net R 5.06 C R 5.01

regular-expression JavaScript Java 3.88 JavaScript Java 4.4 JavaScript Java 4.38

merge-sort Go R 6.52 Go Swift 4.74 Go Swift 4.68

insertion-sort JavaScript R 5.13 JavaScript R 4.21 Go R 4.72

quick-sort Go Swift 5 C# Swift 5.48 Go Swift 5.55

selection-sort Go Ruby 3.98 JavaScript R 3.6 C# R 3.52

bubble-sort Go R 4.84 C# Swift 4.6 Go Swift 5.13

url-decoding C Java 6.36 C++ Java 4.87 C Java 5.36

url-encoding php R 7.38 php R 5.64 php R 5.06

call-an-object-method C++ Python 5.62 JavaScript Perl 7.16 C++ R 6.93

classes JavaScript R 5.1 JavaScript R 6.86 JavaScript vb.net 6.79

inheritance-multiple Ruby JavaScript 7.94 C++ JavaScript 5.89 C++ JavaScript 3.32

inheritance-single C++ JavaScript 3.6 C++ Java 1.79 C++ Java 1.68

function-composition C++ Swift 7.96 C++ Perl 5.62 C++ Java 4.48

(a) Embedded System (b) Laptop (c) Server

Figure 2: EDP box plots. The points show outliers. The vertical scale is the logarithmic ratio log10 (p/pmin) where p is the
measurement and pmin is the minimum of the measurements for that task, corresponding to the most EDP-friendly language.

C is the best in arithmetic, compression and concurrency, while

C++, Go, and Rust are the runners-up. R, Perl, Swift, and Java

show weak, overall, performance in terms of edp. Go is exhibit-

ing best edp results for sorting algorithms, Rust for file-i/o,

JavaScript for pattern matching and replacing, and C++ for

function-composition.

3.1.4 Range of results. Figure 2 depicts the ranges of the edp

scores for each task that we measure in the three platforms. Apart

from a few tasks, our measurements have wide ranges—we note

that we are using a logarithmic scale.

For the embedded system, tasks such as file-input-output,

inheritance-single, and synchronous-concurrency exhibit smaller edp

scores. This does not happen for the laptop and server platforms.

Our figures also show that outliers do exist for all three platforms.

For instance, the embedded system’s box plot has outliers for tasks

such as function-composition, huffman-encoding, lzw-compression,

palindrome-detection, and for url-encoding. Similarly, for the laptop

platform huffman-coding and lzw-compression indicate that specific

programming languages can offer much more gains in terms of

edp.
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Table 4: Programming Languages AverageWeighted EDPRanking

Rank Embedded Laptop Server

w = 1 w = 2 w = 3 w = 1, 2, 3 w = 1, 2, 3

1 C C C C C

2 C++ C++ C++ Go Go

3 Go Go Go C++ C++

4 Rust Rust Rust JavaScript C#

5 C# C# JavaScript Rust JavaScript

6 vb.net JavaScript C# C# Rust

7 JavaScript vb.net vb.net vb.net vb.net

8 php php php php php

9 Ruby Ruby Ruby Ruby Python

10 Python Python Python Swift Ruby

11 Perl Perl Perl Python Swift

12 Java Java Java Perl Perl

13 Swift Swift Swift Java Java

14 R R R R R

3.2 RQ2. Which types of programming
languages are, on average, more EDP
efficient and inefficient for each of the
selected platforms?

We provide an edp ranking for the programming languages—based

on all tasks average edp score—on our platforms. In addition, we

discuss how edp weights influence our results for each platform.

Overall Ranking. Table 4 illustrates for each platform the ranking

among the programming languages’ average edp and the influ-

ence of their weights; where this is applicable. For all the selected

platforms, compiled programming languages such as C, C++, and

Go are ranked on top by offering the best edp implementations

on average. Rust is also ranked among the most efficient edp pro-

gramming languages for the embedded system, but it drops for

the laptop and server platforms. Swift is the only one, from the

compiled programming languages, that shows weak performance.

From the semi-compiled programming languages, the .net frame-

work’s implementations (C# and vb.net) score better against the

interpreted languages, but remain less efficient than the compiled

languages. Java is ranked as the most inefficient among the semi-

compiled languages, while C# as the most efficient.

The interpreted programming languages are the ones offering

on average lowest performance, for all platforms, and appear at the

bottom ranks in the Table 4. Among them, JavaScript is the one

being the most edp efficient while R is the most inefficient.

Weights impact on EDP. By using different weights in the edp, we

force programming languages with low execution time but higher

energy consumption to result in lower edp score compared to the

ones having low energy consumption but higher run-time perfor-

mance. For instance, withw = 1 JavaScript achieves a logarithmic
edp score 3.19 for the numerical-integration case while C# achieves

1.68, which makes it more efficient compared to JavaScript. How-

ever, whenw = 2 orw = 3, JavaScript’s edp changes to 3.35 and 3.52
while for C# it changes to 3.03 and 4.38, respectively. This denotes

that C# is consuming less energy but is slower than JavaScript.

By looking at the results presented in Table 4, we see that only

the embedded system’s average edp scores were affected by the

changes in the weights. For instance, C#, vb.net, and JavaScript

were influenced after raising the run-time performance to the sec-

ond and third power. Specifically, this denotes that JavaScript is

much faster, on average, compared to C# and vb.net but more

energy demanding—since before raising the run-time performance

C# and vb.net had lower edp.

Compiled languages are more edp efficient compared to the

interpreted ones. Among the compiled, semi-compiled, and in-

terpreted languages, the best EDP is obtained by C, C#, and

JavaScript, respectively. Raising the edp performance exponent

to 2 or 3 affects the ranking of the embedded platform’s tasks.

3.3 RQ3. How much does the EDP of each
programming language differ among the
selected platforms?

We investigate how much a programming language’s average edp

differs across themeasurement platforms by using a non-parametric

statistical test, the Wilcoxon’s signed-rank test. To do that, we

developed a script to carry out pairwise statistical analysis for the

average edp that a programming language scored for all the tasks,

between two of the platforms each time. Compared to RQ1 and

RQ2, we used the raw values instead of logarithms, as the test takes

into account the rank of the differences and not their magnitude.

Our null hypothesis follows.

Hypothesis H0: A programming language’s average EDP, does not

have a statistically important difference between the measurement

platforms.

Let L be a programming language, and P1,P2, and P3 (where
P1 � P2 � P3) the selected platforms of our experiment. Also, we
pick the average edp for all the tasks and we compare them in pairs

such as: (P1,P2); (P1,P3); (P2,P3). Since each platform’s results
were used twice in a comparison (once for each other platform), we

used the Bonferroni correction to counteract the multiple compari-

son problem. Therefore if the test’s p-value for the pair Px and Py
(where x ,y ∈ {1, 2, 3} and x � y) satisfies the conditionp < (0.01/3),
as there are 3 platforms pairs for each language, the difference be-

tween the average of Px and Py is statistically significant for the
L programming language. Otherwise, if 0.01/3 ≤ p < 0.05/3, the
statistical significance of the difference between averages is weaker.

If p ≥ 0.05/3, the null hypothesis cannot be rejected. Table 5 illus-
trates results after the pairwise statistical test of two platforms at a

time for all the programming languages. The collected results show

that we can reject the null hypothesis only for two cases and a third

with weaker statistical significance (highlighted in figure 5).

Embedded and Laptop. The results illustrate that there is sig-

nificant difference between the average edp of the embedded and

laptop platforms for C and Swift. In addition, the results show a

weaker evidence that the average edp is different only for a single

instance among the programming languages, that is C++, for which

the null hypothesis cannot be rejected.

Embedded and Server. For the embedded and server platforms

there is no strong statistical evidence for the difference in aver-

age edp.
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Table 5: Wilcoxon’s Pairwise Sum Ranking

Platforms C# C C++ Go JavaScript Java Perl php Python R Ruby Rust Swift vb.net

Embedded–Laptop 0.09 0.00 0.01 0.08 0.02 0.56 0.62 0.12 0.15 0.54 0.10 0.05 0.00 0.19

Embedded–Server 0.39 0.07 0.22 0.29 0.20 0.47 0.91 0.39 0.40 0.97 0.35 0.37 0.04 0.25

Laptop–Server 0.19 0.27 0.14 0.43 0.11 0.31 0.47 0.33 0.52 0.36 0.24 0.28 0.07 0.42

Laptop and Server. Between these two platforms we found no

strong significant difference for any instance.

There is a significant difference between the average edp, in

some case, of the embedded and laptop platforms.

4 DISCUSSION

We investigate the root causes of the results of Section 3 by digging

into the source code of the tasks that showed better edp results. We

focus on the programming languages that achieved the most edp

efficient results. Additionally, we explain how the collected results

from the heatmaps can be useful for practitioners in developing

energy-aware applications.

4.1 Champions

Concurrency. Best efficiency in edp is achieved in programming

languages that rely on libraries implementations for concurrency.

For instance, C, that achieved far better edp, uses OpenMP [26]

and libco [8] to execute the tasks found under the concurrency

categories; in contrast to Perl’s and php’s thread libraries.

Regular Expressions. JavaScript produces the most edp efficient

results for regular-expression tasks, such as pattern matching and

replacing. The reason behind this is that the V8 JavaScript en-

gine (build in C++) achieves a speed-up for regular expressions,

after the RegEx library is built on top of Irregexp, in combination

with CodeStubAssembler [21]. Therefore, we conducted an experi-

ment where we used nvm [9], a JavaScript version management for
node.js, to install a JavaScript version that does not support the
above-described libraries and related functionality (versions below

8.5.7). When using the version where the RegEx library does not

use Irregexp and CodeStubAssembler, the edp increased by 331%.

Object-Oriented Features. In addition, JavaScript, in most cases,

achieves better results for the classes and call-an-object-method

tasks. However, JavaScript is dynamically typed, i.e., types and type

information is not explicit and attributes can be added to and deleted

from objects on the fly. That means that object orientation under

JavaScript is very different than object orientation in, say, C++,

where the focus is on designing polymorphic types. Also, to access

the types and properties effectively, V8 engine creates and uses the

hidden classes, at run-time, to have an internal representation of

the object to improve the property access time. In addition, once a

hidden class is created for a particular object, the V8 engine shares

the same hidden class among objects created in the same way [22].

File handling. Rust, compared to vb.net, produces better edp re-

sults for the file-i/o operations regarding the embedded and laptop

platforms. We performed a small experiment—using the strace
[14] Linux built-in command—and we found that vb.net’s inter-

mediate code makes 14 times more system calls in total compared

to Rust. According to Aggarwal et al. [4], when the system calls

between two applications diverge significantly, it is possible that

the applications’ power usage will differ too. Moreover, the vb.net

implementation for this task takes 89% of its total execution time

for mmap (creating a new mapping in the virtual address space for
the current process files) and nunmap (deleting the mapping for the
process when it is no longer needed). vb.net is slower since it exe-

cutes the lseek operation when writing in a file which is not the
case for Rust. This might occurs because vb.net’s i/o-buffers are

smaller than Rust’s and requires more than a single write operation

to write all the data in the file. In this way, Rust spends much less

time for i/o system calls compared to vb.net, resulting in faster

execution time and thus lower edp.

Functional Programming Features. C++ is the language exhibit-

ing the best edp efficiency for the function-composition task. The

reason behind this is that C++ uses meta-programming through the

Standard Template Library to compose functions at compile-time

via the help of preprossesor. As a result, C++ has faster execution

time and less energy consumption resulting in more efficient edp

compared to the other implementations.

4.2 Applications

We believe that a developer can consult our heat maps and use

them as a guideline to develop more edp efficient applications.

For the development of a more complex application—that may

combine more that one of the generic tasks evaluated in this study—

a developer can choose the language or languages that will provide

the best efficiency, in terms of edp.

In the context of embedded systems, even though we showed in

Section 3.2 that Java and Swift, the major programming languages

for developing Android and ios applications, are on average edp in-

efficient, developers can use several efficient practices. For instance,

when developing Android applications, practitioners can use the

Native Development Kit [13] to incorporate native C and C++ code

for heavy arithmetic, concurrent, and functional tasks.

In general, each programming language offers a number of dif-

ferent features such as dynamic and static binding, lazy, and eager

evaluation, garbage collection, automatic counter references, strong

and weak typing, and so on. Moreover, the different platforms’ cpu

architectures and resources could be also a factor of causing differ-

ences in edp results. We do not know how these might affect the

edp. However, our results show certain programming languages

implementations are more beneficial on selected tasks. Therefore,

researchers could use these findings to identify which are the fac-

tors or features causing these outcomes and use them in developing

edp efficient programming languages.
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5 RELATEDWORK

To the best of our knowledge, this is the first study that assesses

the edp of commonly used programming tasks—when they are

implemented in different programming languages and they run on

three platforms (an embedded system, a laptop, and a server)—to

provide developers with guidelines about the most efficient pro-

gramming languages per case. In the following, we present and

compare related work’s results with our findings.

5.1 Across Programming Languages

Pankratius et al. pursued a controlled comparative experiment on

Java and Scala developers, in a multicore environment, to evaluate

factors, such as the performance of both languages [31]. One of their

important findings refers to the fact that the functional paradigm

does not lead to bad performance, but programs that use both

functional and imperative styles can have improved performance.

Additionally, we took into account object-oriented and functional

features from programming languages and we found that the latter

result in more efficient edp.

Pereira et al. conducted an empirical study on 27 programming

languages from The Computer Language Benchmarks Game and

they compared them on energy, time, and memory matters [32].

Even though our methods have similarities with Pereira’s et al.

study, we, additionally, checked the edp of our sample’s implemen-

tations on three different platforms, using implementations from

the Rosetta Code Repository. Similarly to us, they found that com-

piled languages are the fastest, whereas interpreted languages, such

as JavaScript and php, are the most energy efficient in operations

with regular expressions.

Close to our paper is the empirical study that Nanz and Furia

conducted on the Rosetta Code Repository to compare the per-

formance of eight popular programming languages, including C,

Go, C#, Java, F#, Haskell, Python, and Ruby [30]. Here, we did not

measure only performance, but we also used a power analyzer to

run programming tasks on 14 different programming languages in

order to compare their edp. This study’s findings agree with ours

regarding compiled languages that have the best performance.

Finally, Meyerovich and Rabkin performed an empirical study by

analyzing 200,000 SourceForge projects and asking almost 13,000

programmers to identify characteristics that lead them to select

appropriate programming languages for implementing their soft-

ware projects [28]. We compared the edp of programming tasks

performed in several programming languages.

5.2 Across Execution Platforms

Abdulsalam et al. conducted experiments on workstations and eval-

uated the energy effect of four memory allocation choices (malloc,
new, array, and vector). They showed that malloc is the most ef-
ficient in terms of energy consumption and performance [1]. Chen

and Zong worked on smartphones and showed, by using the An-

droid Run Time environment (instead of Dalvik), that the energy

and performance implications of Java are similar to C and C++ [11].

Finally, Rashid et al. worked on an embedded system and compared

the energy and performance impact of four sorting algorithms

written in three different programming languages (arm assembly,

C/C++, and Java) [33]. They found that Java consumes most energy

and performs slowly against C/C++ and assembly. Similarly, we

found that Java was slower in comparison with C/C++. In addition,

we observed that Go had the lowest edp for sorting algorithms.

Many empirical studies have assessed the impact of coding prac-

tices (e.g., the use of for loops, getters and setters, static method
invocation, views and widgets, and so on) regarding energy con-

sumption. Characteristically, Tonini et al. conducted a study on

Android applications and found that the use of for loops with spec-
ified length and the access of class variables without the use of

getters and setters can reduce the amount of the energy that the

applications consume [40]. Linares-Vsquez et al. performed an anal-

ysis of 55 Android applications from various domains and reported

the most energy consuming api methods [27]. For instance, they

found that from 60% of the most energy-greedy apis, 37% were re-

lated to the graphical user interface and image manipulation, while

the remaining 23% were associated with databases. Finally, Samp-

son et al. proposed an approach called EnerJ that uses annotations

to indicate particular data types that are involved in computations

that can consume lower energy [37]. They prove that for a small

number of type annotations added to the types of a Java program

they can achieve more energy savings.

Contrary to previous works, we compare edp of small program-

ming tasks implemented in 14 programming languages that can

run on three distinct computer platforms. Overall, our results show

that compiled programming languages perform far more edp effi-

ciently compared to interpreted and semi-compiled. Our findings

also indicate significant difference between the results of the laptop

and the embedded system execution environments.

6 CONCLUSIONS

We examined programming languages’ energy consumption and

run-time performance implications for certain programming tasks,

by using the edp formula. We also investigated how our results

vary among different computer platforms and showed that there is

not a single winner for all cases. Based on our findings, we suggest

that specific implementations are more edp efficient than others

with respect to the tasks they perform. So, developers can use:

• C for the development of computationally-intensive and
concurrent tasks;

• Go for sorting tasks;
• Rust for i/o-intensive tasks, such as file handling;
• JavaScript for regular-expression tasks, such as string match-
ing, substitution; and

• C++ for functional programming tasks, such as function-
composition, at a low level of abstraction.

Regarding our future research directions, we will attempt to: 1)

identify which are the programming language features that offer

major implications on edp, 2) dig into generated machine and inter-

mediate code to point out how different compiler implementations

or run-time engines can affect edp, 3) consider more programming

task categories, including network access operations and image

processing, and 4) increase the variety of our test inputs.
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