
Refactoring – Does it improve software quality?

Konstantinos Stroggylos, Diomidis Spinellis
Athens University of Economics and Business

Department of Management Science and Technology
Patision 76, 10434 Athens, Greece

circular,dds@aueb.gr

Abstract

Software systems undergo modifications, improvements
and enhancements to cope with evolving requirements. This
maintenance can cause their quality to decrease. Various
metrics can be used to evaluate the way the quality is af-
fected. Refactoring is one of the most important and com-
monly used techniques of transforming a piece of software
in order to improve its quality. However, although it would
be expected that the increase in quality achieved via refac-
toring is reflected in the various metrics, measurements on
real life systems indicate the opposite. We analyzed source
code version control system logs of popular open source
software systems to detect changes marked as refactorings
and examine how the software metrics are affected by this
process, in order to evaluate whether refactoring is effec-
tively used as a means to improve software quality within
the open source community.

1. Introduction

Software metrics have been proved to reflect software
quality, and thus have been widely used in software qual-
ity evaluation methods [6]. The results of these evaluation
methods can be used to indicate which parts of a software
system need to be reengineered. The reengineering of these
parts is usually performed using refactoring. Refactoring is
defined as “the process of changing a software system in
such a way that it does not alter the external behavior of the
code, yet improves its internal structure” [30].

The abundance of available tools for collecting software
metrics and performing automated refactoring on source
code simplifies maintenance. This means that more devel-
opers and software engineers use refactoring consciously as
a means to improve the quality of their software. However,
as this study suggests, the expected and actual results often
differ. Although people use refactoring (or claim to do so)
in order to improve the quality of their systems, the metrics

indicate that this process often has the opposite results. 1 2

2. Metrics and software quality

Software metrics provide a means to extract useful and
measurable information about the structure of a software
system. This explains why the first metrics like LOC (Lines
Of Code) appeared very early. Today the software engineer
has a very large list of metrics at his disposition in order
to gain the insight required for understanding and evaluat-
ing the structure and quality of a system. This has created
the need to determine which set of metrics is most appro-
priate for each environment [39]. Popular metrics suites are
Order of Growth (Big O notation) [13], Halstead’s Com-
plexity Measures [19], McCabe’s Cyclomatic Complexity
[26, 27, 28] and Maintainability Index [38]. For object-
oriented systems the metrics used more commonly include
the suites proposed by Henry and Kafura [20, 21], Chi-
damber & Kemerer [11, 12], Li & Henry [24], Lorenz &
Kidd [25] and Briand et al. [7, 8].

Several studies attempt to correlate software metrics with
quality [35, 23, 34] or validate the significance of the var-
ious metrics proposed in the literature[9]. Others use met-
rics to predict the fault-proneness of classes from the early
development phases, or evaluate their effect on the main-
tenance effort required to keep a system up to date with
changing requirements, both of which are indicators of a
system’s quality[4, 24]. These methods have been used to
reliably detect the parts of a system that are most likely to
suffer from errors or exhibit maintenance difficulty and thus
need to be reengineered.

1 c©ACM, 2007. This is the author’s version of the work. It is posted
here by permission of ACM for your personal use. Not for redistribution.
The definitive version was published in B. Boehm, S. Chulani, J. Verner,
and B. Wong, editors, 5th International Workshop on Software Quality —
WoSQ ’07. ACM Press, May 2007.

2This research has been funded within the frame of the Operational
Programme “COMPETITIVENESS”, measure 8.3.1 (PENED), and is co-
financed by European Social Funds (75%) and by national sources (25%)



Probably the most influential factor for software quality
is its design. A good design will allow a software system to
evolve with little effort and less money. Object oriented sys-
tems expose this behavior more than ones written in proce-
dural languages, since many powerful mechanisms such as
inheritance, polymorphism and encapsulation are available.
Therefore by evaluating the quality of the design of a system
one can estimate its overall quality. Various studies attempt
to correlate attibutes of the design of a system (often repre-
sented by design complexity metrics) to its quality. They are
targeting mostly towards defect density and maintenance ef-
fort or time, and provide predictive models based on the
values of the metrics for these attributes [16, 2, 3]. Oth-
ers define formal models for object oriented design and use
them to formally define established object-oriented metrics,
so as to ease the automated design evaluation [10, 31]. It
is therefore clear that metrics can be used to detect whether
a system’s quality suffers and needs to be reengineered, as
well as identify which of its parts need to be refactored.

2.1. Relation of refactoring to metrics and
software quality

Refactoring is considered as one of the most important
means of transforming a piece of software in order to im-
prove its quality. Its aim is to decrease the complexity of a
system at design and source code level, allowing it to evolve
further in a low-cost manner by ensuring the developers’
productivity and leaving less room for design errors[29].
The problem faced by software engineers is discovering
where to apply refactorings. Fowler [17] states that the de-
tection of such problematic areas is based on human intu-
ition and descibes the notion of ‘bad smells’ in code.

Fortunately, among other methods, software metrics can
be used to identify areas that would benefit from refactoring.
Tool support is necessary to assist the human intuition in
this decision-making process in an efficient manner. Simon
et al. in [33] employ distance-based metrics to detect targets
for four common refactorings. Joshi and Joshi in [22] intro-
duce two new microscopic metrics that they claim are best
suited for fine-grained decisions about needed refactoring
actions.

Software quality can be described as the conformance
to functional requirements (related to correctness) and non
functional requirements (NFRs), which are related to char-
acteristics described in the ISO-9126 standard (reliability,
usability, efficiency, maintainability and portability) [1].
Refactoring is by definition supposed to improve the main-
tainability of a software product, but it its effect on other
quality aspects is unclear.

In order to determine which refactorings have a positive
effect on quality it is necessary to analyze the dependecies
between NFRs, as - more often than not - a reengineering

decision affects more than one of its aspects. Such an at-
tempt is described in [37]. This study, which also presents
metrics for evaluating the effect of refactorings on a sys-
tem, establishes an explicit relation between design deci-
sions and quality requirements, by representing NFRs as
soft-goals and examining the dependencies between them.
The work in [36] also employs a modeling of soft goals
and their interdependencies as graphs. However it takes a
step further by associating them with specific transforma-
tions which are not applied unless an evaluation procedure
suggests that the desired qualities will be met in the reengi-
neered system. Yu et al. [40] also use such graphs combined
with metrics in order to select the order in which refactor-
ings should be performed, taking into account various trade-
offs between code complexity and performance.

2.2. Refactoring and software evolution

An extensive research has been performed under the
name of refactoring detection in detecting refactorings be-
tween different revisions of a software system. This tech-
nique is useful for examining the evolution of a system but
it does not always convey a clear image about the reason
that led the developers to perform such changes.

A primary target of refactoring is the minimization
of code duplication which usually occurs from copy-and-
modify operations. Refactorings such as Extract Method
help in minimizing the number of locations requiring modi-
fication when a change is performed. To facilitate the main-
tenance process, a clone detection-based method to auto-
matically detect refactorings that occured between two con-
secutive versions of a component is proposed in [15]. An-
other method described in [18] is the detailed analysis of
function call relations and origin analysis. Others employ
data mining techniques to detect high-level similarities in
code [5]. An older study [14] proposes heuristics for de-
tecting refactorings by calculating metrics over successive
versions of a system.

3. Experiments

Most of the studies presented in the previous section do
not correlate the evolution of a system with the change in
metrics. In this study we attempt to show how refactoring
has affected metrics in open source software. Instead of us-
ing one of the proposed techniques to detect the refactorings
performed between consequent revisions, the commit logs
were used as a source of information. This means that we
trust the developers in performing refactorings and docu-
menting them in the system’s change history. In essence we
take into account only reengineerings that the developers
mark as refactorings.



The whole process, which is straightforward and can be
easily automated, is depicted in Fig.1 and can be described
as a sequence of simple steps, as follows:

1. Obtain the commit log from the source code repository
of the software system being examined

2. Search through the log entries for mentions of words
stemming from the verb ’refactor’ (e.g. refactoring,
refactored, etc.)

3. Create a list Lrev containing pairs (Revstart, Revend)
of consecutive revision numbers of the system between
which a refactoring was performed.

4. Enumerate through the items contained in Lrev. For
each pair (Revstart, Revend) of revisions in Lrev use
the ’diff’ command of the source code revision con-
trol system used for the system being examined in or-
der to obtain a list of source files Lfilesstart−end that
were modified (added, removed or changed) between
Revstart and Revend

5. Enumerate again through the items contained in Lrev.
For each revision Revstart and Revend in each pair,
download (check out) the corresponding revision of
the source code of the system being examined from
its repository and compile it.

6. Once the compilation of a revision Rcur is complete,
enumerate through the list of files Lfilesstart−end

where Rcur is one of the revisions Rstart and Rend

of the pair currently examined. For each file contained
in the list Lfilesstart−end use a metrics tool to extract
metrics from either the source code file itself or the
compiled class file and store the results in a text file or
other persistent storage for further processing

7. Enumerate through the list of files Lfilesstart−end an-
alyzed for the current pair (Revstart, Revend) and ex-
amine how the various metrics were affected between
the revisions Revstart and Revend

Note that the compilation in step 5 does not necessar-
ily have to complete successfully. As long as the classes
or files in Lfilesstart−end, their dependencies and the ones
depending on them compile the analysis can still be per-
formed. This has allowed us to get away with commits that
break the build for reasons unrelated to refactorings.

The process described above was used for the evalua-
tion of the effect of refactorings on three object-oriented
and one procedural system. The tool used for the object ori-
ented systems is the latest version of ckjm 3, an open source
tool written by this paper’s second author, which calculates
the metrics proposed by Chidamber&Kemerer as well as Ca

3Available at http://www.spinellis.gr/sw/ckjm/

(Afferent Coupling, the number of other packages depend-
ing upon a class) and NPM (Number of Public Methods of a
class), by processing the bytecode of compiled Java classes.

As the experiments were being conducted it became ev-
ident that in many cases the commits performed by the de-
velopers would break the system’s build. In order to cope
with this situation another tool was used to calculate the
metrics for the examined classes, the (misnamed) C and
C++ Code Counter (CCCC)4. CCCC can process C, C++
and Java source files directly, and it calculates 4 out of the
6 metrics of the Chidamber&Kemerer suite, as well as Mc-
Cabe’s Cyclomatic Complexity (the number of linearly in-
dependent paths), so it was used both whenever the com-
pilation of a revision failed and for the procedural system
examined.

The metrics examined also include WMC(Weighted
Methods per Class), DIT (Depth of Inheritence Tree), NOC
(Number Of immediate Children subclasses), CBO (Cou-
pling Between Objects, a count of the non-inheritance re-
lations with other classes), RFC (Response for a class, the
sum of the number of methods of the class itself and all
other methods it calls) and LCOM (Lack of Cohesion of
Methods, expresses the similarity of methods). As shown
in [32] big values in these metrics indicate possible prob-
lems.

3.1. A procedural example - Apache httpd

A big percentage of software systems in use today is
not written in object oriented languages. A prime exam-
ple of this is operating systems, such as the kernels of the
GNU/Linux and BSD families. In the context of this study,
the popular Apache Software Foundation HTTP server5 was
chosen as a sample for numerous reasons besides its pop-
ularity6. It is one of the most actively developed open
source projects with many contributors from all over the
world. Additionaly, the description page of the latest branch
of the system (version 2.2) states that one of the major
core enhancements was the refactoring of certain modules
(namely the bundled authentication and authorization mod-
ules). This meant that it wouldn’t be necessary to exam-
ine specific consecutive revisions, but one could do a more
macroscopic examination of these modules instead.

The versions of the system that were studied were 2.0.59
from the stable branch and 2.2.3 from the experimental
branch. Besides the renaming of the examined modules,
which is not of interest for this study as it does not affect
metrics, one module (mod auth) was split into two separate
ones (mod auth basic and mod authn file), which were the

4Available at http://cccc.sourceforge.net/
5Available at http://httpd.apache.org/
6Netcraft Ltd. Web Server Survey. Available at http://news.

netcraft.com/archives/web_server_survey.html



Figure 1. The process used to evaluate the effect of refactorings

Module Version LOC MVG COM L_C M_C WMC1
mod_auth 2.0.59 183 56 26 7,04 2,15 7
mod_{auth_basic+authn_file} 2.2.3 251 73 39 6,44 1,87 10
difference 68 17 13 -0,60 -0,28 3
difference % 37,16 30,36 50,00 -8,55 -13,09 42,86
mod_auth_anon 2.0.59 92 36 10 9,20 3,60 5
mod_authn_anon 2.2.3 78 27 12 6,50 2,25 4
difference -14 -9 2 -2,70 -1,35 -1
difference % -15,22 -25,00 20,00 -29,35 -37,50 -20,00
mod_auth_digest 2.0.59 1294 403 309 4,19 1,30 42
mod_auth_digest 2.2.3 1226 375 321 3,82 1,17 39
difference -68 -28 12 -0,37 -0,14 -3
difference % -5,26 -6,95 3,88 -8,81 -10,43 -7,14
mod_auth_dbm 2.0.59 162 48 14 11,57 3,43 8
mod_authn_dbm 2.2.3 128 21 31 4,13 0,68 6
difference -34 -27 17 -7,44 -2,75 -2
difference % -20,99 -56,25 121,43 -64,32 -80,26 -25

Figure 2. The effect of refactoring on Apache

ones examined in detail.
As one can see in Figure 2, the McCabe Complexity has

increased about 30% for mod auth due to the fact that it was
broken down into two modules, although the overall mod-
ule architecture has been simplified. On the other hand, the
mod auth digest module displays slightly improved met-
rics, which can be explained by the fact that the digest
mechanism has been redesigned in the 2.2 branch. Finally,
the metrics for the other modules appear to have improved
significantly. This is mainly caused by changes in other
parts of the system and the module architecture in general,
which allow the code for these modules to become simpler.
The effect is less visible in mod auth digest because it is
much more complicated than the others, so the metrics dif-
ference is relatively smaller.

3.2. Object Oriented Libraries

The method described was used to evaluate the effect of
refactoring on the metrics of three popular open source ob-
ject oriented libraries. The libraries selected were Apache
Software Foundation’s logging library for Java (Log4J),
MySQL’s JDBC Driver (MySQL Connector/J) and JBoss
Hibernate Core. These projects were chosen because they
have been around and studied for years, they are actively be-
ing developed, they have strong communities of users sup-

porting them and are very popular among developers.

3.3. Apache Log4J

Log4J is an open source logging library for Java devel-
oped by Apache Software Foundation. It is a medium-
sized component, as the latest revision weighs in at about
89KLOC7. For the purpose of this study, a set of 30 revi-
sions in 16 pairs was selected (some revisions participated
in two consequent pairs). The metrics for 4 of these pairs
that compiled cleanly were calculated using ckjm, whereas
CCCC was used for the rest. The experimental results are
presented in Figure 3.

These results imply that the refactorings overall had little
impact on the calculated metrics - especially the NOC and
DIT were not affected at all, which makes sense considering
that the refactorings examined did not include transforma-
tions that affect the class hierarchy except for two cases.

The experimental results also suggest that there was
overall a non-trivial increase in the value of the MVG and
RFC metrics. While the CBO displays a small increase, we
noticed a significant increase in the values of the RFC and
Ca, which approaches 10% and 11% respectively. These
values may suggest that each reengineered class ended up
with more (diverse) responsibilities. Given that the increase
in Ca was accompanied by an increase in LCOM it may
be safe to suggest that the methods contained in the classes
refactored became less related to each other - and perhaps
with their initial purpose.

3.4. MySQL Connector/J

MySQL Connector/J is an open-source JDBC driver for
the MySQL server 8. It is a medium-sized component, as
the latest stable revision weighs in at about 89KLOC. For
the purpose of this study, a set of 10 revisions in 8 pairs
was selected. The metrics for the files affected between the
various revisions were calculated using CCCC. The results
calculated are presented in Figure 3.

7Available at http://logging.apache.org/log4j
8Available at http://dev.mysql.com/



(a) Hibernate WMC DIT NOC CBO RFC LCOM Ca NPM MVG (b) Connector/J WMC DIT NOC CBO MVG 
Avg diff 0,51 -0,01 0,01 0,51 0,21 -3,70 0,13 0,34 -0,14 Avg diff 1,90 -0,05 -0,05 -0,95 -2,45
Avg diff % 10,3% 2,4% 4,0% 7,8% 7,3% 17,9% 15,6% 10,2% 4,0% Avg diff % 1,6% -5,0% -5,0% -5,4% -1,4%
Avg Rstart 23,18 1,32 0,36 16,57 64,83 538,46 2,29 16,73 20,64 Avg Rstart 60,65 0,3 0,15 12,15 121,4
Avg Rend 23,69 1,32 0,37 17,09 65,03 534,76 2,43 17,06 20,49 Avg Rend 62,55 0,25 0,1 11,2 118,95
Median Rstart 12 1 0 12 41 35 1 5 6 Median Rstart 32,5 0 0 9,5 91,5
Median Rend 13 1 0 13 45 35 1 5 6 Median Rend 40,5 0 0 10 92,5

(c) Log4J/ckjm WMC DIT NOC CBO RFC LCOM Ca NPM (d) Log4J/CCCC WMC DIT NOC CBO MVG 
Avg diff 1 0 0 -3 19 113 4 0 Avg diff 50 2 1 26 0,28
Avg diff % 5,8% 0,0% 0,0% 1,7% 9,9% 9,0% 10,8% 7,8% Avg diff % 12,3% 2,6% 1,3% 2,7% 10,7%
Avg Rstart 12,74 1,16 0,11 6,95 32,68 46,26 1,26 11,26 Avg Rstart 18,00 1,05 0,13 12,36 13,46
Avg Rend 12,79 1,16 0,11 6,79 33,68 52,21 1,47 11,26 Avg Rend 18,54 1,08 0,15 12,38 13,74
Median Rstart 10 1 0 8 31 0 1 8 Median Rstart 13 1 0 10 6
Median Rend 11 1 0 7 28 1 1 8 Median Rend 13 1 0 9 9

Figure 3. The effect of refactorings on the object oriented libraries examined

As one can see, these results do not seem to agree with
the ones of Log4J. This could be due to various reasons.
For example it could have occured because diferrent types
of refactorings were applied to the source code, which may
affect the calculated metrics in a different way. However
since not all the Chidamber & Kemerer metrics are calcu-
lated by CCCC and the set of revisions examined is small
the calculated results may not be representative.

3.5. JBoss Hibernate

Hibernate is a popular open source Object-Relational
Mapping (ORM) library written in the Java programming
language9. The component examined in this study is Hiber-
nate Core, which is fairly large, as its source code weighs
in at about 185KLOC. For the purpose of this experiment a
total of 59 revisions in 30 pairs were examined. The results
are presented in Figure 3.

The statistics calculated for Hibernate indicate a simi-
larity in the way the various metrics were affected to the
ones of Log4J. Both Log4J and Hibernate displayed a quite
strong overall and average increase of the RFC and CBO
metric. Moreover, the increase in the value of the LCOM
and Ca metrics is even bigger, approaching 18% and 16%
respectively. This means that as the classes were reengi-
neered they became less coherent and more interdependent,
and given the large average values of these metrics one
could come to the conclusion that these refactorings were
not beneficial to the project’s overall quality.

4. Evaluation of results and future work

Software systems need to go under modifications, im-
provements and enhancements in order to cope with evolv-
ing requirements. This maintenance can adversely affect
their quality. Refactoring is one of the most important

9Available at http://www.hibernate.org/

and commonly used techniques for improving the quality
of software, which can be measured by employing various
metrics. However, although it would be expected that the
improvement is reflected in the various metrics, this does
not seem to be the case in real life systems.

This study examines how the metrics of popular open
source projects were affected when the development team
performed refactorings, regardless of the reasons that led
to that decision. The results indicate a significant change
of certain metrics to the worse. Specifically it seems that
refactoring caused a non trivial increase in metrics such as
LCOM, Ca and RFC, indicating that it caused classes to
become less coherent as more responsibilities are assigned
to them. The same principles seem to apply in procedural
systems as well, in which case the effect is captured as an
increase in complexity metrics. Since it is a common con-
jecture that the metrics used can actually indicate a system’s
quality, these results suggest that either the refactoring pro-
cess does not always improve the quality of a system in a
measurable way or that developers still have not managed
to use refactoring effectively as a means to improve soft-
ware quality.

To further validate these results, more systems and even
more revisions must be examined, because the number ex-
amined so far is relatively small. Using a refactoring detec-
tion technique to identify the refactorings performed each
time, one could also correlate each kind of refactoring to a
specific trend in the change of various metrics and thus de-
duce which ones are more beneficial to the overall quality
of a system.

References

[1] International Organization for Standardization. Software
Engineering - Product Quality - Part 1: Quality Model. ISO,
Geneva, Switzerland, 2001. ISO/IEC 9126-1:2001(E), 2001.

[2] F. B. e. Abreu and W. L. Melo. Evaluating the impact of
object-oriented design on software quality. In Proceedings



of the 3rd International Symposium on Software Metrics,
page 90, 1996.

[3] R. K. Bandi, V. K. Vaishnavi, and D. E. Turk. Predict-
ing maintenance performance using object-oriented design
complexity metrics. IEEE Trans. Softw. Eng., 29(1):77–87,
2003.

[4] V. R. Basili, L. C. Briand, and W. L. Melo. A validation of
object-oriented design metrics as quality indicators. IEEE
Trans. Softw. Eng., 22(10):751–761, 1996.

[5] H. A. Basit and S. Jarzabek. Detecting higher-level simi-
larity patterns in programs. In Proceedings of the 10th Eu-
ropean Software Engineering Conference, pages 156–165,
2005.

[6] B. W. Boehm, J. R. Brown, and M. Lipow. Quantitative eval-
uation of software quality. In Proceedings of the 2nd Inter-
national Conference on Software engineering, pages 592–
605, 1976.

[7] L. Briand, P. Devanbu, and W. Melo. An investigation into
coupling measures for C++. In Proceedings of the 19th
International Conference on Software Engineering, pages
412–421, 1997.

[8] L. C. Briand, S. Morasca, and V. R. Basili. Defining and val-
idating measures for object-based high-level design. IEEE
Trans. Softw. Eng., 25(5):722–743, 1999.

[9] L. C. Briand, J. Wüst, J. W. Daly, and D. V. Porter. Explor-
ing the relationships between design measures and software
quality in object-oriented systems. Journal of Systems and
Software, 51(3):245–273, 2000.

[10] A. Chatzigeorgiou. Mathematical assessment of object-
oriented design quality. IEEE Trans. Softw. Eng.,
29(11):1050–1053, 2003.

[11] S. R. Chidamber and C. F. Kemerer. Towards a metrics suite
for object oriented design. In Proceedings of the 6th annual
ACM SIGPLAN Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications, pages 197–
211, 1991.

[12] S. R. Chidamber and C. F. Kemerer. A metrics suite for
object oriented design˙ IEEE Trans. Softw. Eng., 20(6):476–
493, 1994.

[13] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
Introduction to Algorithms. MIT Press and McGraw-Hill,
2nd edition, 2001. Chapter 1: Foundations, pp. 3-122.

[14] S. Demeyer, S. Ducasse, and O. Nierstrasz. Finding refac-
torings via change metrics. In Proceedings of the 15th
ACM SIGPLAN Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications, pages 166–
177, 2000.

[15] D. Dig, C. Comertoglu, D. Marinov, and R. Johnson. Auto-
matic detection of refactorings for libraries and frameworks.
In Proceedings of Workshop on Object Oriented Reengi-
neering (WOOR’05), July 2005.

[16] F. B. e. Abreu, M. Goulão, and R. Esteves. Toward the de-
sign quality evaluation of object oriented software systems.
In Proceedings of the 5th International Conference on Soft-
ware Quality, October 1995.

[17] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts.
Refactoring: Improving the Design of Existing Code. Addi-
son Wesley, August 1999.

[18] M. W. Godfrey and L. Zou. Using origin analysis to detect
merging and splitting of source code entities. IEEE Trans.
Softw. Eng., 31(2):166–181, February 2005.

[19] M. H. Halstead. Elements of software science. Operating
and Programming Systems Series, 7, 1977.

[20] S. M. Henry and D. G. Kafura. Software structure met-
rics based on information flow. IEEE Trans. Softw. Eng.,
7(5):510–518, 1981.

[21] S. M. Henry and D. G. Kafura. The evaluation of software
systems’ structure using quantitative software metrics. Soft-
ware - Practice and Experience, 14(6):561–573, 1984.

[22] P. Joshi and R. K. Joshi. Microscopic coupling metrics
for refactoring. In Proceedings of the 10th Conference on
Software Maintenance and Reengineering, pages 145–152,
2006.

[23] S. H. Kan. Metrics and Models in Software Quality Engi-
neering (2nd Edition). Addison-Wesley Professional, 2002.

[24] W. Li and S. M. Henry. Object-oriented metrics that pre-
dict maintainability. Journal of Systems and Software,
23(2):111–122, 1993.

[25] M. Lorenz and J. Kidd. Object-Oriented Software Metrics.
Prentice Hall Object-Oriented Series. Prentice Hall, 1994.

[26] T. J. McCabe. A complexity measure. IEEE Trans. Softw.
Eng., 2(4):308–320, December 1976.

[27] T. J. McCabe and C. W. Butler. Design complexity
measurement and testing. Communications of the ACM,
32(12):1415–1425, December 1989.

[28] T. J. McCabe and A. H. Watson. Software complex-
ity. Crosstalk, Journal of Defense Software Engineering,
7(12):5–9, December 1994.

[29] T. Mens and T. Tourwé. A Survey of Software Refactoring.
IEEE Trans. Softw. Eng., 30(2):126–139, February 2004.

[30] W. F. Opdyke. Refactoring Object-Oriented Frameworks.
Doctoral thesis, Department of Computer Science, Univer-
sity of Illinois at Urbana-Champaign, 1992.

[31] R. Reißing. Towards a model for object-oriented design
measurement. In 5th International ECOOP Workshop on
Quantitative Approaches in Object-Oriented Software Engi-
neering, 2001.

[32] L. H. Rosenberg, R. Stapko, and A. Gallo. Applying object-
oriented metrics. In Sixth International Symposium on Soft-
ware Metrics - Measurement for Object-Oriented Software
Projects Workshop, 1999.

[33] F. Simon, F. Steinbruckner, and C. Lewerentz. Metrics based
refactoring. In Proceedings of the 5th Conference on Soft-
ware Maintenance and Reengineering, pages 30–38, 2001.

[34] I. Stamelos, L. Angelis, A. Oikonomou, and G. L. Bleris.
Code quality analysis in open source software development.
Information Systems Journal, 12(1):43–60, 2002.

[35] R. Subramanyam and M. S. Krishnan. Empirical analysis
of ck metrics for object-oriented design complexity: Im-
plications for software defects. IEEE Trans. Softw. Eng.,
29(4):297–310, 2003.

[36] L. Tahvildari, K. Kontogiannis, and J. Mylopoulos. Quality-
driven software re-engineering. Journal of Systems and Soft-
ware, 66(3):225–239, June 2003.

[37] R. Tiarks. Quality-driven refactoring. Technical report, Uni-
versity of Bremen, 2005.



[38] K. D. Welker and P. W. Oman. Software maintainability
metrics models in practice. Crosstalk - The Journal of De-
fense Software Engineering, 8(11):19–23, 1995.

[39] M. Xenos, D. Stavrinoudis, K. Zikouli, and
D. Christodoulakis. Object-oriented metrics - a sur-
vey. In Proceedings of Federation of European Software
Measurement Associations, Madrid, Spain, 2000.

[40] Y. Yu, J. Mylopoulos, E. Yu, J. C. Leite, L. L. Liu, and
E. D’Hollander. Software refactoring guided by multiple
soft-goals. In The 1st International Workshop on Refactor-
ing: Achievements, Challenges, Effects, November 2003.


