
Open Source Licensing across Package
Dependencies

Maria Kechagia, Diomidis Spinellis and Stephanos Androutsellis-Theotokis

Department of Management Science and Technology

Athens University of Economics and Business

Athens, Greece GR-104 34

Email: mkehagia@dmst.aueb.gr, {dds, stheotok}@aueb.gr

Abstract—Licensing dependencies among open source software
(oss) packages reveal a lot about software compatibility relation-
ships and the practicalities of oss licensing. There is, however,
limited information on these in the literature. In this paper,
we discuss various aspects of oss licensing, and we present an
empirical study on FreeBSD ports collections concerning their
licensing dependencies, in an attempt to identify specific patterns.
Our results highlight different types of dependencies, that could
be used to explain, or even guide the license selection process of
oss projects.

Keywords-oss; licenses; dependencies; FreeBSD ports

I. INTRODUCTION

Open source software (OSS), can be freely used, modified,

and distributed, provided certain restrictions are observed

regarding its copyright and the protection of its status as OSS.

These rights and restrictions are expressed through the soft-

ware’s license, i.e. a contract between the software owner(s)

(the licensors) and its prospective users (the licensees). OSS

licenses come in different flavors, but in general they make

available the software source code and they permit the creation

of derivative works as well as (usually) the non-exclusive com-

mercial exploitation of both the original and the derivatives

[1].

The objective of the work we describe in this paper is to

gather empirical evidence regarding the effect of OSS licenses

on the way the software is actually used. We work on the

FreeBSD ports collection; a set of more than 20,000 software

packages distributed in source and binary form together with

the FreeBSD operating system. Many packages use facilities

provided by others, thus forming an intricate web of compile

and run–time dependencies. By examining the relationship

between these over 70,000 dependencies and the licenses

under which the corresponding packages are distributed we

can see whether some common usage patterns are associated

with specific licenses. Specifically, we aim to answer the

following two research questions.

1) Are some license types particularly conductive to reuse?

2) Do the licenses across dependencies follow an order

associated with the permissiveness of each license?

Results could explain or even guide the selection of a particular

OSS license.

II. CONCEPTS AND DEFINITIONS

Before discussing the different types of OSS licenses, we

briefly introduce the background concepts delineating the

degrees of freedom available while distributing the product

of any intellectual activity, including software.

A. Intellectual property, copyrights and patents

The term intellectual property is used to encompass a wide

range of areas of law, including copyrights, patents and even

trademarks [2]. These are all means used to encourage private

investment in research, technology and innovation, by ensuring

that innovators will be able to get private returns for their work.

Since inventions, and software code, can be copied and

reproduced, it is argued that patent or copyright protection

is necessary. However the free software community expresses

considerable concerns about the use of such protection in

software, claiming that the software community and society

in general benefit less from this restrictive approach, relative

to having the knowledge that the innovators have created free

and available to all [3].

B. Public domain

At the other end of the spectrum, by labeling software as

Public Domain, its owner declares that there is no copyright

protection and no distribution or licensing restrictions. Anyone

is free to copy, modify, distribute or sell the software, without

any permission being required [4], [5].

There is a major misconception equating OSS with public

domain [6]. However OSS is not public domain software. It is

copyrighted and distributed under a license, just a license that

gives the users more rights than they are typically used to.

C. Open source and copyleft

Open source lies in between allowing a software work to fall

completely in the public domain (thus relinquishing any notion

of ownership), and protecting it under copyright or patent law.

All open source software licenses share two characteristics:

They waive the right to earn license fees from distributing the

software, and they incorporate the condition that the source

code will be made available to licensees.

Copyleft (a play on the word copyright) is a form of open

source licensing that grants the right to reproduce, adapt or

distribute software, however imposes the restriction that any

2010 14th Panhellenic Conference on Informatics

978-0-7695-4172-3/10 $26.00 © 2010 IEEE

DOI 10.1109/PCI.2010.28

27

derivative work will be released under the same license. In

this way the software and the freedoms applied to it become

inseparable [2]. Copyleft licenses are therefore a subset of all

OSS licenses. They are further distinguished according to how

restrictive they are, and often labeled as strong copyleft, weak

copyleft (as opposed to the non-copyleft ones).

There are two main movements that promote OSS and

certify licenses as free and/or open source software: The Free

Software Foundation (FSF)1 and the Open Source Initiative

(OSI)2.

III. LICENSES

Figure 1 summarizes the main OSS licence categories, their

relationship to other software license types, their main features

and some representative examples that will be discussed below

in more detail.

A. The GPL and copyleft licensing

The GNU General Public License (GPL) was created in

the mid 1980s by Richard Stallman for the GNU Project

distribution from the Free Software Foundation [2], and its

terms provided much of the foundation for free software

development. A key feature of this license which contributed

to its widespread adoption, is the licenses “viral” nature, as it

enforces the source code of any derivative work from a GPL-

licensed software to also be released under the GPL.

B. The lesser-GPL and other weak copyleft licenses

1) The LGPL license: The GNU Lesser General Public

License (LGPL) also known as the Library GPL, is a derivative

of the GPL proposed by the FSF, intended for use mainly

with software libraries. Its main differentiator from the GPL is

that an LGPL licensed program or library can be incorporated

within a proprietary program, or more generally one that is

not licensed under the LGPL.

2) The MPL license: In 1998 Netscape proposed a beta

version of the Netscape Public License (NPL) for public

comment. Based on feedback received they refined it into a

second license, the Mozilla Public License (MPL). Similar to

the LGPL, the MPL allows the creation of larger, derivative

work, including proprietary code that is not required to be

published. Still, any changes to the original source code must

be made available to the community [12].

3) The Artistic license: The Artistic License (AL) was

created by Larry Wall in 1991 for Perl, as he felt that the

terms of the GPL (under which Perl was released until then)

were too restrictive. The goal of the AL was to allow Perl to be

used in commercial packages [12]. The AL is very similar to

the GPL, but being a weak copyleft license it doesn’t require

distributing derivative works under the same terms [13]. It

basically allows the programmer to do anything they want

as long as the changes are published and described in the

source code, or all executables are renamed and the differences

1http://www.fsf.org/. Note: All web URLs in this paper last accessed in
June ’10.

2http://www.opensource.org/

are documented, thus allowing the original author to maintain

artistic control [12].

4) Other weak copyleft licenses: Various other licenses

have been proposed that embrace the weak copyleft ap-

proach, including the Sun Industry Standards Source License

(SISSL)3, the Sun Public License (SPL)4, as well as the IBM

Common Public License (CPL)5 and its derivative Eclipse

Public License (EPL)6.

C. The BSD and other non-copyleft licenses

1) The BSD license: The Berkeley Software Distribution

(BSD) license was originally used for the release of signifi-

cant portions of a Unix implementation by the University of

California. Since then, a fair amount of open source software

was distributed under this license.

The BSD license allows covering derivative works under

different terms or licenses, as long as the necessary credit

is given to the original work. Being one of the main non-

copyleft licenses, it essentially imposes no requirements on

developers working with source code released under a BSD

license. Any modifications can be made and redistributed in

any manner they choose. And, as opposed to weak copyright

licenses, there are no incentives or requirements to contribute

the modifications back to the community [12]. It does however

require that any acknowledgments of previous contributor’s

work are retained [14]. Finally the BSD license also includes a

no-endorsement clause saying that the names of the originators

and contributors cannot be used to endorse products derived

from the source code [12].

2) The Apache license: The Apache License, a derivative

of the BSD and similar to the MIT/X11, was proposed by the

Apache Software Foundation (v2.0 written in 2004). It makes

clear that the licensing of derivative works under other licenses

is permitted so long as the terms of the Apache License v2.0

are complied with (this is implied but not specifically spelled

out in the MIT and BSD Licenses).

3) The MIT/X11 license: Another non-copyleft license, the

MIT/X11 actually predates the BSD (it was written in 1987

for the X Windows System source code). The two licenses are

very similar (one difference being that the MIT/X11 does not

include the no-endorsement clause).

IV. FACTORS IN SELECTION OF APPROPRIATE LICENSE

Various considerations will affect the decision over what

license to apply to an OSS project or program.

First of all, it is generally advised to go with one of the

existing and empirically tried licenses, rather than draft a

new one [12]. Using a well-known and trusted license will

give the users confidence and clarity regarding what uses

of the software are allowed. On the contrary, an obscure,

overly complicated and rarely used license will probably create

confusion and ambiguity. And constructing a license from

3http://www.opensource.org/licenses/sisslpl.php
4http://java.sun.com/spl.html
5http://www.ibm.com/developerworks/library/os-cpl.html
6http://www.eclipse.org/legal/epl-v10.html

28

��
��

���
�	

�
�	�

��

	��

��
���

��
��

��
�
�

��
��

��
�	�

��	
���

��

��

�

��
���

��
�

��
���

��
��

��

�

��
���

��
��

���
���

	��
��

�

�
���

�	�
��

��
��

���
��

�
��

���
��

���
	��

�

���
���

���
�	�

�
��

��
���

	��
���

��
��

��������������������

��������

��	
��
������

�
��

�����������

�
��

��
�

�	
�	

�

	�

�
���
���	��
��	������
	�

�	����
���	��

�
���	��
��	�������
	�

��������
	
��
���
����������
�����

	��������������������������� !�
"����#����$���������"�������!
�
�����������������!
�������%��	��!

�	�&������������$���'!
(�������������'�#������)#�)�!

�����

�
��

��
��

��
��

�

�	

�

� �(*�����#���������������������)������������+� ����������������,���������'���������������������������

 �
���

���
���

��
��

��
��

���
��

��

!"��
�����	����

�������)������������)!
���-���������������������!

�+.��

��	�!"��
�����	����
#������$

��� ��� ��� ��� ��� ���

������������������

��� ��� ��� ��� ��� ���

��� ���

���

�� �� ��

��

��

����

��

�� �� ��

����

����

��

��

��� ��� ��� ��� ���

�	

�	

�	

�	

��� ��� ���

Fig. 1. A categorisation of the OSS licenses with respect to other software license types, their main properties, and some characteristic examples. Based on
material from [7], [8], [4], [9], [10], [11].

scratch, requires a lot of experience and knowledge of legal

matters, so it is not advised except for special cases.

Furthermore, in various cases the choice of license may

be limited by pre-existing software used in the project, and

its own licensing scheme. For example if pre-existing BSD-

licensed software is used, the project team has the freedom

to select any license, provided they respect any requirements

regarding notifications, disclaimers etc. But if GPL-licensed

software is used, then the only option would be to use the

GPL for the resulting project as well.

Provided there is freedom of choice, the most important

factor is the permissiveness of the license, i.e. to what extent

it allows re-using derivative work to be licensed under other

schemes [1].

Other factors to be concerned include specific project char-

acteristics (e.g. topic, natural language, environment and op-

erating system, development stage) [9], as well as developers’

motivations and community’s needs [10].

• Topic and audience. It is argued that software aimed

at developers, system administrators, or more generally

technically proficient audiences, as well as projects on

topics that target sophisticated peers, are more likely to

be licensed under permissive licenses (e.g. BSD, MIT,

Apache, etc.). The reasons include the strong community

appeal of such software, as well as the fact that devel-

opers involved in these projects are often motivated by

career enhancement opportunities, and will therefore be

favorable to licenses that will allow them to demonstrated

their skills to sophisticated audiences.

• Environment and operating system. Projects based on

more commercial platforms and operating systems are

likely to employ less restrictive licenses.

• Industrial involvement. If companies have a significant

involvement in the project, then they are likely to be

reluctant to adopt a strong copyleft license.

• Commercialization goals. If the option of including the

project’s software in some commercial project is consid-

ered, then a non-GPL license that will permit this will be

required.

• Protection from copying. If a project feels that it needs

to protect its code from other groups that may copy it

and utilize it in their own products, then a license that

would prevent this, or at least require that they return to

the community their changes, would be preferable.

• Attitude. The degree of restrictiveness of the license of

choice will depend on whether the developers and project

communities believe in the right to redistribute one’s

work under licenses of their choice.

• Motivation. Various studies (including [10] analyze the-

oretically and empirically how the developers’ possible

intrinsic and extrinsic motivations (e.g. the problem solv-

ing challenge, recognition by peers, monetary incentives

and future employment) may affect their choice of li-

cense for their software. It is generally found that more

permissively licensed projects attract more highly skilled

programmers who may want to maintain intellectual

rights for their work, or simply for ego gratification, and

stimulate more contributions. More restrictively licensed

projects, on the other hand, ensure access to everyone’s

contributions and are favored by communities with less

free-riding [11].

V. CONCERNS AND RISKS OF OSS LICENSES

Various concerns have been voiced regarding the adoption

of different OSS licensing schemes.

A concern regarding the use of licenses that allow the com-

bination of open source and proprietary software is that they

effectively undermine the concepts which the OSS movement

advocates [15]. Furthermore, it allows a competitor of a non-

copyleft licensed project to take the source code and build a

proprietary, non open source product (e.g. Apple’s Mac OS X

and FreeBSD) [11].

29

Combining OSS released under different licenses also re-

quires attention to compatibility issues [13], [16]. As a general

rule, OSS released under different licenses can be combined

to yield an outcome under a license at least as restrictive

as the two original ones. However there are exceptions to

this rule, and the particularities of each license need to be

carefully taken into account. For example software under the

MPL license cannot be redistributed under licenses that impose

restrictions not present in MPL. As a result, MPL software is,

in principle, incompatible with GPL. However even in this

case, a provision exists in the MPL license that allows a

program or parts of it to offer a choice of another license

as well7, thus partially overcoming this restriction.
Unlike proprietary software, projects under OSS licenses are,

to different degrees, also unprotected from forking danger [1].

The GPL license reduces the danger of forking by enforcing

that the derivative work will remain under the GPL. But under

other licenses, and mainly non-copyleft ones (such as BSD

and Apache), the community is unprotected from developers

forking off and continuing with non-OSS development. To an

extent the community relies on the reputation of the developers

to avoid forking, as well as on other measures.
Commercial software development firms may feel that there

is a risk involved in incorporating OSS code in their products,

due to the lack of clarity in some definitions [17], [16], [4].

For this reason, many corporate licenses (e.g. MPL, CPL,

EPL, etc.) have been created [14]. As discussed above, some

OSS licenses only allow the reuse of software if the derived

work is also under the same license (most notably GPL). But

the definition of derived work may not be clear enough to

dictate how the original OSS could be used. For example it

has been suggested by some that if a GPL-licensed program

is dynamically linked to a proprietary library (or vice-versa),

the result would not need to be licensed under the GPL, as

the two programs retain distinct existences. However the FSF

does not accept this position, and argued that in such cases the

LGPL should be used instead of GPL [4]. Possible strategies

around this may include clearly separating, at the architectural

level, the pieces of the resulting software product that rely on

OSS code from other parts, and license the former as OSS and

the latter as proprietary [18], [19].
In any event, the use of legal advise would be recom-

mended [17], or alternatively “packaging companies” could

be employed to serve as intermediaries between the OSS

community and the proprietary software house and undertake

various technical responsibilities, as well as legal, licensing

and intellectual-property rights (IPR) issues. [19]. Alterna-

tively, permission may be explicitly requested from the OSS

project owners to include parts of the code within a proprietary

product [18].

VI. METHOD AND TOOLS

FreeBSD [20] is a sophisticated operating system available

for a number of modern architectures. It is a complete operat-

ing system (rather than just a kernel, like Linux) derived from

7http://www.gnu.org/licenses/license-list.html#GPLIncompatibleLicenses

BSD Unix, the version of Unix developed at the University

of California, Berkeley. FreeBSD, known for its stability and

reliability, runs the servers of large portals like Yahoo and

hosting providers like the Host Department; parts of it also

form the basis for Apple’s Mac OS X. A strength of FreeBSD

is its ports collection: third party applications ported to install

and run under FreeBSD in an easy and seamless manner.

Our research is based on an April 2nd 2010 snapshot of the

FreeBSD ports. This contains 21,458 ports organized into 64

categories, starting from accessibility applications and ending

in X11 window managers.

Where possible, the FreeBSD ports are designed so that

one can install them by compiling their (suitably patched)

source code. This allowed us to download the ports’ archives

(48GB) and unpack them into a 173GB fully searchable source

code tree. Many ports use libraries, tools, or data provided

by other ports (see example in Figure 2). The Makefile
associated with each FreeBSD port defines these build or run–

time dependencies, so that the port management commands

can install all the infrastructure required for a port to run. By

executing a special Makefile target for each port we gathered

a set of 71,872 port dependencies. We were then able to use

the GraphViz gvpr tool [21] to find the transitive closure of

all dependencies leading to a given port and thereby obtain a

measure of its reuse.

In contrast to the tracking of port dependencies, the license

associated with each port is not marked in the FreeBSD ports

system in a dependable way. Given the legal ramifications

of ascertaining the license of a third party application and

thereby inferring detailed restrictions on its use this lack is

understandable. We therefore used two methods to find each

port’s software license. The first method involved finding the

most popular OSS licenses, according to the ranking of the

sourceforge.net portal. We then went through their text, and

located a key phrase that uniquely identified that license.

With those signature phrases at hand we could search all

the files of a port using fgrep, which relies on the extremely

efficient Boyer-Moore-Gosper algorithm [22], for instances of

that phrase. Our second method involved using the ohloh8

project’s ohcount tool to determine the license associated with

each port’s file. Under both methods we sorted the results by

the licenses identified and assummed that the the port’s license

was the one associated with the largest number of files.

VII. RESULTS

Out of a total of 21,458 packages our method identified the

license of 12,899. We used ohloh’s tool to verify our results

and found the two tools to agree in 83% of the cases. We

kept the results of our method rather than those of the ohloh’s

tool, because our method could identify the license in a higher

proportion of the packages (62%) than that identified by the

ohloh tool (56%). The license distribution as identified by our

method, ohloh’s tool, and the sourceforge.net reports appears

8www.ohloh.net

30

��

�������

���	
 �	�
����

������

����
���

� ���

�������� ��������
��

�������	
���	����������

�������

�����

� ���

���!""

���!
�������� ���!� � ��

���!
����#���

���

���!���

���!��� ���	����	��
� ��

 ���!
����� ���!���� ����!� ���

���!������

���� ��
����	�
��	�����

 ������!
�

��
������

����	
����	��������

���! ����!��
�

����
� �������

������������� � � �������

��������� ���������

����������#������ ����� � ������ ��������

�����������

��������

���
��
��

���� �

�
�	����
���	����

������� �	���
���	��	��

���	���
	�������

���	���
	������

�������� �	�����

���$%

����&'

��� ��

���!�

����

�����(����

�������
�

����	����

��
������

��
����
 ��

���
�����

���
��

����)��

Fig. 2. Run-time dependencies of the Mozilla Firefox web browser.

0%

10%

20%

30%

40%

50%

60%

70%

80%

GPL LGPL BSD MIT Artistic MPL CPL

fgrep FreeBSD
ohloh FreeBSD
Sourceforge.net

Fig. 3. Distribution of open source licenses.

TABLE I
AVERAGE TRANSITIVE NUMBER OF AFFERENT DEPENDENCIES

ACCORDING TO A PORT’S LICENSE.

License Dependencies
MIT 249
GPL 108
LGPL 101
(Overall average) 66
BSD / Apache 25
Artistic 7
Apache v2 3

to be roughly similar (see Figure 3), which further validates

our method.

A. License Types and Reuse

We looked at the average number of a port’s total number of

afferent transitive dependencies in each set of ports distributed

under a given license. The results of the most commonly

used licenses appear in Table II. Contrary to our expectations,

ports distributed under the GPL license, which imposes more

restrictions on the way the software can be used, are used

by more ports than those distributed under the LGPL license,

which is explicitly used to encourage reuse, or the BSD

license, which imposes minimal restrictions.

TABLE II
NUMBER OF RELATIONSHIPS BETWEEN PACKAGES ACCORDING TO THEIR

LICENSE.

Main port Reused port Dependencies
GPL GPL 18596
GPL LGPL 10612
GPL BSD / Apache 2704
LGPL GPL 2703
LGPL LGPL 2150
BSD / Apache GPL 1805
BSD / Apache BSD / Apache 1166
GPL MIT 1093
LGPL BSD / Apache 639
BSD / Apache LGPL 600
MIT GPL 482

B. Licenses across Dependencies

The second question we aimed to answer was whether

licenses across dependencies follow an order associated with

the permissiveness of each license. Here the results fit more

what one would expect. GPL and LGPL–licensed projects use

other projects based on the permissiveness of their licenses.

On the other hand, BSD-licensed projects appear to be in an

uneasy relationship with others, with no clear preference to

licenses according to their permissiveness.

VIII. RELATED WORK

To our best knowledge, the number of empirical studies

concerning licensing dependencies is limited. Two papers are

most closely related to our work.

In the first one, German [23] introduced the question of

how licenses affect the development of dependency graphs.

Dependency graphs are a way to depict relationships among

different entities. Thus, they are very useful for studies,

like German’s and ours, to specify dependencies among a

distribution’s packages, and study the licensing ones, in depth.

In the second one, German et al. [24] present a method for

license identification, based on sentence-matching, similar to

ours, and implement a corresponding tool. Such tools are vital

for analysing licenses, and a number of projects, like OSLC9,

ASLA10, and FOSSology11, are currently providing some of

them.

9http://sourceforge.net/projects/oslc/
10http://mac.softpedia.com/get/Utilities/ASLA.shtml
11http://fossology.org/

31

IX. CONCLUSION

The license types associated with the nodes joined by

each edge of a software package dependency graph reveal

a lot about the practicalities of OSS licensing. Although at

a simple aggregate view a license’s popularity dominates the

relationships between packages, by pairing licenses together

we found that dependencies exploit, follow, or avoid licenses

according to their intended use. Specifically, GPL-licensed

applications do indeed use LGPL-licensed components, and

BSD-licensed packages are more a target than a source of

dependencies.
Based on our results, it seems that a license’s popularity

should be highlighted in the list of factors affecting OSS

licensing selection. Developers should pay attention to the fact

that the more popular the license of their project is, the more

dependencies it can develop to other licenses and projects, no

matter how permissive the license is by itself. Additionally, the

permissiveness of a license affects the preferences of a license

towards others. Taking into account this factor, developers

can forecast which and how many licenses and projects their

project can be linked with. Thus, our research recommends

the examination of both popularity and permissiveness of an

OSS license.
Our simple study opens more questions than it answers.

A more detailed analysis should factor each license’s popu-

larity when looking at the frequency of license pairs across

dependencies. Improving the effectiveness and accuracy of

our license detection method could allow us to determine the

effective license of each application based on the licenses of

its components, and also to examine the use of incompatible

licenses. A more intriguing possibility worth studying is

whether protective licenses, like GPL, and permissive licenses,

like BSD, form closed ecosystems where dependencies among

protective and permissive licenses are explicitly avoided.

ACKNOWLEDGMENT

The authors would like to thank Georgios Gousios for

assisting us with the required computational infrastructure.

REFERENCES

[1] A. M. S. Laurent, Understanding Open Source and Free Software
Licensing. Cambridge, Massachusetts: O’Reilly, 2004.

[2] J. Gay, Ed., Free software, Free society: Selected Essays of Richard
M. Stallman. Boston: GNU Press, Free Software Foundation, 2002.
[Online]. Available: http://www.gnu.org/philosophy/fsfs/rms-essays.pdf

[3] D. Harhoff, J. Henkel, and E. von Hippel, “Profiting from voluntary
information spillovers: how users benefit by freely revealing their
innovations,” Research Policy, vol. 32, no. 10, pp. 1753–1769, Dec.
2003.

[4] B. W. Carver, “Share and share alike: understanding and enforcing open
source and free software licenses,” Berkely Technology Law Journal,
vol. 20, no. 1, pp. 443–481, 2005.

[5] L. Lawrence, Free Culture: How Big Media Uses Technology and the
Law to Lock Down Culture and Control Creativity. New York: Penguin
Group (USA) Inc., 2004.

[6] C. DiBona, S. Ockman, and M. Stone, Open Sources: Voices from the
Open Source Revolution. O’Reilly, 1999.

[7] D. Spiller and T. Wichmann, “FLOSS final report part 3. FLOSS
free/libre open source software: survey and study. Basics of
open source software markets and business models,” Berlecon
Research, Tech. Rep. IST-2000-4.1.1, Jul. 2002. [Online]. Available:
http://www.berlecon.de/research/en/reports.php?we objectID=70

[8] D. A. Wheeler, “The free-libre/open source software (floss) license
slide,” Sep. 2007. [Online]. Available: http://www.dwheeler.com/essays/
floss-license-slide.pdf

[9] J. Lerner and J. Tirole, “The scope of open source licensing,” The
Journal of Law, Economics and Organization, vol. 21, no. 1, pp. 20–56,
2005.

[10] R. Sen, C. Subramaniam, and M. L. Nelson, “Determinants of the choice
of open source software license,” Journal of Management Information
Systems, vol. 25, no. 3, pp. 207–239, 2009.

[11] A. Engelfriet, “Choosing an open source license,” IEEE Softw., vol. 27,
no. 1, pp. 48–49, Jan/Feb 2010.

[12] R. Goldman and R. P. Gabriel, Innovation Happens Elsewhere: Open
Source as a Business Strategy. San Francisco: Morgan Kaufmann,
Elsevier, Apr. 2005.

[13] M.-W. Wu and Y.-D. Lin, “Open source software development: an
overview,” IEEE Computer, vol. 34, no. 6, pp. 33–38, Jun. 2001.

[14] B. Fitzgerald, “The transformation of open source software,” MIS
Quarterly, vol. 30, no. 3, pp. 587–598, Sep. 2006.

[15] B. Kogut and A. Metiu, “Open-source software development and dis-
tributed innovation,” Oxford Review of Economic Policy, vol. 17, no. 2,
pp. 248–264, 2001.

[16] T. R. Madanmohan and R. De’, “Open source reuse in commercial
firms,” IEEE Softw., vol. 21, no. 6, pp. 62–69, Nov/Dec 2004.

[17] A. W. Brown and G. Booch, “Reusing open source software and
practices: The impact of open source on commercial vendors,” in
Software Reuse: Methods, Techniques, and Tools : 7th International
Conference, ICSR-7, Austin, TX, ser. Lecture Notes in Computer Science,
C. Gacek, Ed. Springer, 2002, no. 2319/2002, pp. 123–136.

[18] F. Hecker, “Setting up shop: the business of open-source software,” IEEE
Softw., vol. 16, no. 1, pp. 45–51, Jan/Feb 1999.

[19] M. Ruffin and C. Ebert, “Using open source software in product
development: a primer,” IEEE Softw., vol. 21, no. 1, pp. 82–86, 2004.

[20] M. K. McKusick and G. V. Neville-Neil, The Design and Implementation
of the FreeBSD Operating System. Reading, MA: Addison-Wesley,
2004.

[21] E. R. Gansner and S. C. North, “An open graph visualization system and
its applications to software engineering,” Softw. Pract. Exper., vol. 30,
no. 11, pp. 1203–1233, 2000.

[22] R. S. Boyer and J. S. Moore, “A fast string searching algorithm,”
Commun. ACM, vol. 20, no. 10, pp. 262–272, Oct. 1977.

[23] D. M. German, “Using software distributions to understand the rela-
tionship among free and open source software projects,” in MSR’07:
Proceedings of the Fourth International Workshop on Mining Software
Repositories. Washington, DC, USA: IEEE Computer Society, 2007,
p. 24.

[24] D. M. German, Y. Manabe, and K. Inoue, “A sentence-matching
method for automatic license identification of source code files,” 2010,
accepted for publication at Automated Software Engineering. [Online].
Available: http://turingmachine.org/∼dmg/papers/dmg2010ninka.pdf

32

