
Cyberdiversity: Measures and Initial Results

Konstantinos Kravvaritis
Department of Informatics

Athens University of Economics and
Business

Athens, Greece
kravaritisk@aueb.gr

Dimitris Mitropoulos
Department of Management Science

and Technology
Athens University of Economics and

Business
Athens, Greece

dimitro@aueb.gr

Diomidis Spinellis
Department of Management Science

and Technology
Athens University of Economics and

Business
Athens, Greece
dds@aueb.gr

Abstract— Cyberdiversity is a concept borrowed from biology
and refers to the introduction of diversity into the different levels
of a computer. This kind of diversity is used to avert attacks that
can threat a large number of systems that share common
characteristics and as a result common vulnerabilities. Currently,
there are many methods that introduce cyberdiversity into
systems but there is no attempt to measure the existing
cyberdiversity. In this paper we introduce a novel approach that
measures the existing diversity in software. To accomplish that,
we specify three different metrics. The concept of our approach is
to collect specific information and then process it in order to find
distinct similarities or differences within software. To test our
approach, we implemented a system, based on the client-server
architecture.

Keywords- Diversity, monoculture,metrics,computer security

I. INTRODUCTION
Cyberdiversity has its roots in biology and specifically in

biodiversity. Nature has given humanity many lessons and
some of them can be applied in computer security. Nature
teaches us that the richest and most robust ecosystems are those
that are the most diverse, i.e. those that consist of a large
number of different species. When a disease infects a
biological system, its genetic diversity would have as an effect
the survival of a significant part of the infected population.
Respectively, cyberdiverse computer systems could prove to be
more resistant to potential attacks than systems that tend to
monoculture, which is the exact opposite of diversity [1].

Monocultures can be seen as a population that consists of
identical members that belong to the same organism. Even if
monocultures are very rare in nature, in cyberspace they seem
to flourish. A collection of identical computer platforms is
easier, therefore cheaper to manage, because, for example, they
will share the same configuration while maintaining minimum
user training costs. In addition, interoperability and
standardization is easier to be achieved and maintained in a
monoculture [2]. However, these advantages can become at the
same time disadvantages. In a monoculture, when a piece of
malware manage to intrude in one member of the monoculture,
in a similar way it can affect the rest of them because all share
the same vulnerabilities [1, 3].

Currently, there is a great controversy whether the benefits
of cyberdiversity could be overshadowed by its side-effects [1 -
8].

A. Problem Statement
Until now there are many ways proposed to introduce

cyberdiversity into computer systems but there is no attempt to
measure whether cyberdiversity exists in software or not. This
paper aims to measure the diversity that exists in the software
that is used today. Specifically we are planning to measure
software diversity at the realization level (i.e. at the level of
binary files). To accomplish that, we need to collect and
process a variety of computer data.

In more detail, our contribution includes:

 Deciding which data to collect.

 An implementation that collects the data.

 Specify and apply novel metrics to extract results.

B. Organization
A brief survey of the major schemes for the introduction of

cyberdiversity in computer systems is presented in Section 2.
The system that collects the data is presented in Section 3. In
Section 4, the metrics and the results of the measurements are
presented. Finally we state our conclusions in Section 5.

II. RELATED WORK
Several position papers that assess the value of

cyberdiversity have been lately published [1 - 8]. Also, there
are numerous papers that present various methods for the
automated introduction of cyberdiversity into source or binary
code. Such methods are known as synthetic diversity
techniques. In this paper, these methods are categorized in
those that modify the structure of a system and in those that
modify the behavior of a system, mostly through the
modification of the execution environment. Keromytis and
Prevelakis have also adopted a similar categorization [9]. In
addition, we present three software development architectures
that produce cyberdiverse software.

2010 14th Panhellenic Conference on Informatics

978-0-7695-4172-3/10 $26.00 © 2010 IEEE

DOI 10.1109/PCI.2010.43

135

A. Modifying the structure
The concept of biologically inspired diversity was reffered

for first time in a paper by Forrest et al. [10]. This paper
proposed several possible approaches to implement
cyberdiversity through randomized transformations. To
validate their approach, the authors modified the gcc compiler
and focused on the elimination of buffer overflow
vulnerabilities. Similar techniques include StackGuard [11],
MemGuard [11] and PointGuard [12].

Collberg, Thomborson and Low were the first that focused
on Java code obfuscation [13]. Wang et al. described
transformation techniques of binary code by transforming the
control and the data flow of a program [14]. Wroblewski
generalized the approaches of Collberg and Wang, by
presenting methods of controllable obfuscation [15]. Linn and
Debray approached obfuscation by focusing on the initial
disassembly phase and disrupting the static disassembly
process [16].

Bhatkar et al. proposed address obfuscation [17]. Address
obfuscation randomizes the absolute locations of all code and
data, as well as the distances between different data items. The
authors of the PaX project modified the Linux kernel to
randomize the base address of each program region [18].
However, a study of Shacham et al. shows that the insertion of
randomization at 32-bit address space is not effective [19].
Bhatkar et al. developed a new technique to avoid the
drawbacks of the above techniques [20]. In this paper, the
authors developed a new approach that supports randomization,
where the absolute locations of all objects, as well as their
relative distances are randomized. Bhatkar also proposed along
with Sekar the concept of data space randomization, where
randomization is inserted into the representation of data stored
in program memory [21].

B. Modifying the environment
Techniques that randomly modify the environment of a

system can hinder an attacker by increasing the complexity of
the attack. Among the components of the environment that can
be modified are the instruction set of a computer architecture
and the various parts of the operating system or the network
topology of a system.

Kc et al. proposed an instruction-set randomization (ISR)
technique for countering code injection attacks [22].
Instruction-set randomization creates an execution environment
that is unique to the running process, so that the attacker cannot
“communicate” with the computer. This technique can be also
applied to other contexts, such as SQL injection attacks [23].
Another similar technique is developed by Barrantes et al. [24].
Keromytis describes the limitations of the instruction-set
randomization approach and proposes future directions and
improvements [25]. However, [26] and [27] analyzed some
weaknesses that are faced by the above approaches. Chew and
Song have applied randomization techniques on system-call
mappings, global library entry points, and stack-frames [28].

O’Donnell and Sethu study algorithms for the assignment
of distinct software packages to individual systems in a
network, in order to increase the available diversity of the
system [29, 30]. In a similar study, Yang et al. consider

diversity towards increasing security of sensor networks
against worm attacks [31].

C. Cyberdiverse software development architectures
Apart from the single cyberdiversity introduction methods,

there are architectures that combine some of these methods to
produce complete frameworks that could be used for the
production of software.

Cox et al. proposed their framework, based on N-variant
systems [32]. Williams et al. developed a software toolchain
for the application dynamic cyberdiversity techniques. This
toolchain uses a virtual machine to apply diversity
transformations to binary files [33]. Just and Cornwell
developed and proposed another framework, described in [34].

III. DESIGN OF DATA COLLECTION SYSTEM
For the collection of the needed data, we developed a

system based on the client-server model. A client–side
application will run at users’ computers and send specific data
back to our server. This data is stored in a database that is used
during the measurements.

A. Type of the needed data
Our primary goal is to measure the diversity of software. So

we should find a way to compare different instances of the
same files. By different instances of the same files, we mean
different instances of a particular file (e.g. “foo.exe”) that
reside in different computers. For example, the file “foo.exe”
that resides in computer A and the file “foo.exe” that resides in
computer B are two different instances of the same file.

Cyberdiversity introduction techniques apply
transformations to software that lead to the production of files,
which have differences between them but share the same
functionality. Thus, the files that should be collected are the
binary files. Furthermore we should also collect the files that
have external dependencies with the binaries. These files are
the static and dynamic libraries. Specifically, for Windows our
client-side application collects executable and library files (.exe
and .dll), for Unix-like systems apart from the executable files,
it collects the static libraries (.a files) and the dynamic libraries
(.so files). Additionally, for the Mac OS X operating system we
also collect the mac-oriented library files (.dylib libraries).

Here, a specific problem arises. It is impossible to collect
and send back these files “as is”. In this case we would need
enormous storage space to store the files and excessive
bandwidth to send them back to the server. The solution is to
send back the MD5 hash of these files instead. Hence, no
useful information is lost because we want to examine if files
are exactly the same and not the degree of their similarity.
Given that the hash produced from the MD5 algorithm is
unique for each input with extremely high possibility, we can
make the desirable comparison.

B. Description of the system
Our client-side application runs only with the users

permission and it has three main tasks to complete. The first is
to collect information about the operating system of each

136

computer that it is running at. This information refers to the
version of the operating system. Secondly, it has to scan each
computer in order to collect the data, which will be used for the
extraction of our results. Its last task is to assure that they will
run only one time at every computer. This is necessary because
it ensures that the results will not be falsified. To accomplish
that, our client-side application retrieves a signature from each
computer. This signature is the machine SID for Windows and
the MAC address for Unix-like systems.

Figure 1. The architecture of the system

Our server-side scheme has also three tasks to accomplish.
Its first task is to notify the client-side applications if they have
already run at a computer in order not to run again. This is
achieved by comparing the signatures that are saved in server’s
database with the corresponding signature of each computer the
client-side applications are running at. Its second task is to
store the data that is collected from the client-side applications
to the server-side database. The final task of the scheme is to
calculate the similarity percentage of every computer with all
the computers that have already been visited by a client
application.

C. Facebook application
To collect as many data as possible, a Facebook application

was developed. This application consists of two parts: A web
application running through the Facebook website and
modified client-side applications that can connect with
Facebook servers and consequently with the web application.
Users can run the Facebook client-side application at their
computers and then they can visit the web application in order
to compare their results with their Facebook friends that have
also run the client at their computers.

IV. METRICS AND MEASUREMENTS
In this section, we present the metrics that we used to

measure our data and the results that were extracted from this
process.

A. Cyberdiversity metrics
Before the metric definitions, we will define what we mean

with the term “variant of a file”. Cyberdiversity introduction
techniques produce different variations of a given file but these
variations share exactly the same functionality. For example,
let’s assume that the correspondent executable file for a
program “foo” is “foo.exe”. If “foo.exe” is produced with the
use of cyberdiversity introduction techniques, different
variations of this file will be produced. These variations will
have internal differences between them but all of them will
share the same functionality under the same name (“foo.exe”).
We call these variations: “variants of a file”. We also defined
previously the term “instance of a file”.

The first metric calculates the probability of a successful
targeted attack, if the attack targets the most frequent variant of
a file. Hence we calculate the percentage of the computers that
are affected in the worst case, where the attack affects the most
frequent variant of a file. The smaller the probability, the more
cyberdiverse the file is and thus, the rate of the propagation of
the attack will be slower. This probability is calculated as
follows:

 ρ = ι / τ. (1)

Where ρ is the probability, ι stands for the number of instances
of the most frequent variant of a given file and τ represents the
total number of instances of that file.

The second metric is the ratio of the number of variants to
the total number of instances of all the variants of a file. This
ratio shows if a file has enough variants. This in turn, indicates
that this file is diverse. The bigger the ratio is for a file, the
more variants this file has and as a result more attacks are
needed to compromise all the instances of this file. The smaller
the ratio is for a file, the more instances are accumulated in
every variant of a file, thus the bigger will be the number of
instances that could be compromised by a single attack. This
ratio is calculated as follows:

 ratio = ν / τ. (2)

Where ν represents the number of the variants a given file has
and τ represents the total number of instances of that file.

The third metric is the coefficient of variation (CV) of the
variants of each file. CV is the ratio of the standard deviation to
the mean. In our case, CV shows how the instances of a file are
distributed amongst the variants of a file. If the CV is small
enough, this means that the instances are distributed uniformly.
In this case, the probability of a single attack that compromises
a large number of instances of a file is significant.

B. Measurements
The sample collected for our study consists of data

retrieved from 214 computers. 176 of these computers run
Windows as their operating system, 27 run Linux, 10 run Mac

137

Figure 2. Results based on the probability of a successful targeted attack for Windows (left) and Linux (right)

Figure 3. Results based on ratio of the number of variants to the total number of instances of all the variants of a file for Windows (left)

and Linux (right)

Figure 4. Results based on coefficient of variation for Windows (left) and Linux (right)

OS X and one runs FreeBSD. From these computers we
collected 205,221 files, which altogether have 1,309,834
instances. 111636 of these files have only one instance, hence
they can’t take part into the process of the results. For the
extraction of the results, we take into consideration only the
files that have 10 instances or more, in order to have more
accurate results. We present our results in Fig 2, 3 and 4. The
column of every diagram depicts the number of the processed
files while every row depends on the corresponding metric.

The results based on (1) are shown in Fig. 2. The diagrams
show that the probability for the biggest part (58% for
Windows and 55.7% for Linux) of the files is over 50% and for
a minimal part (3.7% for Windows and 0% for Linux) of the
files the possibility is under 20%. This shows that there is not
enough cyberdiversity. If cyberdiversity was sufficient, the
percentage of files with under 20% probability should be
bigger and there should be a little amount of files with over
50% probability. Even if there are differences between the
Windows-diagrams and the Linux-diagrams, the main

138

conclusion for both is that the diversity is not sufficient. The
most important difference is that there are fewer files with
exactly 100% probability in Linux. These files are not
cyberdiverse and thus there are more Windows files that have
no diversity.

In Fig. 3 the results based on (2) are presented. The
diagrams show that for the biggest part of the files the ratio is
small (under 0.3). This indicates that with a single attack a
malicious user could compromise a great number of instances
of a file. Here there is a distinct difference between Windows
and Linux. For Linux there is congestion in the range of 0.2 to
0.3 while for Windows there is congestion in the range of 0 to
0.1. This can be explained by the fact that there are fewer files
that have no diversity. However, this difference is not so
important and this does not change the general conclusion that
there cyberdiversity is not sufficient.

The results based on CV are shown in Fig. 4. Given that the
smaller the CV is, the more uniformly the instances are
distributed. Here we observe that most of the files aren’t
distributed uniformly and most of them are concentrated in the
biggest percentages. The concentration noticed in the first
column is almost exclusively the result of the fact that the files
that correspond in this column have no diversity and this
column should not be considered in the extraction of the results
because here we evaluate how uniform the diversity is and the
files that correspond to the first column have no diversity.
Finally, to emphasize the lack of diversion and its extend, we
have also included the files that have no diversity at all.

V. CONCLUSION AND FUTURE WORK
Cyberdiversity is and will continue to be an object of

interest of the security community. In this paper we do not aim
to answer whether cyberdiversity is useful or not. Our main
research contribution is to find if cyberdiversity exists and to
what extent.

The main result of this paper is that cyberdiversity exists
but exists in minimal extent. Also, its qualitative characteristics
are bad. We can also assume that this cyberdiversity does not
stem from cyberdiversity introduction techniques but its extent
may indicate that this is the result of other factors. For example
it can be the result of variations in the version of applications
that has as effect the existence of different files for the same
applications. Our measurements showed also that the lack of
cyberdiversity does not depend on the various operating
systems.

Future work on this study includes the collection of a larger
sample in order to have more reliable results. Furthermore, it is
important the sample to have a greater dispersion between the
operating systems. Additional, it will be very useful to define
more metrics that would put cyberdiversity on the map.

REFERENCES

[1] D. Geer. Monopoly considered harmful. IEEE Security & Privacy
Magazine, 1(6):14–16, December 2003.

[2] Birman, K. P. and Schneider, F. B. The Monoculture Risk Put into
Context. IEEE Security and Privacy 7, 1 (Jan. 2009): 14–17.

[3] D. Geer, R. Bace, P. Gutmann, P. Metzger, C. P. Pfleeger, J.
S.Quarterman, and B. Schneier. Cyberinsecurity: The cost of monopoly.
Tech report, CCIA, 2003.
http://www.ccianet.org/papers/cyberinsecurity.pdf.

[4] D. Aucsmith. Monocultures are hard to find in practice. IEEE Security &
Privacy Magazine, 1(6):15–16, December 2003.

[5] J. A. Whittaker. Monocultures are hard to find in practice. IEEE Security
& Privacy Magazine, 1(6):18–19, December 2003.

[6] M. Stamp. Risks of monoculture. Commun. ACM, 47(3):120, 2004.
[7] Parnas, D. L. 2007. Which is riskier: OS diversity or OS monopoly?.

Commun. ACM 50, 8 (Aug. 2007), 112.
[8] G. Goth. Addressing the monoculture. IEEE Security & Privacy

Magazine, 1(6):8–10, December 2003.
[9] A. D. Keromytis and V. Prevelakis. Dealing with system monocultures.

In NATO Information Systems Technology (IST) Panel Symposium on
Adaptive Defense in Unclassified Networks, Toulouse, France, April
2004.

[10] S. Forrest, A. Somayaji, and D. Ackley. Building diverse computer
systems. In Proceedings of the 6th Workshop on Hot Topics in
Operating Systems (HotOS-VI), pages 67–72. IEEE Computer Society,
1997.

[11] C. Cowan, C. Pu, D. Maier, H. Hinton, P. Bakke, S. Beattie, A. Grier, P.
Wagle, and Q. Zhang. Stackguard: Automatic detection and prevention
of buffer-overflow attacks. In Proceedings of the 7th USENIX Security
Symposium. USENIX Association, January 1998.

[12] C. Cowan, S. Beattie, J. Johansen, and P. Wagle. PointGuardTM:
Protecting pointers from buffer overflow vulnerabilities. In Proceedings
of the 12th USENIX Security Symposium, pages 91–104, August 2003.

[13] C. Collberg, C. Thomborson, and D. Low. “A Taxonomy of Obfuscating
Transformations”. Technical Report 148, Department of Computer
Science, University of Auckland, July 1997.

[14] Chenxi Wang, “A Security Architecture for Survivability Mechanisms.”
PhD thesis, University of Virginia, October 2000.

[15] Gregory Wroblewski; General Method of Program Code Obfuscation,
PhD Dissertation, Wroclaw University of Technology, Institute of
Engineering Cybernetics, 2002.

[16] Cullen Linn, Saumya Debray, Obfuscation of Executable Code to
Improve Resistance to Static Disassembly, In Proccedings of the 10th
ACM Conference on Computer and Communications Security, pages
27–31, October 2003.

[17] Sandeep Bhatkar, Daniel C. DuVarney, and R. Sekar, Address
Obfuscation: An Efficient Approach to Combat a Broad Range of
Memory Error Exploits, In Proccedings of the 12th USENIX Security
Symposium, pages 105–120, August 2003.

[18] PaX Project. Address space layout randomization, Mar 2003. Accessed
on December 7th, 2009: http://pax.grsecurity.net/docs/aslr.txt.

[19] H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, and D. Boneh.
On the Effectiveness of Address-Space Randomization, In CCS ’04:
Proceedings of the 11th ACM Conference on Computer and
Communication Security, ACM Press, pages 298–307, 2004.

[20] S. Bhatkar, R. Sekar, and D. C. DuVarney. Efficient techniques for
comprehensive protection from memory error exploits. In Proceedings
of the 14th Conference on USENIX Security Symposium, pages 271-286,
August 2005.

[21] S. Bhatkar, and R. Sekar. 2008. Data Space Randomization. In
Proceedings of the 5th International Conference on Detection of
intrusions and Malware, and Vulnerability Assessment, pages 1–22, July
2008.

[22] G. S. Kc, A. D. Keromytis, and V. Prevelakis. Countering code-injection
attacks with instruction-set randomization. In Proceedings of the 10th
ACM conference on Computer and communication security, pages 272–
280, ACM Press, 2003.

[23] S.W. Boyd and A.D. Keromytis, SQLrand: Preventing SQL Injection
Attacks, In Proceedings of the 2nd International Conference on Applied
Cryptography and Network Security, pages. 292–302, 2004.

[24] E. G. Barrantes, D. H. Ackley, T. S. Palmer, D. Stefanovic, and D. D.
Zovi. Randomized instruction set emulation to disrupt binary code
injection attacks. In Proceedings of the 10th ACM conference on

139

Computer and communication security, pages 281–289. ACM Press,
2003.

[25] A. D. Keromytis. 2009. Randomized Instruction Sets and Runtime
Environments Past Research and Future Directions. IEEE Security and
Privacy 7, 1 (Jan. 2009), 18–25.

[26] A. Sovarel, D. Evans, and N. Paul, Where’s the FEEB?: The
Effectiveness of Instruction Set Randomization, In Proceedings of
Usenix Security Symposium, Usenix Assoc., pages 145–160, 2005.

[27] Y. Weiss and E.G. Barrantes, Known/Chosen Key Attacks against
Software Instruction Set Randomization, In Proceedings of Annual
Computer Security Applications Conference (ACSAC), ACSA, pages
349–360, 2006.

[28] M. Chew, D. Song. “Mitigating Buffer Overflows by Operating System
Randomization,” Technical Report CMUCS- 02-197.

[29] A. J. O'Donnell, and H. Sethu. On achieving software diversity for
improved network security using distributed coloring algorithms. In
Proceedings of the 11th ACM Conference on Computer and
Communications Security, pages 121–131, October 2004.

[30] A. J. O'Donnell, and H. Sethu. Software Diversity as a Defense against
Viral Propagation: Models and Simulations. In Proceedings of the 19th
Workshop on Principles of Advanced and Distributed Simulation.
Workshop on Parallel and Distributed Simulation. IEEE Computer
Society, pages 247–253, June 2005.

[31] Y. Yang, S. Zhu, and G. Cao. Improving sensor network immunity
under worm attacks: a software diversity approach. In Proceedings of
the 9th ACM international Symposium on Mobile Ad Hoc Networking
and Computing, pages 149–158, May 2008.

[32] B. Cox, D. Evans, A. Filipi, J. Rowanhill, W. Hu, J. Davidson, J.
Knight, A. Nguyen-Tuong, and J. Hiser. N-variant systems: a secretless
framework for security through diversity. In Proceedings of the 15th
Conference on USENIX Security Symposium, pages 105–120, 2006.

[33] D. Williams, W. Hu, J. W. Davidson, J. D. Hiser, J. C. Knight, and A.
Nguyen-Tuong. 2009. Security through Diversity: Leveraging Virtual
Machine Technology. IEEE Security and Privacy 7, 1 (Jan. 2009): 26–
33.

[34] J. E. Just, and M. Cornwell. Review and analysis of synthetic diversity
for breaking monocultures. In Proceedings of the 2004 ACM Workshop
on Rapid Malcode, pages 23–32, October 2004

140

