
Does Your Configuration Code Smell?

Tushar Sharma, Marios Fragkoulis and Diomidis Spinellis
Dept of Management Science and Technology
Athens University of Economics and Business

Athens, Greece
{tushar,mfg,dds}@aueb.gr

ABSTRACT
Infrastructure as Code (IaC) is the practice of specifying
computing system configurations through code, and manag-
ing them through traditional software engineering methods.
The wide adoption of configuration management and in-
creasing size and complexity of the associated code, prompt
for assessing, maintaining, and improving the configuration
code’s quality. In this context, traditional software engi-
neering knowledge and best practices associated with code
quality management can be leveraged to assess and manage
configuration code quality. We propose a catalog of 13 im-
plementation and 11 design configuration smells, where each
smell violates recommended best practices for configuration
code. We analyzed 4,621 Puppet repositories containing 8.9
million lines of code and detected the cataloged implemen-
tation and design configuration smells. Our analysis reveals
that the design configuration smells show 9% higher aver-
age co-occurrence among themselves than the implementa-
tion configuration smells. We also observed that configura-
tion smells belonging to a smell category tend to co-occur
with configuration smells belonging to another smell cate-
gory when correlation is computed by volume of identified
smells. Finally, design configuration smell density shows
negative correlation whereas implementation configuration
smell density exhibits no correlation with the size of a con-
figuration management system.

CCS Concepts
•Software and its engineering → Specification lan-
guages; Software maintenance tools; Software libraries
and repositories; Software design engineering;

Keywords
Infrastructure as Code, Code quality, Configuration smells,
Technical debt, Maintainability

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MSR’16, May 14-15, 2016, Austin, TX, USA
c© 2016 ACM. ISBN 978-1-4503-4186-8/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2901739.2901761

1. INTRODUCTION
Infrastructure as Code (IaC) [13] is the practice of spec-

ifying computing system configurations through code, au-
tomating system deployment, and managing the system con-
figurations through traditional software engineering meth-
ods. For example, a server farm that contains numerous
nodes with different hardware configurations and different
software package requirements can be specified using con-
figuration management languages such as Puppet [39], Chef
[37], CFEngine [4], or Ansible [1] and deployed automatically
without human intervention. Such automated yet custom
configured deployment is not only faster than the manual
process but is also reliable and repeatable.

Apart from automating an infrastructure deployment, the
IaC paradigm brings the infrastructure, the code and the
tools and services used to manage the infrastructure, in the
purview of a software system. Therefore, IaC practices treat
configuration code similar to the production code and apply
traditional software engineering practices such as reviewing,
testing, and versioning on configuration code as well.

A lot of work has been done to write maintainable code
[8, 21] and achieve high design quality [36] in traditional
software engineering. Similar to production code, configu-
ration code may also become unmaintainable if the changes
to configuration code are made without diligence and care.
In a recent study, Jiang et at. [14] argued that configura-
tion code must be treated as production code due to the
characteristics and maintenance needs of the configuration
code. Therefore, traditional code and design quality prac-
tices must be adopted to write and maintain high quality
configuration code.

In this context, we planned a preliminary quality analysis
of configuration code where we focused on the maintainabil-
ity aspect of the configuration code quality. We pose the
following questions to achieve the above stated goal:

1. What is the distribution of maintainability smells in
configuration code? Which smells are commonly found
and which ones are rarely found?

2. What is the relationship between the occurrence of de-
sign configuration smells and implementation configu-
ration smells?

3. Is the principle of coexistence applicable to smells in
configuration projects?

4. Does smell density depend on the size of a configura-
tion project?

2016 IEEE/ACM 13th Working Conference on Mining Software Repositories

 189

2016 IEEE/ACM 13th Working Conference on Mining Software Repositories

 189

2016 IEEE/ACM 13th Working Conference on Mining Software Repositories

 189

To answer these research questions, we compiled a catalog
of 24 configuration smells. We used the existing Puppet-Lint
[27] tool and extended its rule-base to identify implementa-
tion configuration smells. We developed a tool namely Pup-
peteer to identify cataloged design configuration smells. We
extracted 4,621 repositories containing Puppet code from
GitHub and applied the tools on all the repositories. Using
the collected data, we provide the empirical answers to each
of the research questions listed above.

Some key observations from the study are the following.

• Configuration smells belonging to a smell category tend
to co-occur with configuration smells belonging to an-
other smell category when correlation is computed by
volume of identified smells.

• Design configuration smells show 9% higher average
co-occurrence among themselves than the implemen-
tation configuration smells.

• Design configuration smell density shows negative cor-
relation whereas implementation configuration smell
density exhibits no correlation with the size of a con-
figuration management system.

Studying code quality of configuration management sys-
tems can help us understand the characteristics of configura-
tion code. This study can benefit the researchers by expos-
ing them to a method for investigating system configuration
practices by mining repositories. At the same time, prac-
titioners can identify configuration smells using the tools
employed in this study and adopt best practices to write
maintainable configuration code.

The rest of the paper is structured as follows: Section 2
provides an overview of the study with a goal and corre-
sponding research questions. Section 3 describes a catalog
containing implementation and design configuration smells.
Section 4 details the developed tool, mining Puppet repos-
itories from GitHub and applying the tool on the reposi-
tories. Section 5 provides detailed answers to the research
questions. We discuss related work in Section 6.

2. OVERVIEW OF THE STUDY
We planned a preliminary study to analyze the existing

configuration code and evaluate the associated code quality
to examine the existing practices towards keeping configura-
tion code maintainable. Although, there are many attributes
and sub-attributes of code quality (such as reliability and
portability), the focus of this study is on the maintainabil-
ity attribute of configuration code quality.

We formulated the following research questions towards
the quality analysis goal of configuration code.

RQ1. What is the distribution of maintainability smells in
configuration code? We investigate the distribution of
configuration smells to find out whether there exists a
set of implementation and design configuration smells
that occur more frequently with respect to another set
of configuration smells.

RQ2. What is the relationship between the occurrence of
design configuration smells and implementation con-
figuration smells? We study the instances of design
configuration smells and implementation configuration
smells to discover the degree of co-occurrence between
the two categories of configuration smells.

RQ3. Is the principle of coexistence applicable to smells
in configuration projects? In traditional software en-
gineering, it is said that patterns (and smells) co-exist
as “No pattern is an island” [3] i.e. if we find one, it is
very likely that we will find many more around it [3,
36]. We investigate the intra-category co-occurrence
of a smell with other smells to find out whether the
folklore is true in the context of configuration smells.
Furthermore, whether all the smells in each of the cat-
egories follow the principle with a same degree.

RQ4. Does smell density depend on the size of the config-
uration project? Smell density is a normalized metric
that represents the average number of smells identi-
fied per thousand lines of code. We investigate the re-
lationship between the size of a configuration project
and associated smell density for both the smell cate-
gories to find out how the smell density changes as the
size of the configuration project increases.

We present a theoretical model of configuration smells
to study the research questions listed above. The model
contains two categories of configuration smells namely im-
plementation configuration smells and design configuration
smells with a brief description of each smell.

To detect the majority of implementation configuration
smells, we used Puppet-Lint [27]. Due to the lack of an ex-
isting tool that can detect design configuration smells, we
developed a tool namely Puppeteer for detecting the cata-
loged design configuration smells.

We identified repositories containing Puppet code and down-
loaded them from GitHub [10]. We downloaded 4,621 repos-
itories containing 142,662 Puppet files and 8.9 million lines
of code and analyzed them with the help of Puppet-Lint and
Puppeteer. We grouped the information collected based on
the data required to answer the research questions and de-
duce our observations.

We assume that the reader of this paper has a fair idea
about Puppet and syntax of its programming language. If
it is not the case, we encourage the reader to familiar him-
self/herself with configuration management [33] through Pup-
pet [26].

3. THEORETICAL MODEL: CONFIGURA-
TION SMELLS

We define configuration smells as follows:
Configuration smells are the characteristics of a configu-

ration program or script that violate the recommended best
practices and potentially affect the program’s quality in a
negative way.

In traditional software engineering practices, bad smells
are classified as implementation (or code) smells [8], design
smells [36], and architectural smells [9] based on the granu-
larity of abstraction where the smell arises and affects. Sim-
ilarly, configuration smells can also be classified as imple-
mentation configuration smells, design configuration smells,
documentation configuration smells, and so on. In this pa-
per, our focus is on two major categories of configuration
smells namely implementation configuration smells and de-
sign configuration smells.

We assigned a three letter acronym starting from I for
each implementation configuration smell and from D for
each design configuration smell. We use these acronyms in
the later sections of the paper.

190190190

3.1 Implementation Configuration Smells
Implementation configuration smells are quality issues such

as naming convention, style, formatting, and indentation in
configuration code. After studying available resources, such
as the Puppet style guide [35] and rules implemented by
Puppet-Lint, we prepared a list of recommended best prac-
tices. We grouped the best practices based on their similar-
ity and arrived at a corresponding implementation configu-
ration smell when a best practice is violated. Table 1 lists
the implementation configuration smells and corresponding
set of best practices.

Here, we present a list of implementation configuration
smells with a brief description. Figure 1 shows an annotated
Puppet example with all the cataloged implementation con-
figuration smells.

Missing Default Case (imd) A default case is missing in a
case or selector statement.

Inconsistent Naming Convention (inc) The used naming
convention deviates from the recommended naming
convention.

Complex Expression (ice) A program contains a difficult
to understand complex expression.

Duplicate Entity (ide) Duplicate hash keys or duplicate
parameters present in the configuration code.

Misplaced Attribute (ima) Attribute placement within a re-
source or a class has not followed a recommended order
(for example, mandatory attributes should be specified
before the optional attributes).

Improper Alignment (iia) The code is not properly aligned
(such as all the arrows in a resource declaration) or
tabulation characters are used.

Invalid Property Value (ipv) An invalid value of a property
or attribute is used (such as a file mode specified using
3-digit octal value rather than 4-digit).

Incomplete Tasks (iit) The code has “fixme” and “todo”
tags indicating incomplete tasks.

Deprecated Statement Usage (ids) The configuration code
uses one of the deprecated statements (such as “im-
port”).

Improper Quote Usage (iqu) Single and double quotes are
not used properly. For example, boolean values should
not be quoted and variable names should not be used
in single quoted strings.

Long Statement (ils) The code contains long statements
(that typically do not fit in a screen).

Incomplete Conditional (iic) An “if..elsif” construct used
without a terminating “else” clause.

Unguarded Variable (iuv) A variable is not enclosed in
braces when being interpolated in a string.

3.2 Design Configuration Smells
Design configuration smells reveal quality issues in the

module design or structure of a configuration project. Var-
ious available sources, such as the Puppet style guide [35],
blog entries [16, 17], and videos of technical talks [18] high-
light the best practices to be followed for configuration code.
We obtained a list of commonly occurring design configu-
ration smells from the violation of these best practices at
design-level. We assigned relevant names (many a times
inspired by the traditional names of smells) to the smells
and documented their forms representing variations of the
smells. Here, we present design configuration smells with a
brief description.

Multifaceted Abstraction (dmf) Each abstraction (e.g. a re-
source, class, ‘define’, or module) should be designed to
specify the properties of a single piece of software. In
other words, each abstraction should follow single re-
sponsibility principle [20]. An abstraction suffers from
multifaceted abstraction when the elements of the ab-
straction are not cohesive.

The smell may occur in the following two forms:

• a resource (file, package, or service) declaration
specifies attributes of more than one physical re-
sources, or

• all the language elements declared in a class, ‘de-
fine’, or a module are not cohesive.

Unnecessary Abstraction (dua) A class, ‘define’, or mod-
ule must contain declarations or statements specifying
the properties of a desired system. An empty class,
‘define’, or module shows the presence of unnecessary
abstraction smell and thus must be removed.

Imperative Abstraction (dia) Puppet is declarative in na-
ture. The presence of imperative statements (such as
“exec”) defies the purpose of the language. An ab-
straction containing numerous imperative statements
suffers from imperative abstraction smell.

Missing Abstraction (dma) Resource declarations and state-
ments are easy to use and reuse when they are encap-
sulated in an abstraction such as a class or ‘define’.
A module suffers from the missing abstraction smell
when resources and language elements are declared
and used without encapsulating them in an abstrac-
tion.

Insufficient Modularization (dim) An abstraction suffers
from this smell when it is large or complex and thus
can be modularized further. This smell arises in fol-
lowing forms:

• if a file contains a declaration of more than one
class or ‘define’, or

• if the size of a class declaration is large crossing a
certain threshold, or

• the complexity of a class or ‘define’ is high.

Duplicate Block (ddb) A duplicate block of statements more
than a threshold indicates that probably a suitable ab-
straction definition is missing. Thus a module contain-
ing such a duplicate block suffers from duplicate block
smell.

191191191

Table 1: Mapping Between Implementation Configuration Smells and Corresponding Best Practices
Smells Best practices
Missing default case Case and Selector statements should have a default case
Inconsistent naming convention The names of variables, classes and defines should not contain a dash
Complex expression Expressions should not be too complex
Duplicate entity Duplicated hash keys and parameters should be removed
Misplaced attribute • “ensure” attribute should be the first attribute specified

• The required parameters for a class or ‘define’ should be listed before optional
parameters
• Right-to-left chaining arrows should not be used

Improper alignment • Properly align arrows (arrows are not all placed one space ahead of the longest
attribute)
• Tabulation characters should not be used

Invalid property value • “ensure” property of file resource should be valid
• File mode should be represented by a valid 4-digit octal value (rather than 3)

or symbolically
• The path of “puppet:///” url should start with “modules/”

Incomplete tasks “fixme” and “todo” tags should be handled
Deprecated statement usage Deprecated node inheritance and “import” statement should not be used
Improper quote usage • Booleans should not be quoted

• Variables should not be used in single quoted strings
• Unquoted node names should not be used
• Resource titles should be quoted
• Literal boolean values should not be used in comparison expressions

Long statement Lines should not be too long
Incomplete conditional “if ... elsif” constructs shall be terminated with an “else” clause
Unguarded variable Variables should be enclosed in braces when being interpolated in a string

Figure 1: An annotated Puppet example with all the cataloged implementation configuration smells

192192192

Broken Hierarchy (dbh) The use of inheritance must be
limited to the same module. The smell occurs when,
the inheritance is used across namespaces where inheri-
tance is not natural (“is-a”relationship is not followed).

Unstructured Module (dum) Each module in a configura-
tion repository must have a well-defined and consis-
tent module structure. A recommended structure for
a module is the following.

Module name

mani f e s t s
f i l e s
templates
l i b
f a c t s . d
examples
spec

An ad-hoc structure of a repository suffers from un-
structured module smell that impacts understandabil-
ity and predictability of the repository.

Dense Structure (dds) This smell arises when a configu-
ration code repository has excessive and dense depen-
dencies without any particular structure.

Deficient Encapsulation (dde) This smell arises when a
node definition or ENC (External Node Classifier) de-
clares a set of global variables to be picked up by the
included classes in the definition.

Weakened Modularity (dwm) Each module must strive for
high cohesion and low coupling. This smell arises when
a module exhibits high coupling and low cohesion.

4. MINING GITHUB REPOSITORIES
We followed the procedure given below to select and down-

load the repositories.

1. We employed GHTorrent [11, 12] to select GitHub
repositories to download.

2. There are various options to choose from to select
the subject systems such as number of commits and
committers, stars, and number of relevant files in the
repository. Each of the options (or their combinations)
present different tradeoffs. For instance, there are only
838 Puppet repositories that have five or more stars.
We wanted to analyze larger number of repositories to
increase the generalizability of the observations. Re-
ducing the number of stars as a selection criterion
would have resulted in more number of repositories;
however, the significance of the criterion would have
reduced. A high number of commits in a repository
shows continuous evolution and thus we chose num-
ber of commits as the selection criterion. We chose
to download all the repositories where the number of
commits was more than or equal to 40. The above cri-
terion provided us a list of 5,387 Puppet repositories
to download.

3. We were able to download 4,621 repositories except
some private repositories.

Table 2: Characteristics of the Downloaded Repos-
itories

Attributes Values
Repositories 4,621
Puppet files 142,662
Class declarations 132,323
Define declarations 39,263
File resources 117,286
Package resources 49,841
Service resources 18,737
Exec declarations 43,468
Lines of code (Puppet only) 8,948,611

Table 2 summarizes the characteristics of the downloaded
repositories. We observed, by random sampling, that the
downloaded repositories were either standalone Puppet-only
repositories or system repositories (where production code
as well as configuration code has been put together into a
repository).

4.1 Analyzing Puppet Repositories
We analyzed the downloaded repositories to detect imple-

mentation and design configuration smells. We used Puppet-
Lint tool to detect majority of implementation configuration
smells. We executed the tool on all the repositories and
stored the generated output. In addition to use Puppet-
Lint, we wrote our custom rules to detect the implementa-
tion configuration smells that the tool was not detecting (for
instance, complex expression and incomplete conditional).
We then aggregated the number of individual implementa-
tion smells that occurred in each repository using the gen-
erated output and our mapping of best practices to the im-
plementation smells (see Table 1).

We developed a tool, Puppeteer,1 to detect design con-
figuration smells listed in Section 3.2. We discuss detection
strategies of all the smells detected by Puppeteer in the next
subsection.

The data generated by the tools mentioned above for both
the smell categories for all the analyzed repositories can be
found here.2

4.2 Design Configuration Smells - Detection
Strategies

This section discusses detection strategies that Puppeteer
uses to identify design configuration smells.

Multifaceted Abstraction The detection strategy for the two
forms of the smell is as follows.

1. We compute a metric, “Physical resources defined
per resource declaration”, for each declared re-
source. We report the smell when the metric value
is more than one.

2. We compute lack of cohesion for the configura-
tion abstractions to detect the second form of the
smell. Traditional software engineering uses the
lcom (Lack of Cohesion Of Methods) [5] metric
to compute lack of cohesion for an abstraction.
The same metric cannot be used for configuration

1https://github.com/tushartushar/Puppeteer
2https://github.com/tushartushar/configSmellData

193193193

code due to its different structure and character-
istics. We use the following algorithm to compute
lcom in a configuration code abstraction.

(a) Consider each declared element (such as file,
package, service resources and exec statements)
as a node in a graph. Initially, the graph
contains the disconnected components (dc)
equal to the number of elements.

(b) Identify the parameters of the abstraction,
used variables, and literals (such as file name).
Call them as data members collectively.

(c) For each data member, repeat the following:
identify the components that uses the data
member. Merge the identified components in
a single component.

(d) Compute lcom:

LCOM =

1

|DC| if |DC| > 0

1 otherwise

(1)

Note that we compute lcom for each class, ‘define’,
and file. Therefore, it is quite possible that the tool
reports more than one instance of this smell in a single
Puppet file.

Unnecessary Abstraction We compute a metric namely“Size
of the abstraction body”. A zero value of the metric
shows that the abstraction doesn’t contain any decla-
rations and thus suffers from unnecessary abstraction
smell.

Imperative Abstraction We compute a metric namely “To-
tal ‘exec’ declarations” in a given abstraction. The
tool reports the imperative abstraction smell when the
abstraction has more than two ‘exec’ declarations and
ratio of the ‘exec’ declarations against all the elements
in the abstraction is more than 20%.

Missing Abstraction We identify total number of configu-
ration elements except classes or defines that are not
encapsulated in a class or ‘define’. A module suffers
from the smell if there are more than two such elements
in the module.

Insufficient Modularization The detection strategy for the
three forms of the smell is as follows.

1. We count the number of classes and defines de-
clared in a Puppet file. We report the smell if a
file defines more than one class and ‘define’.

2. We count the number of lines in an abstraction.
If a class or ‘define’ contains more than 40 lines
of code, it suffers from the smell.

3. We compute maximum nesting depth for an ab-
straction. An abstraction with maximum nesting
depth more than three suffers from this smell.

Duplicate Block We use the pmd-cpd [6] tool to identify
code clones. A module suffers from this smell when a
code clone of larger than 150 tokens gets identified in
the module.

Broken Hierarchy For all the class definitions, we identify
the inherited class (if any). If the inherited class is de-
fined in any other module, the class suffers from “bro-
ken hierarchy” smell.

Unstructured Module The detection strategy for the three
forms of the smell is as follows.

1. We search for a folder named “manifests” in the
root folder of the repository. If the total number
of Puppet files in the folder is more than five while
there is no folder containing the string “modules”,
the smell gets detected.

2. We find a folder containing the string “modules”
and treat all the sub-folders as separate modules.
Each module must have a folder named “mani-
fests”. Absence of the folder shows the presence
of the smell.

3. In each module, we count the unexpected files and
folders. Expected files and folders are: “man-
ifests”, “files”, “templates”, “lib”, “tests”, “spec”,
“readme”, “license”, and “metadata”. A module
with more than three such unexpected files or
folders suffers from the smell.

Dense Structure We prepare a graph for each repository to
detect the smell. Each module is treated as a node and
any reference from the module to another module is
treated as an edge. We, then compute average degree
of the graph.

AvgDegree(G) =
2× |E|
|V | (2)

where |E| and |V | are number of edges and nodes re-
spectively. A graph more than 0.5 average degree suf-
fers from Dense structure smell.

Deficient Encapsulation We count the number of global
variables declared for each node declaration, followed
by at least one include statement. If a node declara-
tion has one or more such global variables, the module
suffers from deficient encapsulation smell.

Weakened Modularity We compute modularity ratio [2] for
each module as follows:

ModularityRatio(A) =
Cohesion(A)

Coupling(A)
(3)

where, Cohesion(A) refers to the number of intra-
module references and Coupling(A) refers to the num-
ber of inter-module references from module A. We re-
port the smell if the ratio is less than one.

5. RESULTS AND DISCUSSION
This section presents the results gathered from the anal-

ysis and our observations w.r.t. each research question ad-
dressed in this paper.

We use the term “total detected smells (by volume)” to
refer to all the smell instances detected in a project. We
use the term “total detected smells (by existence)” to refer
to the number of different types of smell instances detected
in a project. Additionally, we refer to each cataloged con-
figuration smell as a three letter acronym as defined in the
Section 3.

194194194

Table 3: Distribution of Detected Implementation
(ICS) and Design (DCS) Configuration Smells

ICS #I(V) #I(E) DCS #I(V) #I(E)
IMD 4,604 706 DMF 64,266 4,339
INC 4,804 440 DUA 4,319 1,427
ICE 3,994 963 DIA 4,354 1,575
IDE 65 29 DMA 1,913 813
IMA 22,976 1,383 DIM 96,033 4,422
IIA 780,265 3,064 DUM 4,653 3,337
IPV 14,360 729 DDB 17,601 1,016
IIT 11,071 1,467 DBH 83 37
IDS 6,466 674 DDS 1760 1760
IQU 428,951 2,463 DDE 1,075 424
ILS 527,637 4,115 DWM 13,944 2,890
IIC 4,797 1,217
IUV 71339 1,405

RQ1. What is the distribution of maintainability smells in
configuration code?

Approach: We compute the total number of detected
smell instances (by volume and by existence) for all the
smells belonging to both implementation and design con-
figuration smells categories.

Results: The left pan of Table 3 shows the number of
smell instances detected for implementation configuration
smells (ics) both by volume (i(v)) and by existence (i(e)).
The three most frequently occurring smells by volume and
by existence are iia (improper alignment), iqu (improper
quote usage), and ils (long statement). Similarly, ide (du-
plicate entry), imd (missing default case), inc (inconsistent
naming convention) are some of the least frequently occur-
ring smells.

The right pan of Table 3 shows the similar distribution
for detected design configuration smells (dcs). The most fre-
quently occurring design configuration smells are dim (insuf-
ficient modularization) and dmf (multifaceted abstraction).
Similarly, the least occurring smells are dbh (broken hierar-
chy) and dde (deficient encapsulation).

A few observations from the above table are the following.

• There is a relatively large number of smell instances re-
ported for ddb (duplicate block) by volume; however,
the smell only occurs in less than one forth of the ana-
lyzed repositories. This indicates that either the
developers of Puppet repositories do not dupli-
cate the code at all or they do it massively.

• Although, investigating and establishing the potential
reasons of identified smell instances is not in the scope
of this study, the nascent maturity phase of current
configuration systems could be a cause for a few smells.
Specifically, the support for system configuration code
in terms of better tools and IDEs is still maturing
which could potentially avoid smells such as iia (im-
proper alignment).

The reported frequently occurring smells may also mo-
tivate efforts in the future to identify their causes and
steps to avoid them. Such efforts may focus on im-
proving existing documentation, enhancing language
support, and developing new tools.

• It is interesting to note that dds (dense structure) falls
in the least occurring smell category by volume but
most frequently occurring smell category by existence.
It is due to the fact that there could be only one in-
stance at the most for this smell in a project.

dum (unstructured module) also exhibits similar char-
acteristics. Since the tool analyzes the structure of a
module as a whole, dum gets identified at the most
once for a module. Since each project deals with only
a limited number of modules, the detected smell in-
stances are relatively low whereas the smell occurred
in relatively large number of analyzed projects.

RQ2. What is the relationship between the occurrence of
design configuration smells and implementation con-
figuration smells?

Approach: We count the total number of implementa-
tion and design configuration smells for each Puppet repos-
itory both by volume and by existence. Next, we compute
Spearman’s correlation coefficient between the counted im-
plementation and design configuration smells for each repos-
itory by volume and by existence.

Results: Figure 2 presents a scatter graph (with alpha
set to 0.3) showing the co-occurrence between implementa-
tion and design configuration smells by volume. The figure
shows a dense accumulation towards the left-bottom indi-
cating that implementation and design configuration smells
co-occur together for relatively small number of identified
smell instances.

Figure 2: Co-occurrence between implementation
and design configuration smells (by volume)

Figure 3 shows a density graph showing the co-occurrence
between implementation and design configuration smells by
existence. The figure reveals a dense correlation between im-
plementation and design configuration smells (by existence)
in the left bottom quadrant of the figure where the number
of identified smell types is half or less.

We compute Spearman’s correlation coefficient for both
the cases. Table 4 shows the correlation coefficients and
associated p-value. Both the analyses show positive cor-
relation between implementation and design configuration

195195195

Figure 3: Co-occurrence between implementation
and design configuration smells (by existence)

Table 4: Results of Correlation Analysis
Correlation(ρ) p-value

Analysis by volume 0.66410 <2.2e−16
Analysis by existence 0.44526 <2.2e−16

smells with high statistical significance; however, correlation
analysis by volume exhibits stronger correlation than corre-
lation analysis by existence. It shows that high volume
of design (or implementation) configuration smells
is a strong indication of the presence of high volume
of implementation (or design) configuration smells
in a project. Whereas, a project that shows presence of
large number of design (or implementation) configuration
smell types moderately indicates presence of large number
of implementation (or design) configuration smell types.

RQ3. Is the principle of coexistence applicable to smells in
configuration projects?

Approach: To compute intra-category co-occurrence for
a smell, we count the number of occurrences of other smells
in the same category (by existence), only when the smell
occurred. We evaluate the average co-occurrence for each
smell across all the repositories considering only those val-
ues where the smell has occurred. We compute the average
co-occurrence for all the implementation and design config-
uration smells and compared their normalized values.

Results: Figure 4 presents the average co-occurrence
computed for each smell for both the implementation and
design configuration smells. ide (duplicate entity) with av-
erage 0.75 and iqu (improper quote usage) with average 0.29
are the implementation configuration smells that show the
highest and lowest co-occurrences in the category. In the
design configuration smells category, dbh (broken hierar-
chy) with average 0.73 and dim (insufficient modularization)
as well as dmf (multifaceted abstraction) with average 0.36
show the highest and lowest co-occurrences respectively.

It means that whenever duplicate entity or broken
hierarchy smells are found, it is very likely to find
other smells from the same category in the project.

Figure 4: Average co-occurrence (intra-category)
for implementation and design configuration smells

Whereas, the smells improper quote usage and insuf-
ficient modularization occur more independently.

Average normalized correlation for implementation and
design configuration smells is 0.43 and 0.47 respectively.
This leads to another interesting observation: design con-
figuration smells show 9.3% higher co-occurrence
among themselves than the implementation configu-
ration smells. Since a design decision impacts the software
in many ways, it is believed that one wrong or non-optimal
design decision introduces many quality issues. The statistic
reported above affirms the belief.

RQ4. Does smell density depend on the size of the config-
uration project?

Approach: We compute normalized smell density for
both the smell categories for all the repositories and plot
scatter graphs between lines of code in the repository and
the smell density. We then perform correlation analysis on
both the sets and document our observations based on the
received results.

Results: Figure 5 and Figure 6 present the distribution
of normalized smell density for implementation and design
configuration smells against lines of code (with alpha = 0.3).

The visual inspection of the above graphs reveal the fol-
lowing observations.

• The distribution shown in Figure 5 is very scattered
and random in comparison with the distribution in
Figure 6. Although, both the figures show a weak
linear relationship between smell density and lines of
code, Figure 6 shows a relatively stronger linear rela-
tionship than Figure 5.

• Large projects show maturity and tend to demonstrate
lower smell density compared to smaller projects in
both the cases.

We, then, computed Spearman’s correlation coefficient for
both the data sets. The results of the correlation analysis
are summarized in Table 5.

The results show no correlation between implementation
smell density and size of the project. However, a weak nega-
tive correlation is perceived with high statistical significance

196196196

Figure 5: Smell density for implementation configu-
ration smells against lines of code

Figure 6: Smell density for design configuration
smells against lines of code

Table 5: Results of Correlation Analysis
Correlation(ρ) p-value

Implementation smells 0.03833 0.00980
Design smells -0.32851 <2.2e−16

between design smell density and size of the project. It
shows that as the project size increases, design con-
figuration smell density tends to decrease. This result
is interesting since it is believed traditionally that the com-
plexity (and therefore, smell density) of a piece of software
increases as size of the software grows.

We observe another interesting aspect related to config-
uration smells. Our empirical study reveal a large number
of class declarations where the corresponding definitions are
not found in the same repository. We find 59% of the repos-
itories that we analyze have at least one such instance. Ma-
jority of such missing definitions relate to third-party mod-
ules. A possible explanation is that software development
teams exclude third-party modules from their Puppet code

under version control. This practice provides the advantage
of not having to maintain the used third-party modules as
they change. However, it breaks the fundamental princi-
ple of IaC, i.e. production and configuration code should
coevolve. Such instances hurt the configuration process’s
automation and are bound to lead to trouble in the form of
missing dependencies. More interestingly, the Puppet lan-
guage does not offer any solution to this problem since mod-
ule installation, as opposed to package installation, cannot
be part of a configuration code specification.

Yet another observation concerns language design (in this
context Puppet). Diligent use of language features and ad-
herence to best practices can drastically reduce smells dis-
cussed in this paper. However, careful language design can
also significantly avoid many configuration smells. For ex-
ample, dua (unnecessary abstraction), dbh (broken hierar-
chy), and dde (deficient encapsulation) can be controlled
and avoided by suitable changes in the Puppet language.
Similarly, many implementation configuration smells such as
iuv (unguarded variable), ima (misplaced attribute), and ide
(duplicate entity) can also be checked at Puppet language
level itself and can be avoided without any compromise in
functionality and convenience.

6. RELATED WORK
Our work is related to studies of code quality practices

in traditional software engineering and system configuration
management.

6.1 Code Quality Practices in Traditional Soft-
ware Engineering

Fowler [8] characterized code smells as poor design and
implementation decisions and identified numerous code and
design smells. Girish et al. [36] provided a comprehensive
catalog of structural design smells classified based on the
principle that they violate. Similarly, Garcia et al. [9] pro-
vided a catalog of smells that may arise at architectural level.
Many of our cataloged smells have names similar to ones in
the literature [8, 36]; however, their meaning and context is
aligned to the configuration domain. Additionally, we have
added a few new ones; for example unstructured module and
dense structure.

Smells lead to technical debt and affect maintainability
negatively [15]. A popular approach for detecting them is
static code analysis, which we also employ in this work.
Metrics-based rules [19] identify code smells, such as God
class or blob, by comparing computed metrics to specified
thresholds. Decor [22] provides a domain specific language
for formulating rules that detect smells such as blob, func-
tional decomposition, and swiss army knife. Designite [30]
detects numerous implementation and design smells. Along
the similar lines, various tools to identify refactoring can-
didates have been proposed; for example, extract method
refactoring [38, 29] and extract class refactoring [31, 7].

In addition to the above approaches that base their analy-
sis on a given code snapshot, hist [23] and Clio [40] consider
change history information. hist [23] analyses changes be-
tween software components to detect blob, divergent change,
shotgun surgery, parallel inheritance, and feature envy smells.
Clio [40] detects software modularity violations with the
study of co-evolving software components throughout project
history. Our tool Puppeteer also relies on static code analy-
sis and reveals design configuration smells.

197197197

6.2 Code Quality Practices in System Config-
uration Management

In the landscape of system configuration management,
empirical studies on configuration code written in languages
such as Puppet [39] and Chef [37] are scarce. Jiang et al. [14]
study the co-evolution of Puppet and Chef configuration files
with source, test, and build code. They analyze the software
repositories of 256 OpenStack projects and distinguish files
as infrastructure, which contain configuration code in Pup-
pet or Chef language, production, build, and test. They
find that configuration code comes in large files, changes
more frequently, and presents tight coupling with test files.
In our study, we perform static analysis on Puppet config-
uration code using three different tools (Puppet-Lint, pmd-
cpd, and Puppeteer) to detect configuration smells in a large
number of repositories.

Puppet Forge [25] — the repository of Puppet modules,
provides an evaluation of configuration code quality through
a quality score based on three aspects: code quality score
provided by Puppet-Lint [27], compatibility with Puppet,
and metadata quality. Metadata quality is subject to a set
of guidelines that metadata files should adhere to.

Sonar-Puppet [24] is a SonarQube [32] plug-in that has
numerous rules to detect quality violations in Puppet code;
most of the rules applied by Sonar-Puppet are common with
Puppet-Lint. We have included Puppet-Lint and the addi-
tional rules checked by Sonar-Puppet in our analysis and
mapped the rules to implementation configuration smells.
We have also implemented Puppeteer that identifies all the
cataloged design configuration smells.

Various authors have published their ideas describing best
practices for configuration code in the form of blog-posts,
articles, and technical talks [16, 17, 35, 18]. However, to the
best of our knowledge, our study is the first attempt towards
formalizing and detecting smells in configuration systems.

7. THREATS TO VALIDITY
Construct validity concerns the appropriateness of obser-

vations made on the basis of measurements. False positives
and false negatives are always associated with static code
analysis and so are applicable to the tools that we used or
developed for this experiment. However, the effect of false
positives and negatives is reduced when two or more streams
of results are compared as in this experiment. A compre-
hensive set of test cases can rule out obvious deficiencies.
Therefore, we employed a comprehensive set of test-cases
for Puppeteer.

Similarly, chosen threshold values in any smell detection
tool play an important role since their values decide the
volume of detected smell instances. Many authors such as
Linda et al. [28] have suggested the chosen threshold values
after careful analysis. We carefully chose threshold values by
adapting commonly used thresholds in traditional software
engineering within IaC paradigm in such a way that they
are neither too lenient nor very stringent.

Further, a source-code analysis may adopt one of the nu-
merous techniques to collect source-code information such
as ast parsing, reflection, and string matching [34]. Due to
the lack of available parser library for Puppet, our tool uses
regular expression based string matching extensively which
is not as efficient as ast parsing. In addition to test the
tool with unit-tests that check the correctness of the used

regular expressions, we carried out manual testing to ensure
the behaviour of the used expressions.

External validity concerns generalizability and repeatabil-
ity of the produced results. Our experiment analyzes only
Puppet repositories whereas there are many other configu-
ration management systems. Although, the employed tools
are specific to one configuration language, the proposed the-
oretical model is general and language agnostic. We believe
that it will open doors for similar studies for other configu-
ration management systems.

8. CONCLUSIONS AND FUTURE WORK
The paper presents a preliminary quality analysis for con-

figuration code. We propose a catalog of 13 implementa-
tion and 11 design configuration smells based on commonly
known best practices. We analyzed 4,621 Puppet reposi-
tories containing 142,662 Puppet files and more than 8.9
million lines of code. We investigated four research ques-
tions using smell instances detected by our analysis. The
key findings from our analysis are the following.

• The developers of Puppet repositories either do not
introduce code-clones at all or they do it in a mas-
sive scale. Code-clones and other frequently occurring
smells may motivate studies in the future to improve
support for avoiding and refactoring such smells.

• Configuration smells belonging to a smell category tend
to co-occur with configuration smells belonging to an-
other smell category when correlation is computed by
volume of identified smells.

• Design configuration smells show 9% higher average
co-occurrence among themselves than the implementa-
tion configuration smells. This observation affirms the
belief that one wrong or non-optimal design decision
introduces many quality issues and therefore suggests
the developers to take design decisions critically and
diligently.

• Design configuration smell density shows negative cor-
relation whereas implementation configuration smell
density exhibits no correlation with size of a project.

The study brings benefits for both the researcher and
practitioner community. It offers a method for investigat-
ing system configuration smells by mining repositories which
aims to benefit the research community. At the same time,
practitioners can identify configuration smells using the tools
employed in this study and adopt best practices to write
maintainable configuration code.

Our future research may take many possible directions
including investigating various aspects relevant to quality
when configuration repositories evolve, applying automated
refactoring to configuration code, and measuring the impact
of smells on various system parameters.

Acknowledgements
This work is partially funded by the seneca project, which
is part of the Marie Sk lodowska-Curie Innovative Training
Networks (itn-eid). Grant agreement number 642954.

We would like to thank Faidon Liambotis (Principal Op-
erations Engineer at Wikimedia Foundation) for providing
helpful inputs on our early configuration smells catalog.

198198198

9. REFERENCES

[1] Ansible. http://www.ansible.com/, 2016. [Online;
accessed 22-Jan-2016].

[2] P. Bhattacharya, M. Iliofotou, I. Neamtiu, and
M. Faloutsos. Graph-based analysis and prediction for
software evolution. In 34th International Conference
on Software Engineering, pages 419–429, June 2012.

[3] F. Buschmann, R. Meunier, H. Rohnert,
P. Sommerlad, and M. Stal. Pattern-Oriented Software
Architecture Volume 1: A System of Patterns. Wiley,
1 edition, 1996.

[4] CFEngine. https://cfengine.com/, 2016. [Online;
accessed 22-Jan-2016].

[5] S. Chidamber and C. Kemerer. A metrics suite for
object oriented design. Software Engineering, IEEE
Transactions on, 20(6):476–493, Jun 1994.

[6] PMD—CPD: Copy Paste Detector.
https://pmd.github.io/, 2016. [Online; accessed
22-Jan-2016].

[7] M. Fokaefs, N. Tsantalis, E. Stroulia, and
A. Chatzigeorgiou. JDeodorant: Identification and
Application of Extract Class Refactorings. In
Proceedings of the 33rd International Conference on
Software Engineering, ICSE ’11, pages 1037–1039,
New York, NY, USA, 2011. ACM.

[8] M. Fowler. Refactoring: Improving the Design of
Existing Programs. Addison-Wesley Professional, 1
edition, 1999.

[9] J. Garcia, D. Popescu, G. Edwards, and
N. Medvidovic. Toward a Catalogue of Architectural
Bad Smells. In Proceedings of the 5th International
Conference on the Quality of Software Architectures:
Architectures for Adaptive Software Systems, QoSA
’09, pages 146–162, Berlin, Heidelberg, 2009.
Springer-Verlag.

[10] GitHub. https://github.com/, 2016. [Online; accessed
22-Jan-2016].

[11] G. Gousios. The GHTorrent dataset and tool suite. In
Proceedings of the 10th Working Conference on
Mining Software Repositories, MSR ’13, pages
233–236, Piscataway, NJ, USA, 2013. IEEE Press.

[12] G. Gousios and D. Spinellis. GHTorrent: Github’s
data from a firehose. In 9th IEEE Working Conference
on Mining Software Repositories, pages 12–21, June
2012.

[13] J. Humble and D. Farley. Continuous Delivery:
Reliable Software Releases Through Build, Test, and
Deployment Automation. Addison-Wesley
Professional, 1 edition, 2010.

[14] Y. Jiang and B. Adams. Co-evolution of Infrastructure
and Source Code: An Empirical Study. In Proceedings
of the 12th Working Conference on Mining Software
Repositories, MSR ’15, pages 45–55, Piscataway, NJ,
USA, 2015. IEEE Press.

[15] P. Kruchten, R. L. Nord, and I. Ozkaya. Technical
Debt: From Metaphor to Theory and Practice. IEEE
Software, 29(6):18–21, 2012.

[16] G. Larizza. Building a Functional Puppet Workflow
Part 1: Module Structure.
http://www.webcitation.org/6g23RY7yS, 2016.
[Online; accessed 15-Mar-2016].

[17] G. Larizza. Building a Functional Puppet Workflow
Part 2: Module Structure.
http://www.webcitation.org/6g23YeuFl, 2016.
[Online; accessed 15-Mar-2016].

[18] G. Larizza. Doing the Refactor Dance — Making Your
Puppet Modules More Modular.
http://www.webcitation.org/6g23dnNKo, 2016.
[Online; accessed 15-Mar-2016].

[19] R. Marinescu. Detection Strategies: Metrics-Based
Rules for Detecting Design Flaws. In Proceedings of
the 20th IEEE International Conference on Software
Maintenance, ICSM ’04, pages 350–359, Washington,
DC, USA, 2004. IEEE Computer Society.

[20] R. C. Martin. Agile Software Development, Principles,
Patterns, and Practices. Pearson, 1 edition, 2002.

[21] R. C. Martin. Clean Code: A Handbook of Agile
Software Craftsmanship. Prentice Hall PTR, 1 edition,
2008.

[22] N. Moha, Y. Guéhéneuc, L. Duchien, and A. L. Meur.
DECOR: A method for the specification and detection
of code and design smells. IEEE Transactions of
Software Eng., 36(1):20–36, 2010.

[23] F. Palomba, G. Bavota, M. Di Penta, R. Oliveto,
A. De Lucia, and D. Poshyvanyk. Detecting bad
smells in source code using change history
information. In IEEE/ACM 28th International
Conference on Automated Software Engineering, pages
268–278, Nov 2013.

[24] S. Puppet. SonarQube Puppet Plugin, Last accessed
on: 22nd Jan 2016. Available at:
https://github.com/iwarapter/sonar-puppet.

[25] Puppet Forge: a repository of Puppet modules, Last
accessed on: 22nd Jan 2016. Available at:
https://forge.puppetlabs.com.

[26] Puppet Labs. https://puppetlabs.com/, 2016. [Online;
accessed 22-Jan-2016].

[27] Puppet-lint: Puppet code style checker, Last accessed
on: 22nd Jan 2016. Available at:
http://puppet-lint.com.

[28] L. H. Rosenberg, R. Stapko, and A. Gallo. Risk-based
object oriented testing. In Twenty-Fourth Annual
Software Engineering Workshop, Greenbelt, MD, Dec.
1999. NASA, Software Engineering Laboratory.

[29] T. Sharma. Identifying Extract-method Refactoring
Candidates Automatically. In Proceedings of the Fifth
Workshop on Refactoring Tools, WRT ’12, pages
50–53, New York, NY, USA, 2012. ACM.

[30] T. Sharma, P. Mishra, and R. Tiwari. Designite — A
Software Design Quality Assessment Tool. In
Proceedings of the First International Workshop on
Bringing Architecture Design Thinking into
Developers’ Daily Activities, BRIDGE ’16, New York,
NY, USA, To appear. ACM.

[31] T. Sharma and P. Murthy. ESA: The
Exclusive-similarity Algorithm for Identifying
Extract-class Refactoring Candidates Automatically.
In Proceedings of the 7th India Software Engineering
Conference, ISEC ’14, pages 15:1–15:6, New York,
NY, USA, 2014. ACM.

[32] SonarQube. http://www.sonarqube.org/, 2016.
[Online; accessed 22-Jan-2016].

199199199

[33] D. Spinellis. Version control systems. IEEE Software,
22(5):108–109, September/October 2005.

[34] D. Spinellis. Tools and Techniques for Analyzing
Product and Process Data. In T. Menzies, C. Bird,
and T. Zimmermann, editors, The Art and Science of
Analyzing Software Data, pages 161–212.
Morgan-Kaufmann, 2015.

[35] Puppet language style guide.
https://docs.puppetlabs.com/guides/style guide.html,
2016. [Online; accessed 22-Jan-2016].

[36] G. Suryanarayana, G. Samarthyam, and T. Sharma.
Refactoring for Software Design Smells: Managing
Technical Debt . Morgan Kaufmann, 1 edition, 2014.

[37] M. Taylor and S. Vargo. Learning Chef—A Guide To
Configuration Management And Automation. O’Reilly
Media, 1 edition, 2013.

[38] N. Tsantalis and A. Chatzigeorgiou. Identification of
Extract Method Refactoring Opportunities for the
Decomposition of Methods. Journal of Systems and
Software, 84(10):1757–1782, Oct. 2011.

[39] J. Turnbull and J. McCune. Pro Puppet. Apress, 1
edition, 2011.

[40] S. Wong, Y. Cai, M. Kim, and M. Dalton. Detecting
Software Modularity Violations. In Proceedings of the
33rd International Conference on Software
Engineering, ICSE ’11, pages 411–420, New York, NY,
USA, 2011. ACM.

200200200

