
The Bug Catalog of the Maven Ecosystem

Dimitris Mitropoulos* Vassilios Karakoidas* Panos Louridas* Georgios Gousios†

Diomidis Spinellis*

*Department of Management Science and Technology †Software Engineering Research Group
*Athens University of Economics and Business †Delft University of Technology

Athens, Greece Delft, the Netherlands
{dimitro,bkarak,louridas,dds}@aueb.gr g.gousios@tudelft.nl

ABSTRACT
Examining software ecosystems can provide the research
community with data regarding artifacts, processes, and
communities. We present a dataset obtained from the Maven
central repository ecosystem (approximately 265gb of data)
by statically analyzing the repository to detect potential
software bugs. For our analysis we used FindBugs, a tool
that examines Java bytecode to detect numerous types of
bugs. The dataset contains the metrics results that FindBugs
reports for every project version (a jar) included in the
ecosystem. For every version we also stored specific metadata
such as the jar’s size, its dependencies and others. Our
dataset can be used to produce interesting research results,
as we show in specific examples.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifica-
tion—Statistical methods; D.2.5 [Software Engineering]:
Testing and Debugging—Code inspections and walk-throughs;
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement—Version control

General Terms
Static Analysis, Software Ecosystems.

Keywords
Maven Repository, FindBugs, Software Bugs.

1. INTRODUCTION
A software ecosystem can be seen as a collection of soft-

ware projects, which are developed and co-evolve in the same
environment [4]. Components can be interdependent and
have multiple versions. Examples of such ecosystems include
Python’s pypy1 (Python Package Index), Perl’s cpan2 (Com-

1
http://pypy.org/

2
http://www.cpan.org/

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSR ’14, May 31 – June 1, 2014, Hyderabad, India
Copyright 2014 ACM 978-1-4503-2863-0/14/05 ...$15.00.

Table 1: Descriptive statistics measurements for the
Maven repository.

Measurement Value
Projects 17,505
Versions (total) 115,214
Min (versions per project) 1
Max (versions per project) 338
Mean (versions per project) 6.58
Median (versions per project) 3
Range (over versions) 337
1st Quartile (over versions) 1
3rd Quartile (over versions) 8

prehensive Perl Archive Network), Ruby’s RubyGems3 and
the Maven Central Repository.4

Maven is a build automation tool used primarily for Java
projects and it is hosted by the Apache Software Foundation.5

It uses xml to describe the software project being built, its
dependencies on other external modules, the build order,
and required plug-ins. To build a software component, it
dynamically downloads Java libraries and Maven plug-ins
from the Maven central repository,6 and stores them in a local
cache. The repository can be updated with new projects and
also with new versions of existing projects that can depend
on other versions.

To statically analyze the Maven repository we used Find-
Bugs,7 a static analysis tool that examines bytecode to detect
software bugs and has already been used in research [1, 7].
Specifically, we ran FindBugs on all the project versions of
all the projects that exist in the repository to identify all
bugs contained in it.

In this paper we present: a) the construction process to
obtain the collection of the metrics results that the FindBugs
tool produces for every project version of the repository
(115,214 jars), b) our dataset and c) how researchers can
use the dataset and produce meaningful results.

2. DATASET CONSTRUCTION PROCESS
The dataset construction consisted of two basic steps,

namely: data cleaning and FindBugs results collection. Ta-

3
http://rubygems.org/

4
http://mvnrepository.com/

5
http://maven.apache.org/

6
http://mvnrepository.com/

7
http://findbugs.sourceforge.net/

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

MSR’14, May 31 – June 1, 2014, Hyderabad, India
Copyright 2014 ACM 978-1-4503-2863-0/14/05...$15.00
http://dx.doi.org/10.1145/2597073.2597123

372

Table 2: Size metrics concerning the tools created
for the dataset construction process.

Python Scripts 14
Lines of Code 1256
Code Size (KB) 92

3421 10 100

5500

1

10

100

1000

Number of Versions

N
um

be
r

of
 P

ro
je

ct
s

Figure 1: Distribution of version count among
project population.

ble 2 presents some metrics concerning the tools created for
the process.

Data Cleaning Initially, we obtained a snapshot (Jan-
uary 2012) of the Maven repository and handled it locally to
retrieve a list of all the names of the project versions that
existed in it. In addition, we filtered out projects written
in programming languages other than Java (such as Scala,
Groovy, Clojure, etc.) because FindBugs analyzes only Java
bytecode. Since our construction process took place at the
end of 2012, several versions were released for some of the
projects. Thus, we cross-checked the local versions with
those online8 and supplemented the missing jars that have
been added to the repository during this period. The statis-
tic measurements concerning the repository can be seen in
Table 1 and the distribution of version count among the
selected projects is presented in Figure 1.

FindBugs Results Collection The dataset size prohib-
ited the analysis on a single host. For this reason, we opted
for distributed processing. A schematic representation of
the collection of the FindBugs metrics results can be seen in
Figure 2.

In particular, we created a series of processing tasks based
on the jar list from the previous step, and added them to a
task queue mechanism (a Rabbitmq message broker). Then
we executed twenty five workers (custom Python scripts) that
checked out tasks from the queue, processed each project
version and stored the results to the data repository (a
Mongodb database system). The collection process lasted
for approximately four and a half days.

8
http://mirrors.ibiblio.org/maven2/

Maven Repository

artf
URL

Project Events
Queue

Worker Worker Worker

Queue
 Loader

RabbitMQ

artf
URL

Figure 2: The data processing architecture.

Table 3: Bug categorization according to FindBugs.
Category Description
Bad Practice Violations of recommended and essen-

tial coding practice.
Correctness Involves coding misting a way that is

particularly different from the other
bug sakes resulting in code that was
probably not what the developer in-
tended.

Experimental Includes unsatisfied obligations. For
instance, forgetting to close a file.

Internationalization (i18n) Indicates the use of non-localized
methods.

Multi-Threaded (mt) Correctness Thread synchronization issues.
Performance Involves inefficient memory usage al-

location, usage of non-static classes.
Style Code that is confusing, or written in

a way that leads to errors.
Malicious Code Involves variables or fields exposed to

classes that should not be using them.
Security Involves input validation issues, unau-

thorized database connections and
others.

A typical processing cycle of a worker included the fol-
lowing steps: after the worker spawned, it requested a task
from the queue. This task contained the jar name, which
was typically a project version that was downloaded locally.
First, specific jar metadata were calculated and stored (see
Section 3). Then, FindBugs was invoked by the worker and
its results were also stored in the data repository. Note that
before invoking FindBugs, the worker checked if the jar is
valid in terms of implementation. For instance, for every
jar the worker checked if there were any .class files before
invoking FindBugs. When the task was completed the queue
was notified and the next task was requested.

When the data collection was completed, we ran some tests
to check the validity of the results. A common issue that we
discovered was the out-of-memory crashes of Findbugs, which
demanded the repetition of the process for the corresponding
jars, with the appropriate settings in the Java Runtime
Environment (jre).

3. DATASET CONTENTS
As we mentioned earlier our data was stored in a Mongodb

database. FindBugs separates software bugs into nine cate-
gories (see Table 3) and reports bug collections that include
all the bugs discovered in a jar file. For every registered

373

bug, there are numerous accompanying features like the class,
the method and the line that the bug was found. FindBug’s
results, also include additional information like the number of
classes included in the examined jar and others. FindBugs
though, outputs its results in xml format. Hence, all the
data were converted to the json format by mapping all xml
elements to json objects.

As we mentioned in Section 2, our workers calculated
and stored specific metadata together with the FindBugs
results. Such metadata included the jar’s size (in terms of
bytecode), its dependencies (derived from the pom.xml file),
and a number that represented the ordinal version number of
the release (see also Table 4). This number was derived from
an xml file that accompanies every project in the Maven
repository called maven-metadata.xml. The following listing
shows the format of the information we collected (note that
the results of FindBugs are too large to show. To see a
complete instance please visit our GitHub repository — see
Section 7):

{"JarMetadata": {
"version": "1.0.0",
"version_order": "1",
"jar_size": "34768",
"dependencies": [

{
"version" : "2.0",
"groupId" : "org.apache.maven",
"artifactId" : "maven-project"

},
{ /* other dependencies */ }

],
"group_id": "org.apache.myfaces.buildtools",
"jar_filename": "myfaces-jdev-plugin-1.0.0.jar",
"artifact_id": "myfaces-jdev-plugin",
},

"BugCollection": { /* FindBugs data */ }
}

4. HARNESSING OUR DATASET
Since Mongodb provides a rich query interface, it was easy

to create simple scripts to find out how software bugs are
distributed among the repository (see Figure 3).

Furthermore, we have created a series of scripts to exhibit
how the dataset can be used to capture correlations regarding
the evolution of software bugs. First, based on the dataset
we produced some metadata that contained the number
of bugs per category in each project version. Based on
these metadata we estimated the relation between bugs and

Table 4: jar metadata description.
version The version of the project in the

repository.
version_order The ordinal version number of the

release.
jar_size The size of the jar file.
dependencies List of all dependencies for the

project.
group_id The group id of the project in

Maven repository.
jar_filename jar’s filename.
artifact_id The artifact id of the project in

Maven repository.

25

0

2

4

6

8

10

12

14

16

18

20

22

Bug Categories

%

Correctness

 Bad
Practice

MT_Correctness

Performance

Experimental

Style

i18n

Malicious
 Code

Security

Figure 3: Bug percentage in Maven repository.

time (see Table 5). Specifically, we calculated the Spearman
correlations between the defects count and the ordinal version
number across all projects. The zero tendency that can be
seen on Table 5 applies to all versions of all projects together.

In addition, we explored the relation between defects with
the size of a project version, measured by the size of its jar
file by carrying out correlation tests between the size and
the defect counts for each project and version. The results
can be seen in Table 6.

Table 7 presents the pairwise correlations between all bug
categories. To establish these correlations, we calculated
the correlations between the number of distinct bugs that
appeared in a project throughout its lifetime.

Research concerning the examination of specific bugs can
also be facilitated by our dataset. For instance, we have
examined the characteristics of security bugs in a previous
paper [5] based on this dataset.

5. LIMITATIONS
Limitations concerning out dataset involve some jars that

were in the initial jar list created during data cleaning but
when the FindBugs result collection was performed, they
were not online.

A threat to the internal validity of our dataset construction
process could be the false alarms of the FindBugs tool [1].
Specifically, reported security bugs may not be applicable to

Table 5: Correlations between version and defects
count.

Category Spearman Correlation p-value
Security 0.04 < 0.05
Malicious Code 0.03 � 0.05
Style 0.03 � 0.05
Correctness 0.04 � 0.05
Bad Practice 0.03 � 0.05
mt Correctness 0.09 � 0.05
i18n 0.06 � 0.05
Performance (0.01) 0.07
Experimental 0.09 � 0.05

374

Table 7: Correlations between bug categories.

Category Security Malicious Code Style Bad Practice Correctness mt Correctness Performance i18n Experimental
Security 1.00 0.20 0.22 0.27 0.20 0.33 0.20 0.31 0.32
Malicious Code 0.20 1.00 0.63 0.63 0.56 0.56 0.62 0.60 0.48
Style 0.22 0.63 1.00 0.68 0.62 0.63 0.66 0.58 0.46
Bad Practice 0.27 0.63 0.68 1.00 0.54 0.58 0.64 0.63 0.51
Correctness 0.20 0.56 0.62 0.54 1.00 0.56 0.55 0.52 0.52
mt Correctness 0.33 0.56 0.63 0.58 0.56 1.00 0.56 0.56 0.49
Performance 0.20 0.62 0.66 0.64 0.55 0.56 1.00 0.60 0.52
i18n 0.31 0.60 0.58 0.63 0.52 0.56 0.60 1.00 0.60
Experimental 0.32 0.48 0.46 0.51 0.52 0.49 0.52 0.60 1.00

Table 6: Correlations between jar size and defects
count.

Category Spearman Correlation p-value
Security 0.19 � 0.05
Malicious Code 0.65 � 0.05
Style 0.68 � 0.05
Correctness 0.51 � 0.05
Bad Practice 0.67 � 0.05
mt Correctness 0.51 � 0.05
i18n 0.53 � 0.05
Performance 0.63 � 0.05
Experimental 0.36 � 0.05

an application’s typical use context. For instance, FindBugs
could report an sql injection vulnerability in an application
that receives no external input. In this particular context,
this would be a false positive alarm.

A disadvantage of our dataset is that as projects evolve the
dataset gets older. Also, even if we checked for new project
versions that could have been added to the repository after
the data cleaning and before the results collection, we did
not checked for new projects added during this time frame.

6. RELATED WORK
The Maven ecosystem has been previously analyzed by

Raemaekers et al. [6] to produce the Maven dependency
dataset. Apart from basic information like individual meth-
ods, classes, packages and lines of code for every jar, this
dataset also includes a database with all the connections
between the aforementioned elements. Our work differs from
this research because it reports all bugs coming from the
output of a static analysis tool, for each jar contained in
the Maven repository.

7. CONCLUSIONS
In this paper, we have presented a dataset that contains

for every jar of the Maven central repository, all the soft-
ware bugs that it contains among with some other metadata
mentioned in Section 4. We have also shown how our data
can be used to extract results concerning software evolution.

Note that our data collection process can be duplicated in
order to collect metrics results from other tools that examine
Java programs like cjkm9 that calculates Chidamber and
Kemerer object-oriented metrics [2], Java Pathfinder10 that

9
http://www.spinellis.gr/sw/ckjm/

10
http://babelfish.arc.nasa.gov/trac/jpf/wiki

performs model checking [3] on Java bytecode programs, and
others. To achieve this, instead of invoking FindBugs, our
worker can invoke such tools.

The complete set of our data and source code can be found
at https://github.com/bkarak/data_paper_msr2014.

8. ACKNOWLEDGMENTS
This research has been co-financed by the European Union

(European Social Fund—esf) and Greek national funds
through the Operational Program “Education and Lifelong
Learning” of the National Strategic Reference Framework
(nsrf)—Research Funding Program: Thalis—Athens Uni-
versity of Economics and Business—Software Engineering
Research Platform.

9. REFERENCES
[1] N. Ayewah and W. Pugh. The google FindBugs fixit. In

Proceedings of the 19th international symposium on
Software testing and analysis, ISSTA ’10, pages 241–252,
New York, NY, USA, 2010. ACM.

[2] S. R. Chidamber and C. F. Kemerer. Towards a metrics
suite for object oriented design. In Conference
Proceedings on Object-oriented Programming Systems,
Languages, and Applications, OOPSLA ’91, pages
197–211, New York, NY, USA, 1991. ACM.

[3] E. M. Clarke, E. A. Emerson, and J. Sifakis. Model
checking: Algorithmic verification and debugging.
Commun. ACM, 52(11):74–84, Nov. 2009.

[4] M. Lungu and M. Lanza. The small project observatory:
A tool for reverse engineering software ecosystems. In
Proceedings of the 32Nd ACM/IEEE International
Conference on Software Engineering - Volume 2, ICSE
’10, pages 289–292, New York, NY, USA, 2010. ACM.

[5] D. Mitropoulos, V. Karakoidas, P. Louridas, G. Gousios,
and D. Spinellis. Dismal code: Studying the evolution of
security bugs. In Proceedings of the LASER Workshop
2013, Learning from Authoritative Security Experiment
Results, pages 37–48. Usenix Association, Oct. 2013.

[6] S. Raemaekers, A. v. Deursen, and J. Visser. The maven
repository dataset of metrics, changes, and dependencies.
In Proceedings of the 10th Working Conference on
Mining Software Repositories, MSR ’13, pages 221–224,
Piscataway, NJ, USA, 2013. IEEE Press.

[7] J. Spacco, D. Hovemeyer, and W. Pugh. Tracking defect
warnings across versions. In Proceedings of the 2006
international workshop on Mining software repositories,
MSR ’06, pages 133–136, New York, NY, USA, 2006.
ACM.

375

