
Comparative Language Fuzz Testing
Programming Languages vs. Fat Fingers

Diomidis Spinellis Vassilios Karakoidas Panos Louridas
Athens University of Economics and Business

{dds, bkarak, louridas}@aueb.gr

Abstract
We explore how programs written in ten popular program-
ming languages are affected by small changes of their source
code. This allows us to analyze the extend to which these
languages allow the detection of simple errors at compile or
at run time. Our study is based on a diverse corpus of pro-
grams written in several programming languages systemat-
ically perturbed using a mutation-based fuzz generator. The
results we obtained prove that languages with weak type sys-
tems are significantly likelier than languages that enforce
strong typing to let fuzzed programs compile and run, and,
in the end, produce erroneous results. More importantly, our
study also demonstrates the potential of comparative lan-
guage fuzz testing for evaluating programming language de-
signs.

Categories and Subject Descriptors D.3.0 [Programming
Languages]: General

General Terms Reliability, Experimentation, Measure-
ment

Keywords Programming Languages; Fuzzing; Compari-
son; Rosetta Stone

1. Introduction
A substitution of a comma with a period in project Mercury’s
working FORTRAN code compromised the accuracy of the
results, rendering them unsuitable for longer orbital mis-
sions [2, 25]. How probable are such events and how does
a programming language’s design affect their likelihood and
severity?

To study these questions we chose ten popular program-
ming languages, and a corpus of programs written in all of
them. We then constructed a source code mutation fuzzer:

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLATEAU’12, October 21, 2012, Tucson, Arizona, USA.
Copyright c© 2012 ACM 978-1-4503-1631-6/12/10. . . $15.00

a tool that systematically introduces diverse random pertur-
bations into the program’s source code. Finally, we applied
the fuzzing tool on the source code corpus and examined
whether the resultant code had errors that were detected at
compile or run time, and whether it produced erroneous re-
sults.

In practice, the errors that we artificially introduced
into the source code can crop up in a number of ways.
Mistyping—the “fat fingers” syndrome—is one plausible
source. Other scenarios include absent-mindedness, auto-
mated refactorings [7] gone awry (especially in languages
where such tasks cannot be reliably implemented), unin-
tended consequences from complex editor commands or
search-and-replace operations, and even the odd cat walk-
ing over the keyboard.

The contribution of our work is twofold. First, we de-
scribe a method for systematically evaluating the tolerance
of source code written in diverse programming languages
to a particular class of errors. In addition, we apply this
method to numerous tasks written in ten popular program-
ming languages, and by analyzing tens of thousands of cases
we present an overview of the likelihood and impact of these
errors among ten popular languages.

In the remainder of this paper we outline our methods
(Section 2), present and discuss our findings (Section 3),
compare our approach against related work (Section 4), and
conclude with proposals for further study (Section 5).

2. Methodology
We selected the languages to test based on a number of
sources collated in an IEEE Spectrum article [17]: an index
created by TIOBE1 (a software research firm), the number of
book titles listed on Powell’s Books, references in online dis-
cussions on IRC, and the number of job posts on Craigslist.
From the superset of the popular languages listed in those
sources we excluded some languages for the following rea-
sons.

1 http://www.tiobe.com/index.php/content/paperinfo/tpci/

index.html

25

Language Implementation
C gcc 4.4.5
C++ g++ 4.4.5
C# mono 2.6.7, CLI v2.0
Haskell ghc 6.12.1
Java OpenJDK 1.6.0 18
JavaScript spidermonkey 1.8.0
PHP PHP 5.3.3-7
Perl perl 5.10.1
Python python 2.6.6
Ruby ruby 1.8.7

Table 1. Studied languages.

Actionscript, Visual Basic Both languages required a pro-
prietary compiler and runtime environment, which were
not available on our system.

SQL, Unix shell Lack of implementations of the programs
we could test.

Objective C Problems with the requisite runtime environ-
ment: missing libraries, incompatible runtime frame-
works, and lack of familiarity with the system.

The list of the ten languages we adopted for our study and
the particular implementations we used are listed in Table 1.
According to the source of the popularity index, the coverage
of the languages we selected over all languages ranges from
71% to 86%.

We obtained fragments of source code executing the same
task in all of our study’s ten languages from Rosetta Code,2

a so-called programming chrestomathy site, implemented as
a wiki. In the words of its creators, the site aims to present
code for the same task in as many languages as possible, thus
demonstrating their similarities and differences and aiding
persons with a grounding in one approach to a problem in
learning another. At the time of our writing Rosetta Code
listed 600 tasks and code in 470 languages. However, most
of the tasks are presented only in a subset of those languages.

We selected our tasks from Rosetta Code through the fol-
lowing process. First, we downloaded the listing of all avail-
able tasks and filtered it to create a list of task URLs. We
then downloaded the page for each task in MediWiki markup
format, located the headers for the languages in which that
task was implemented, and created a table containing tasks
names and language names. We joined that table with our
chosen languages, thus obtaining a count of the tasks imple-
mented in most of the languages in our set. From that set we
selected tasks that implemented diverse non-trivial function-
ality, and also, as a test case, the “Hello, world!” task. The
tasks we studied are listed in Table 2.

Unfortunately, many of the tasks listed on Rosetta Stone
were not in a form that would allow us to execute them as

2 http://rosettacode.org/

Task Name Description
AccumFactory A function that takes a number n

and returns a function that acts as
an accumulator and also accepts a
number. Each function should re-
turn the sum of the numbers added
to the accumulator so far.

Beers Print the “99 bottles of beer on the
wall” song.

Dow Detects all years in a range in which
Christmas falls on a Sunday.

FlatList Flattens a series of nested lists.
FuncComp Implementation of mathematical

function composition.
Horner Horner’s Method for polynomial

evaluation.
Hello A typical “hello, world!” program.
Mult Ethiopian Multiplication: a method

to multiply integers using only ad-
dition, doubling and halving.

MutRecursion Hofstadter’s Female and Male se-
quence [14].

ManBoy A test to distinguish compilers that
correctly implement recursion and
non-local references from those that
do not [19].

Power Calculation of a set’s S power set:
the set of all subsets of S.

Substring Count the occurrences of a sub-
string.

Tokenizer A string tokenizing program.
ZigZag Produce a square arrangement of

the first N2 integers, where the
numbers increase sequentially in a
zig-zag along the anti-diagonals of
the array.

Table 2. List of the selected Rosseta Code tasks.

part of our study. Many would not compile, others lacked a
test harness to produce output, and some required specific
installed libraries or particular new language features. We
tried to fix as many problems as possible, but in the end the
tasks we ended up using were not as large or diverse as we
would have liked. In addition, we were unable to implement
some of the tasks in all our chosen languages. Tasks written
in Objective-C, which was initially part of our language set,
proved particularly tricky to compile, mainly because we
found it difficult to automate their compilation and running.
Key size metrics of the tasks and languages we tested are
listed in Table 3.

We implemented a language-agnostic fuzzer as a Perl
script that reads a program, splits it into tokens, performs
a single random modification from a set of predefined types,

26

C C++ C# Haskell Java JavaScript PHP Perl Python Ruby Implemented
Languages

AccumFactory 17 57 8 16 16 8 7 7 10 30 10
Hello 7 8 7 1 6 1 1 1 7 1 10
FlatList 118 7 80 15 35 4 15 5 14 1 9
Power 27 77 7 10 31 13 59 3 29 47 9
ZigZag 22 80 51 19 46 7 31 15 13 14 9
FuncComp 60 34 18 4 32 6 7 9 3 7 10
Substring 21 21 35 7 10 1 3 9 1 1 9
ManBoy 46 32 22 11 28 8 13 8 11 5 10
Beers 14 12 28 6 21 9 14 20 13 12 10
Tokenizer 22 15 16 7 11 1 3 1 2 1 9
Horner 21 20 15 3 22 3 8 10 6 3 10
MutRecursion 29 35 31 8 20 18 22 28 4 8 10
Dow 23 17 17 7 13 5 9 17 7 4 10
Mult 31 53 61 14 40 25 32 23 41 25 10
Total lines 458 461 389 114 331 102 224 156 161 159

Table 3. Lines of Code per Task and per Language, Unimplemented Tasks, and Implemented Languages per Task.

and outputs the result. The program uses regular expressions
to group tokens into six categories: identifiers (including
reserved words), horizontal white space (spaces and tabs),
integer constants, floating point constants, group delimiters
(brackets, square and curly braces), and operators (including
the multi-character operators of our chosen languages).

Based on this categorization, our intuition about common
errors, and what types of fuzzing could be implemented eas-
ily and portably across diverse languages, we defined five
types of fuzzing modifications. Given that we are not adding
or removing elements, all modifications correspond to an er-
ror of type presence: incorrect according to the taxonomy
proposed by Ostrand and Weyuker [26]. Although our choice
could be improved by basing it on empirical data, it turns
out that our selection matches actual programmer errors.
For each item in the list below we indicate how other re-
searchers [4, 20] categorize a programmer error correspond-
ing to such a modification.

Identifier Substitution — IdSub A single randomly cho-
sen identifier is replaced with another one, randomly-
chosen from the program’s tokens. This change can sim-
ulate absent-mindedness, a semantic error, or a search-
and-replace or refactoring operation gone awry. [4, B3.b],
[20, B]

Integer Perturbation — IntPert The value of a randomly
chosen integer constant is randomly perturbed by 1 or
−1. This change simulates off-by-one errors. [4, B4.b],
[20, A]

Random Character Substitution — RandCharSub A sin-
gle randomly chosen character (byte) within a randomly
chosen token is substituted with a random byte. This

change simulates a typo or error in a complex editing
command. [4, C1], [20, T]

Similar Token Substitution — SimSub A single randomly
chosen token that is not a space character or a group de-
limiter is substituted with another token of the same cat-
egory, randomly chosen from the program’s source code.
This change simulates absent-mindedness and semantic
errors. [20, B]

Random Token Substitution — RandTokenSub A single
randomly chosen non-space token is substituted with an-
other token. This change can simulate most of the previ-
ously described errors. [20, T, B]

Most fuzzing operations are implemented in a Monte
Carlo fashion: tokens are randomly chosen until they match
the operation’s constraints. To aid the reproducibility of our
results, the fuzzer’s random number generator is seeded with
a constant value, offset by another constant argument that
is incremented on each successive run and a hash value of
the specified fuzzing operation. Thus, each time the fuzzer
is executed with the same parameters it produces the same
results.

To run our tasks we created for each one of our lan-
guages two methods. One compiles the source code into an
executable program. For interpreted languages this method
checks the program’s syntactic validity. The aim of this
“compilation” method is to test for errors that can be stat-
ically detected before deployment. The second method in-
vokes (if required) the particular language’s run time envi-
ronment to run the executable program (or the script for in-
terpreted languages), and stores the results into a file.

A separate driver program compiles and runs all the tasks
from the ten languages introducing fuzz into their source

27

code. As a task’s programs written in different languages
produce slightly different results, the driver program first
runs an unmodified version of each task to determine its
expected output. Output that diverges from it is deemed to
be incorrect. The running of each fuzzed task can fail in one
of four successive phases.

Fuzzing The fuzzer may fail to locate source code tokens
that match the constraints of a particular fuzzing oper-
ation. This was a rare phenomenon, which mainly oc-
curred in very short programs.

Compilation — com The program fails to compile (or syn-
tax check), as indicated through the compiler’s or inter-
preter’s exit code. In one particular case a fuzz (a substi-
tution of a closing bracket with func t) caused an Objec-
tive C task’s compiler to enter into an infinite loop, pro-
ducing a 5GB file of error messages. We side-stepped this
problem when we decided to remove Objective C from
the languages we tested. In another case the Haskell com-
piler entered an infinite loop. To avoid such problems we
imposed a 20s timeout on the compilation process.

Execution — run The program fails to terminate success-
fully, as indicated by the program’s exit code. These
failures included crashes. We also had cases where the
fuzzed code failed to terminate. We detected those cases
by imposing a 5s timeout on the time a program was al-
lowed to execute.

Output Validity — out The fuzzed program is producing
results different from those of the original one. In contrast
to a modern real-world scenario, the programs we used
lacked a test suite, which we could employ to test a
program independently from its productive operation.

The driver program run a complete fuzz, compile, run,
verify cycle for each of the five fuzz operations 400 times
for each task and each supported language. We collected the
results of these operations in an 692,646 row table, which
we analyzed through simple scripts. (The table’s size is not
round, because each task involves fuzzing, compilation, run-
ning, and result comparison. If a phase fails, the subsequent
phases are not performed.)

3. Results and Discussion
In total we tested 136 task implementations attempting
280,000 fuzzing operations, of which 261,667 (93%) were
successful. From the fuzzed programs 90,166 (32%) com-
piled or were syntax-checked without a problem. From those
programs 60,126 (67%, or 23% of the fuzzed total) termi-
nated successfully. Of those 18,256 produced output iden-
tical to the reference one, indicating that the fuzz was in-
consequential to the program’s operation. The rest, 41,870
programs (70% of those that run, 16% of the fuzzed total),
compiled and run without a problem, but produced wrong
output.

These aggregate results indicate that we chose an effec-
tive set of fuzzing methods. Syntax and semantic checking
appear to be an effective but not fail-safe method for de-
tecting the fuzz errors we introduced, as they blocked about
two thirds of the fuzzed programs. A large percentage of the
programs also terminated successfully, giving us in the end
wrong results for 16% of the programs.

This is worrying: it indicates that a significant number of
trivial changes in a program’s source code that can happen
accidentally will not be caught at compile and run time
and will result in an erroneously operating program. In an
ideal case we might want program code to have enough
redundancy so that such small changes would result in an
incorrect program that would not compile. However, as any
user of RAID storage can attest, redundancy comes at a cost.
Programming productivity in such a language would suffer
as programmers would have to write more code and keep in
sync mutually dependent parts of it.

The aggregate results per language are summarized in
Figure 1 in the form of failure modes: successful compila-
tions or executions, which consequently failed to catch an
erroneous program and resulted in wrong results. The ratio-
nale behind this depiction is that the later in the software
development life cycle an error is caught the more damaging
it is. The denominator used for calculating the percentages
also includes fuzzing operations that resulted in correct re-
sults. Therefore, the numbers also reflect the programming
language’s information density: in our case the chance that a
fuzz will not affect the program’s operation.

The figure confirms a number of intuitive notions. Lan-
guages with strong static typing [27] (Java, Haskell, C++)
caught more errors at compile time than languages with
weak or dynamic type systems (Ruby, Python, Perl, PHP, and
JavaScript). Somewhat predictably, C fell somewhere in the
middle, confirming a widely-held belief that its type system
is not as strong as many of its adherents (including this arti-
cle’s first author) think it is. However, C produced a higher
number of run-time errors, which in the end resulted in a rate
of incorrect output similar to that of the other strongly-typed
languages.

A picture similar to that of compile-time errors is also ap-
parent for run time behavior. Again, code written in weakly-
typed languages is more probable to run without a problem
(a crash or an exception) than code written in languages with
a strong type system. As one would expect these two differ-
ences result in a higher rate of wrong output from programs
written in languages with weak typing. With an error rate
of 36% for PHP against one of 8% for C++ and 10% for
C#, those writing safety-critical applications should care-
fully weight the usability advantages offered by a weakly-
type language, like PHP, against the increased risk that a typo
will slip undetected into production code.

As is often the case, there is a trade-off between usability
and reliability. The adoption of languages in which typos can

28

0	 10	 20	 30	 40	 50	 60	

C	

C++	

C#	

Haskell	

Java	

Javascript	

PHP	

Perl	

Python	

Ruby	

Overall	

Rate	 (%)	

Successful	 compile	

Successful	 run	

Wrong	 output	

0	 10	 20	 30	 40	 50	 60	

C	

C++	

C#	

Haskell	

Java	

Javascript	

PHP	

Perl	

Python	

Ruby	

Overall	

Rate	 (%)	

Successful	 compile	

Successful	 run	

Wrong	 output	

Figure 1. Failure modes for each phase per language and overall.

slip undetected into production code is especially risky when
a system also lacks a thorough testing process. Worryingly,
in such a scenario, the effects of a typo may be detected only
in a program’s real-life production run.

Overall, the figures for dynamic scripting languages show
a far larger degree of variation compared to the figures of
the strongly static typed ones. This is probably a result of
a higher level of experimentation associated with scripting
language features.

The results for each fuzz type, phase, and language are
summarized in Table 4. Predictably, the off-by-one inte-
ger perturbation (IntPert) was the fuzz that compilers found
most difficult to catch and the one that resulted in most cases
of erroneous output. The C# compiler seems to behave bet-
ter than the others in this area, having a significantly lower
number of successful compilations than the rest. However,
this did not result in a similarly good performance rank re-
garding lack of erroneous output.

Identifier substitution (IdSub) and similar token substitu-
tion (SimSub) resulted in almost equal numbers of compila-
tion failures. Although one might expect that IdSub would be

more difficult to detect than the wider-ranging SimSub, our
fuzzer’s treatment of reserved words as identifiers probably
gave the game away by having SimSub introduce many triv-
ial syntax errors. Nevertheless, SimSub resulted in a signifi-
cantly higher number of successful runs and consequent er-
roneous results. Interestingly, the erroneous results for Sim-
Sub were dramatically higher than those for IdSub in the case
of languages with a more imaginative syntax, like Python,
Haskell, and Ruby.

The random character substitution fuzz was the one that
resulted in the lowest number of erroneous results. However,
it wreaked havoc with PHP’s compilation and output, and
JavaScript’s compilation. This could be associated with how
these languages treat source code with non-ASCII characters.
The random token substitution resulted in the lowest number
of successful compilations or runs and consequently also a
low number of erroneous results. However, PHP performed
particularly badly in this area indicating a dangerously loose
syntax.

To investigate the validity of our results, we carried out
a statistical analysis of the fuzz tests. In particular, we ex-

29

IntPert (%) IdSub (%) SimSub (%) RandCharSub (%) RandTokenSub (%)
com run out com run out com run out com run out com run out

C 100.0 56.5 36.9 15.9 13.2 3.4 20.5 16.4 8.6 7.3 7.1 0.8 6.2 5.3 1.7
C++ 92.4 48.3 41.2 5.2 4.4 1.6 8.5 6.9 4.4 4.0 4.0 0.3 2.1 1.8 0.5
C# 89.9 74.1 60.8 9.1 8.8 0.5 10.6 9.6 2.4 5.5 5.5 0.2 3.4 3.3 0.2
Haskell 89.2 83.5 72.2 5.2 3.3 2.4 13.5 11.4 9.4 2.9 2.6 0.6 3.8 3.3 2.0
Java 100.0 84.3 63.9 5.7 3.9 0.6 7.8 5.8 3.4 2.5 2.2 0.3 1.8 1.6 0.3
Javascript 100.0 80.3 74.9 66.2 16.4 11.4 57.2 22.1 17.6 31.1 8.9 2.2 12.4 4.6 3.1
PHP 98.8 89.0 73.3 52.9 34.0 31.0 45.1 37.5 35.8 39.4 33.5 31.3 23.5 22.4 20.9
Perl 100.0 89.3 67.8 59.1 29.0 19.5 47.0 30.1 20.0 16.9 12.2 5.4 18.9 13.7 9.3
Python 100.0 77.7 62.2 45.0 16.8 5.4 46.9 23.2 13.7 17.7 5.4 1.0 20.6 9.8 4.6
Ruby 100.0 91.4 59.9 55.0 13.4 3.4 56.7 27.1 12.8 29.3 15.4 3.6 36.4 21.4 11.0
Mean 97.0 76.3 60.1 31.1 14.1 7.8 30.8 18.8 12.7 15.7 9.7 4.6 12.9 8.7 5.4

Table 4. Failure modes for each language, fuzz operation, and phase (successful compilations, runs, and wrong output).

amined whether the differences we see in the fuzzing re-
sults among languages (e.g., compilation errors caught by
the compiler) are statistically significant. To do that we per-
formed a 2×2 contingency analysis for all pairs of languages
and each fuzz test. We used the Fisher exact test [6], instead
of the more common chi square test, since there were cases
with very low frequencies.

The results are presented in Tables 5 and 6. Black lozenges
appear when a particular fuzz test failed to show a statisti-
cally significant difference between two languages (signif-
icance was set at the 0.05 level). In each table, the results
of the Fisher exact test for each language vs. the other lan-
guages are presented. Each row is divided into five bands,
one for each fuzzing operation, and for each band the tests
are, in order, compilation, execution (run), output validity.
The following results stand out.

• The different results in fuzz tests between statically com-
piled and dynamic languages are to a large extent statis-
tically significant. This validates the finding in Figure 1
that less errors escape detection in static languages than
dynamic.

• C# behaves more like C and C++ and less like Java,
despite its surface similarities to the latter.

• Haskell behaves more similarly to Java than other lan-
guages.

• There are clusters of black longenes (indicating a fail-
ure to show a significant difference) between statically
checked languages: C and C++, C++ and Java, Haskell
and Java. However, we do not see a comparable pattern
in dynamic languages. To paraphrase Tolstoy, it would
seem that they are different in their own ways.

4. Related Work
Comparative language evaluation has a long and sometimes
colorful history. See for instance, the comparison of PL/I
with Cobol, FORTRAN and Jovial in terms of programmer

productivity and programmer efficiency [30]; the qualitative
and quantitative comparison of Algol 60, FORTRAN, Pascal
and Algol 68 [1]; Kernighan’s delightful description of Pas-
cal’s design and syntax flaws [16]; as well as the relatively
more recent study where code written C, C++, Java, Perl,
Python, Rexx, and Tcl is compared in terms of execution
time, memory consumption, program size, and programmer
productivity [28].

Our work introduces fuzzing as a method for program-
ming language evaluation. Fuzzing as a technique to investi-
gate the reliability of software was first proposed in an article
by Miller and his colleagues [24]. There they described how
they tested common Unix utilities in various operating sys-
tems and architectures and discovered that 25–33% of these
were crashing under certain conditions.

Nowadays fuzzing techniques are used mainly to detect
software security vulnerabilities and improve software reli-
ability [10, 33]. Several tools and techniques [34] have been
developed, introducing concepts like directed fuzz testing
[8].

Our experiment aims to exhibit the fault tolerance of each
language and, in particular, the extend to which a language
can use features such as its type system to shield program-
mers from errors [21, 23]. The random fuzzing we employed
in our study can be improved by taking into account specific
properties of the object being studied. Grammar-based white
box fuzzing [11], takes into account the input language’s
grammar to fuzz the input in ways that are syntactically
correct. This results in a higher rate of successful fuzzing
and the location of deeper problems. Another interesting ap-
proach is H-fuzzing [35]: a heuristic method that examines
the execution paths of the program to achieve higher path
coverage.

Fuzz testing approaches are based on the fact that it is
practically impossible to determine all execution paths and
all program inputs that will fully test the validity and the
reliability of a program. The analogy to our study is that it
is impossible to come up with all the ways in which a pro-

30

(a) C

IdSub IntPer CharSub TokSub SimSub

C++ ♦�♦ ♦♦♦ ♦�� ♦�� ♦�♦

C# ♦♦♦ ♦♦♦ ♦�♦ ♦♦♦ ♦♦♦

Haskell ♦♦♦ ♦♦♦ ♦♦♦ ♦�♦ ♦♦♦

Java ♦♦♦ �♦♦ ♦♦� ♦�♦ ♦♦�

Javascript ♦♦♦ �♦♦ ♦♦♦ ♦♦♦ ♦♦♦

PHP ♦♦♦ ♦♦♦ ♦♦♦ ♦♦♦ ♦♦♦

Perl ♦♦♦ �♦♦ ♦♦♦ ♦♦♦ ♦♦♦

Python ♦♦♦ �♦♦ ♦♦♦ ♦♦♦ ♦♦♦

Ruby ♦♦� �♦� ♦♦♦ ♦♦♦ ♦♦♦

(b) C++

IdSub IntPer CharSub TokSub SimSub

C ♦�♦ ♦♦♦ ♦�� ♦�� ♦�♦

C# ♦♦♦ ♦♦♦ ♦�� ♦♦♦ ♦♦♦

Haskell �♦♦ ♦♦� ♦♦♦ ♦�♦ ♦�♦

Java �♦♦ ♦♦♦ ♦♦♦ ��� �♦�

Javascript ♦♦♦ ♦♦♦ ♦♦♦ ♦♦♦ ♦♦♦

PHP ♦♦♦ ♦♦♦ ♦♦♦ ♦♦♦ ♦�♦

Perl ♦♦♦ ♦♦♦ ♦♦♦ ♦♦♦ ♦♦�

Python ♦♦� ♦♦♦ ♦♦♦ ♦♦♦ ♦♦�

Ruby ♦♦♦ ♦♦♦ ♦♦♦ ♦♦♦ ♦♦♦

(c) C#

IdSub IntPer CharSub TokSub SimSub

C ♦♦♦ ♦♦♦ ♦�♦ ♦♦♦ ♦♦♦

C++ ♦♦♦ ♦♦♦ ♦�� ♦♦♦ ♦♦♦

Haskell ♦♦♦ �♦♦ ♦♦♦ �♦♦ ♦♦♦

Java ♦♦♦ ♦♦♦ ♦♦♦ ♦♦♦ ♦♦♦

Javascript ♦♦♦ ♦♦♦ ♦♦♦ ♦♦♦ ♦♦♦

PHP ♦♦♦ ♦♦� ♦♦♦ ♦�♦ ♦♦♦

Perl ♦♦♦ ♦♦♦ ♦♦♦ ♦♦♦ ♦♦♦

Python ♦♦♦ ♦♦♦ ♦♦♦ ♦♦♦ ♦♦♦

Ruby ♦♦♦ ♦♦♦ ♦♦♦ ♦♦♦ ♦♦♦

(d) Haskell

IdSub IntPer CharSub TokSub SimSub

C ♦♦♦ ♦♦♦ ♦♦♦ ♦�♦ ♦♦♦

C++ �♦♦ ♦♦� ♦♦♦ ♦�♦ ♦�♦

C# ♦♦♦ �♦♦ ♦♦♦ �♦♦ ♦♦♦

Java ��♦ ♦♦♦ ��� ♦�♦ ♦♦♦

Javascript ♦♦� ♦♦♦ ♦♦� ♦♦� ♦♦�

PHP ♦�♦ ♦♦♦ ♦♦♦ ♦♦♦ ♦�♦

Perl ♦♦� ♦♦♦ ♦♦♦ ♦♦� ♦♦♦

Python ♦♦♦ ♦♦♦ ♦♦� ♦♦♦ ♦♦♦

Ruby ♦♦♦ ♦♦♦ ♦♦� ♦♦♦ ♦♦♦

(e) Java

IdSub IntPer CharSub TokSub SimSub

C ♦♦♦ �♦♦ ♦♦� ♦�♦ ♦♦�

C++ �♦♦ ♦♦♦ ♦♦♦ ��� �♦�

C# ♦♦♦ ♦♦♦ ♦♦♦ ♦♦♦ ♦♦♦

Haskell ��♦ ♦♦♦ ��� ♦�♦ ♦♦♦

Javascript ♦♦♦ �♦♦ ♦♦♦ ♦♦♦ ♦♦♦

PHP ♦�♦ ♦♦♦ ♦�♦ ♦♦♦ ♦♦♦

Perl ♦♦♦ �♦� ♦♦♦ ♦♦♦ ♦♦♦

Python ♦♦♦ �♦♦ ♦♦� ♦♦♦ ♦♦�

Ruby ♦♦♦ �♦♦ ♦♦♦ ♦♦♦ ♦♦♦

(f) Javascript

IdSub IntPer CharSub TokSub SimSub

C ♦♦♦ �♦♦ ♦♦♦ ♦♦♦ ♦♦♦

C++ ♦♦♦ ♦♦♦ ♦♦♦ ♦♦♦ ♦♦♦

C# ♦♦♦ ♦♦♦ ♦♦♦ ♦♦♦ ♦♦♦

Haskell ♦♦� ♦♦♦ ♦♦� ♦♦� ♦♦�

Java ♦♦♦ �♦♦ ♦♦♦ ♦♦♦ ♦♦♦

PHP ♦♦♦ ♦♦♦ ♦♦♦ ♦♦♦ ♦♦♦

Perl ♦♦� �♦♦ ♦♦♦ ♦♦� ♦♦♦

Python ♦♦♦ �♦♦ ♦�♦ ♦♦♦ ♦♦♦

Ruby ♦�♦ �♦♦ ♦♦� ♦♦♦ �♦♦

(g) PHP

IdSub IntPer CharSub TokSub SimSub

C ♦♦♦ ♦♦♦ ♦♦♦ ♦♦♦ ♦♦♦

C++ ♦♦♦ ♦♦♦ ♦♦♦ ♦♦♦ ♦�♦

C# ♦♦♦ ♦♦� ♦♦♦ ♦�♦ ♦♦♦

Haskell ♦�♦ ♦♦♦ ♦♦♦ ♦♦♦ ♦�♦

Java ♦�♦ ♦♦♦ ♦�♦ ♦♦♦ ♦♦♦

Javascript ♦♦♦ ♦♦♦ ♦♦♦ ♦♦♦ ♦♦♦

Perl ♦♦♦ ♦�♦ ♦♦♦ ♦♦♦ �♦♦

Python ♦♦♦ ♦♦♦ ♦♦♦ ♦♦♦ �♦♦

Ruby ♦♦♦ ♦♦♦ ♦♦♦ ♦♦♦ ♦♦♦

(h) Perl

IdSub IntPer CharSub TokSub SimSub

C ♦♦♦ �♦♦ ♦♦♦ ♦♦♦ ♦♦♦

C++ ♦♦♦ ♦♦♦ ♦♦♦ ♦♦♦ ♦♦�

C# ♦♦♦ ♦♦♦ ♦♦♦ ♦♦♦ ♦♦♦

Haskell ♦♦� ♦♦♦ ♦♦♦ ♦♦� ♦♦♦

Java ♦♦♦ �♦� ♦♦♦ ♦♦♦ ♦♦♦

Javascript ♦♦� �♦♦ ♦♦♦ ♦♦� ♦♦♦

PHP ♦♦♦ ♦�♦ ♦♦♦ ♦♦♦ �♦♦

Python ♦♦♦ �♦♦ �♦♦ ♦♦♦ �♦♦

Ruby ♦♦♦ �♦♦ ♦♦♦ ♦♦♦ ♦♦♦

Table 5. Contingency test results for C, C++, C#, Haskell, Java, Javascript, PHP, and Perl

31

(a) Python

IdSub IntPer CharSub TokSub SimSub

C ♦♦♦ �♦♦ ♦♦♦ ♦♦♦ ♦♦♦

C++ ♦♦� ♦♦♦ ♦♦♦ ♦♦♦ ♦♦�

C# ♦♦♦ ♦♦♦ ♦♦♦ ♦♦♦ ♦♦♦

Haskell ♦♦♦ ♦♦♦ ♦♦� ♦♦♦ ♦♦♦

Java ♦♦♦ �♦♦ ♦♦� ♦♦♦ ♦♦�

Javascript ♦♦♦ �♦♦ ♦�♦ ♦♦♦ ♦♦♦

PHP ♦♦♦ ♦♦♦ ♦♦♦ ♦♦♦ �♦♦

Perl ♦♦♦ �♦♦ �♦♦ ♦♦♦ �♦♦

Ruby ♦♦♦ �♦♦ ♦♦♦ ♦♦� ♦�♦

(b) Ruby

IdSub IntPer CharSub TokSub SimSub

C ♦♦� �♦� ♦♦♦ ♦♦♦ ♦♦♦

C++ ♦♦♦ ♦♦♦ ♦♦♦ ♦♦♦ ♦♦♦

C# ♦♦♦ ♦♦♦ ♦♦♦ ♦♦♦ ♦♦♦

Haskell ♦♦♦ ♦♦♦ ♦♦� ♦♦♦ ♦♦♦

Java ♦♦♦ �♦♦ ♦♦♦ ♦♦♦ ♦♦♦

Javascript ♦�♦ �♦♦ ♦♦� ♦♦♦ �♦♦

PHP ♦♦♦ ♦♦♦ ♦♦♦ ♦♦♦ ♦♦♦

Perl ♦♦♦ �♦♦ ♦♦♦ ♦♦♦ ♦♦♦

Python ♦♦♦ �♦♦ ♦♦♦ ♦♦� ♦�♦

Table 6. Contingency test results for Python and Ruby

grammer can write an incorrect program that the compiler or
run time system could detect. Random testing [12] has been
touted as a solution that can partially deal with the aforemen-
tioned problem. However it is not widely adopted outside the
academic fields [9], because the techniques it introduces are
difficult to apply in complex systems and achieve good code
coverage only at a significant cost [29]. Similarly, mutation
testing [15] introduces errors in computer programs and then
checks their output against valid results.

In the introduction we mentioned that complex refactor-
ings can result in errors similar to the ones we are investigat-
ing. A study of such errors appears in reference [3]. Refac-
toring bugs result in corrupted code, which is very difficult to
detect, especially in the case of dynamic languages [5, 31].
Recent studies indicate that type systems are tightly related
with code maintainability and error detection [18, 32].

5. Conclusions and Further Work
The work we described in this study cries to be extended
by applying it on a larger and more diverse corpus of pro-
gramming tasks. It would also be interesting to test a wider
variety of languages. Although Haskell performed broadly
similarly to the other strongly-typed languages in our set we
would hope that other declarative languages would exhibit
more interesting characteristics. The fuzz operations can be
also extended and be made more realistic [22], perhaps by
implementing a mixture based on data from actual program-
ming errors. Ideally, we would want to construct fuzz sce-
narios by taking into account empirical evidence collected
from developers working in real-life situations [13].

In this study we tallied the failure modes associated with
each language and fuzz operation and reported the aggre-
gate results. Manually analyzing and categorizing the failure
modes by looking at the actual compilation and run time er-
rors is likely to produce interesting insights, as well as feed-
back that can drive the construction of better fuzz operations.

We already mentioned in Section 3 that the large degree
of variation we witnessed among the scripting language re-
sults may be a result of those languages’ more experimental

nature. More interestingly, this variation also suggests that
comparative language fuzz testing of the type we performed
can also be used to objectively evaluate programming lan-
guage designs.

Probably the most significant outcome of our study is the
demonstration of the potential of comparative language fuzz
testing for evaluating programming language designs. While
this study only evaluated the sensitivity of program behav-
ior to typos, other higher-level types of fuzzing that simu-
late more complex programmer errors are certainly possible.
This opens the door into two broad research directions.

The first research direction involves the comparative eval-
uation of programming languages using objective criteria,
such as the response of code implementing the same func-
tionality in diverse languages to fuzzing. This is made signif-
icantly easier through the publication of tasks implemented
in numerous programming languages on the Rosetta Code
site. Our community should therefore expend effort to con-
tribute to the site’s wiki, increasing the trustworthiness and
diversity of the provided examples.

The second research strand involves the systematic study
of language design by using methods from the fields of re-
liability engineering and software testing. Again, fuzzing is
just one technique, others could be inspired from established
methods like hazard analysis, fault tree analysis, and test
coverage analysis.

Acknowledgments
We would like to thank Florents Tselai and Konstantinos
Stroggylos for significant help in the porting and implemen-
tation of the Rosetta Code tasks in our environment, the nu-
merous contributors of Rosetta Code for making their efforts
available to the public, and the paper’s reviewers for their
many insightful comments.

This research has been co-financed by the European
Union (European Social Fund — ESF) and Greek national
funds through the Operational Program “Education and Life-
long Learning” of the National Strategic Reference Frame-
work (NSRF) — Research Funding Program: Thalis —

32

Athens University of Economics and Business — Software
Engineering Research Platform.

Code Availability The source code for the implemented
tasks, the fuzzer, the language-specific methods, and the
driver are maintained on GitHub, and are publicly avail-
able as open source software on https://github.com/

bkarak/fuzzer-plateau-2012.

References
[1] H. J. Boom and E. de Jong. A critical comparison of sev-

eral programming language implementations. Software: Prac-
tice and Experience, 10(6):435–473, 1980. doi: 10.1002/spe.
4380100605.

[2] M. Brader. Mariner I [once more]. The Risks Digest, 9(54),
Dec. 1989. URL http://catless.ncl.ac.uk/Risks/9.

54.html#subj1.1. Current August 6th, 2012.

[3] B. Daniel, D. Dig, K. Garcia, and D. Marinov. Automated test-
ing of refactoring engines. In Proceedings of the the 6th Joint
Meeting of the European Software Engineering Conference
and the ACM SIGSOFT Symposium on the Foundations of
Software Engineering, ESEC-FSE ’07, pages 185–194, New
York, NY, USA, 2007. ACM. doi: 10.1145/1287624.1287651.

[4] A. Endres. An analysis of errors and their causes in system
programs. SIGPLAN Notices, 10(6):327–336, Apr. 1975. doi:
10.1145/390016.808455. Proceedings of the International
Conference on Reliable Software.

[5] A. Feldthaus, T. Millstein, A. Møller, M. Schäfer, and F. Tip.
Tool-supported refactoring for JavaScript. In Proceedings of
the 2011 ACM International Conference on Object Oriented
Programming Systems Languages and Applications, OOP-
SLA ’11, pages 119–138, New York, NY, USA, 2011. ACM.
doi: 10.1145/2048066.2048078.

[6] R. A. Fisher. The logic of inductive inference. Journal of the
Royal Statistical Society Series A, 98:39–54, 1935.

[7] M. Fowler. Refactoring: Improving the Design of Existing
Code. Addison-Wesley, Boston, MA, 2000. With contribu-
tions by Kent Beck, John Brant, William Opdyke, and Don
Roberts.

[8] V. Ganesh, T. Leek, and M. Rinard. Taint-based directed
whitebox fuzzing. In Proceedings of the 31st International
Conference on Software Engineering, ICSE ’09, pages 474–
484, Washington, DC, USA, 2009. IEEE Computer Society.
doi: 10.1109/ICSE.2009.5070546.

[9] R. Gerlich, R. Gerlich, and T. Boll. Random testing: from the
classical approach to a global view and full test automation. In
Proceedings of the 2nd International Workshop on Random
Testing: Co-located with the 22nd IEEE/ACM International
Conference on Automated Software Engineering (ASE 2007),
RT ’07, pages 30–37, New York, NY, USA, 2007. ACM. doi:
10.1145/1292414.1292424.

[10] P. Godefroid. Random testing for security: blackbox vs.
whitebox fuzzing. In Proceedings of the 2nd International
Workshop on Random Testing: Co-located with the 22nd
IEEE/ACM International Conference on Automated Software
Engineering (ASE 2007), RT ’07, pages 1–1, New York, NY,
USA, 2007. ACM. doi: 10.1145/1292414.1292416.

[11] P. Godefroid, A. Kiezun, and M. Y. Levin. Grammar-based
whitebox fuzzing. In Proceedings of the 2008 ACM SIGPLAN
Conference on Programming Language Design and Imple-
mentation, PLDI ’08, pages 206–215, New York, NY, USA,
2008. ACM. doi: 10.1145/1375581.1375607.

[12] D. Hamlet. When only random testing will do. In Proceedings
of the 1st International Workshop on Random Testing, RT
’06, pages 1–9, New York, NY, USA, 2006. ACM. doi:
10.1145/1145735.1145737.

[13] S. Hanenberg. Faith, hope, and love: an essay on software
science’s neglect of human factors. In OOPSLA ’10: Pro-
ceedings of the ACM International Conference on Object
Oriented Programming Systems Languages and Applications,
New York, NY, USA, 2010. ACM. ISBN 978-1-4503-0203-6.
doi: http://doi.acm.org/10.1145/1869459.1869536.

[14] D. Hofstadter. Godel, Escher, Bach: An Eternal Golden Braid,
page 137. Vintage Books, 1989.

[15] Y. Jia and M. Harman. An analysis and survey of the devel-
opment of mutation testing. IEEE Transactions on Software
Engineering, (99), 2010.

[16] B. W. Kernighan. Why Pascal is not my favorite programming
language. Computer Science Technical Report 100, Bell Lab-
oratories, Murray Hill, NJ, July 1981.

[17] R. S. King. The top 10 programming languages. IEEE
Spectrum, 48(10):84, Oct. 2011. doi: 10.1109/MSPEC.2011.
6027266.

[18] S. Kleinschmager, S. Hanenberg, R. Robbes, É. Tanter, and
A. Stefik. Do static type systems improve the maintainability
of software systems? An empirical study. In Proceedings
of the International Conference on Program Comprehension,
pages 153–162, 2012. doi: 10.1109/ICPC.2012.6240483.

[19] D. Knuth. Man or boy? Algol Bulletin, 17:7, July 1964. URL
http://archive.computerhistory.org/resources/

text/algol/algol_bulletin/A17/P24.HTM. Current
August 7th, 2012.

[20] D. E. Knuth. The errors of TeX. Software: Practice and
Experience, 19(7):607–687, July 1989.

[21] I. Koren and C. M. Krishna. Fault-Tolerant Systems. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 2007.

[22] B. S. Lerner, M. Flower, D. Grossman, and C. Chambers.
Searching for type-error messages. SIGPLAN Notices, 42(6):
425–434, June 2007. doi: 10.1145/1273442.1250783. Pro-
ceedings of the 2007 ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation.

[23] M. R. Lyu. Software Fault Tolerance. John Wiley & Sons,
Inc., New York, NY, USA, 1995.

[24] B. P. Miller, L. Fredriksen, and B. So. An empirical study of
the reliability of UNIX utilities. Communications of the ACM,
33(12):32–44, Dec. 1990.

[25] P. G. Neumann. Computer Related Risks, chapter 2.2.2 Other
Space-Program Problems; DO I=1.10 bug in Mercury Soft-
ware, page 27. Addison-Wesley, Reading, MA, 1995.

[26] T. J. Ostrand and E. J. Weyuker. Collecting and categorizing
software error data in an industrial environment. Journal of

33

Systems and Software, 4(4):289–300, 1984. doi: 10.1016/
0164-1212(84)90028-1.

[27] B. C. Pierce. Types and Programming Languages. MIT Press,
2002.

[28] L. Prechelt. An empirical comparison of seven programming
languages. Computer, 33(10):23–29, Oct. 2000. doi: 10.1109/
2.876288.

[29] R. Ramler and K. Wolfmaier. Economic perspectives in test
automation: balancing automated and manual testing with op-
portunity cost. In Proceedings of the 2006 International Work-
shop on Automation of Software Test, AST ’06, pages 85–91,
New York, NY, USA, 2006. ACM. doi: 10.1145/1138929.
1138946.

[30] R. J. Rubey, R. C. Wick, W. J. Stoner, and L. Bentley.
Comparative evaluation of PL/I. Technical report, Logicon
Inc, April 1968. URL http://oai.dtic.mil/oai/oai?

verb=getRecord&metadataPrefix=html&identifier=

AD0669096.

[31] M. Schäfer. Refactoring tools for dynamic languages. In
Proceedings of the Fifth Workshop on Refactoring Tools, WRT
’12, pages 59–62, New York, NY, USA, 2012. ACM. doi:
10.1145/2328876.2328885.

[32] A. Stuchlik and S. Hanenberg. Static vs. dynamic type sys-
tems: an empirical study about the relationship between type
casts and development time. In Proceedings of the 7th Sym-
posium on Dynamic Languages, DLS ’11, pages 97–106, New
York, NY, USA, 2011. ACM. ISBN 978-1-4503-0939-4. doi:
10.1145/2047849.2047861.

[33] A. Takanen, J. DeMott, and C. Miller. Fuzzing for Software
Security Testing and Quality Assurance. Artech House, Inc.,
Norwood, MA, USA, 1 edition, 2008.

[34] T. Wang, T. Wei, G. Gu, and W. Zou. Checksum-aware
fuzzing combined with dynamic taint analysis and symbolic
execution. ACM Transactions of Information Systems Secu-
rity, 14(2):15:1–15:28, Sept. 2011. doi: 10.1145/2019599.
2019600.

[35] J. Zhao, Y. Wen, and G. Zhao. H-fuzzing: a new heuristic
method for fuzzing data generation. In Proceedings of the
8th IFIP International Conference on Network and Parallel
Computing, NPC’11, pages 32–43, Berlin, Heidelberg, 2011.
Springer-Verlag.

34

