Editor:

Warren Keuffel

wkeuffel@computer.org

Practical Testing Advice

Testing Computer Software, Second Edi-
tion, by Cem Kaner, Jack Falk, and Hung
Quoc Nguyen, John Wiley & Sons, New
York, 1999, ISBN 0-471-35846-0, 480 pp.,
US$34.99.

esting is sometimes regarded as the ugly
duckling of software development. Pro-
grammers want to write perfect code,
development managers prefer to sched-
ule releases without the additional un-
certainties testing results bring, and fi-
nancial officers surely want to do away with
additional testing costs. Fortunately, three au-
thors who love this ugly duckling wrote Test-
ing Computer Software, and they successfully
transfer their knowledge and—more impor-
tantly—their views to the reader.

The authors primarily target testers and
test managers involved in producing non-
safety-critical software. They readily admit
that computer science graduates rarely have
useful testing knowledge—software testing
can be better performed by suitably trained
college graduates. The authors thus painstak-
ingly introduce all relevant software engi-
neering and programming concepts needed to

perform testing, and they also point to rele-
vant material for further reading. The soft-
ware life cycle, corresponding testing cycles,
glass-box versus black-box testing, regression
testing, maintenance, and boundary condi-
tions are some of the topics covered.

Bug tracking

An important aspect of testing is the clear
and effective communication between testers,
developers, and managers—a key factor be-
ing comprehensive and well-organized prob-
lem reports. Problem reports should clearly
identify the program and the problem, the
problem type, its severity, and steps to repro-
duce it. In addition, the development team
should further expand such reports by group-
ing them into functional categories, assigning
problems to specific developers, and tracking
their evolution and final resolution.

Having designed and implemented a bug-
tracking system for managing a medium-scale
development project, I was impressed by the
pragmatic attitude the authors advanced; all
suggestions in this area are easy to put into
practice and are clearly the result of extensive
real-life experience. The implementation of a

“High Performance and Scalability from C++,” by Chris Cox—a review of Efficient C++: Performance Programming
Techniques by Dov Bulka and David Mayhew. Says Cox, “Any experienced C++ developer interested in creating highly
efficient applications should read this book.” For the full review, see...

computer.org/software/bookshelf

104 1EEE SOFTWARE May/June 2001

0740-7459/01/$10.00 © 2001 IEEE

BOOKSHELF

bug-tracking system, which is outlined
in a separate chapter, is likely to bring
forward political issues. Although
many useful metrics can be extracted
from such a system, the authors wisely
point out that it would be counterpro-
ductive to use it for tracking individ-
ual performance of programmers or
testers. Reports can still help make es-
timates based on past performance fig-
ures and judging project progress.
Another particularly thorny issue
concerns the problem report life cycle.
A state diagram would help readers
better understand the temporal and
organizational relationship between
problem resolution and status. How-
ever, even the authors appear split on
the issue of how to treat deferred bugs.

Test cases

Designing effective test cases is a
challenge for black-box testers. Al-
though experience is clearly an impor-
tant asset, the numerous methods and
heuristics described provide a starting
point for a junior tester. Equivalence
classes, boundary values, and regres-
sion testing can minimize the number
and increase the effectiveness of test
cases. Understanding state transitions,
race conditions, time dependencies,
and the judicious use of random input
will help uncover more subtle prob-
lems. User manuals and help systems
are also part of the tester’s work do-
main; the authors devote a separate
chapter to this area.

Although the book’s second edition
was published in 1999, the material
concerning the testing of printers, test-
ing tools, localization, and legal as-
pects needs to be brought up-to-date.
Most printers nowadays are not di-
rectly driven by end-user software and
are seldom operated using simple es-
cape sequences. Testing tools suitable
for character input/output are not ap-
plicable to graphical user interfaces,
character code pages are disappearing
in favor of Unicode, and language li-
braries and operating systems provide
internationalization support with radi-
cally different testing demands from
earlier ad hoc localization approaches.
References also cover only material
published up to 1991.

Test management

Test management, planning, and
documentation are important aspects
of any large testing effort. The rele-
vant IEEE standards offer important
guidance; the authors describe in
simple terms the contents and useful-
ness of test plan elements and related
documents. A concrete example for
each document would have been use-
ful but would have significantly in-
creased the book’s 480 pages. Test
plans inevitably must organize the
numerous elements to be tested into
coherent and understandable groups.
We can use lists, tables, outlines, and
matrices to organize this information;
the book’s examples for each type of
chart help the reader identify which is
most appropriate.

The authors devote the last part of
the book to testing management, ex-
plaining why we should integrate it
into the software development life cy-
cle. Important milestones include alpha
and beta testing and the user interface
freeze. Testing can be performed in-
house by a dedicated testing group, or
it can be outsourced to an external
agency; readers who have read the
book’s previous chapters will probably
favor the former approach. The au-
thors’ empathy with software testers
and managers is commendable. Recog-
nizing that testing is often an entry-
level job that can lead to a software de-
velopment position can help testers
work toward professional advance-
ment and help managers constructively
deal with the inevitably high staff turn-
over rate.

Ready for the third edition

I enjoyed reading Testing Com-
puter Software. The text contains nu-
merous highlights offering practical
advice, authoritative figures you can
cite to customers and higher manage-
ment, and entertaining anecdotes to
share with coworkers. Although some
sections need updating, I still think it
is a valuable training and reference
source for software testers, managers,
and developers.

Diomidis Spinellis is an assistant professor in the De-
partment of Technology and Management at the Athens Univer-
sity of Economics and Business. Contact him af dds@aueb.gr.

The Semi-
Fundamental
Gorba Book

CORBA 3 Fundamentals and
Programming, Second Edition, by
Jon Siegel, John Wiley & Sons, New
York, 2000, ISBN 0471295183,
900 pp., $54.99.

CORBA 3 Fundamentals and
Programming offers a compelling
description of the new Object Man-
agement Group standards, called
Corba 3. It explains the OMG’s
point of view about objects and how
to distribute them, concentrating on
the Common Object Request Broker
Architecture (Corba) and the Object
Management Architecture. It also
refers to other specifications—such
as the Unified Modeling Language,
Meta-Object facility, and XML
Metadata Interchange Format—that
concentrate more on analysis, de-
sign, and information-passing issues.

Jon Siegel organized his book into
three conceptual sections. Section 1
introduces Corba and is useful for
people who don’t know the basics of
the standard and for architects who
need to compare it to similar solu-
tions (such as COM4+). Section 2
concentrates more on technical de-
tails, such as the Object Request
Broker (ORB) implementation, Cor-
baServices, CorbaFacilities (busi-
ness-oriented services), and CCM
(Corba Component Model). Section
3 provides a programmatic example
that implements a simple point-of-
sale system using three different lan-
guages (C++, Java, and Cobol) on
many Corba implementations (such
as IBM, Orbix, Inprise, and so
forth).

Siegel covers all the OMG’s speci-
fications, but he doesn’t cover them
well enough to call this book a user’s
guide. He explains the objectives of
the OMG’s standards and issues that
they solve instead of giving a deep
description of Corba’s API and tips
105

May/June 2001 1EEE SOFTWARE

BOOKSHELF

on how to program a Corba system.

Siegel directs the content toward
different kinds of readers, from man-
agers and architects to enterprise pro-
grammers. He also uses an informal
writing style to help readers under-
stand difficult issues and keep their at-
tention. Unfortunately, his attempt to
make the book suitable for all readers
ends up being the book’s biggest
drawback. From a programmer’s
point of view, the content isn’t deep
enough, the example is too simple (it
does not use transactions, which is a
must for enterprise applications), and
Siegel concentrates more on showing
how to accomplish interoperability
(using different languages and Corba
implementations) than on real Corba
tips, idioms, and patterns. He does
not provide a complete description of
the frameworks Corba implements or
the object’s IDLs that compose those
frameworks.

If you are a programmer, you will
find that the most interesting chap-

P et

L 4

ters are the ones that discuss the
ORB. Those chapters explain some
inside details that are important to
consider if you want to implement a
Corba system.

On the other hand, if you need to
know what Corba is and what it
covers, you’ll want this book. It also
shows how the OMG is focusing on
giving good and complete solutions
for enterprise systems problems. A
good example of such vision is the
new type of object called valuetype,
which lets the systems pass objects
by value, not just by reference (a so-
lution needed after the Java ability
of sending objects by the wire).
Helping this vision are the new ser-
vices’ specifications like the CCM,
Quality Of Service, and the new Per-
sistence State Service that replaces
the previous persistence specifica-
tion because of its lack of accep-
tance and use.

Another example of how the OMG
is working to minimize the implemen-

SOFTWARE PROCESS ACHIEVEMENT AWARD

Advanced Information Services

1997
1995

NASA Goddard

COMPUTER ENTREPRENEUR AWARD
William Hewlett and David Packard

ComPUTER PIONEER AWARD
Grace M. Hopper

SEYMOUR CRAY COMPUTER SCIENCE AND ENGINEERING AWARD

Hughes
Raytheon

S.
S

1999

1994

1995

L)

Tsutomu KAnAI AWARD

Al

Kenneth L. Thompson

1999

computer.org/awards/

106 1EEE SOFTWARE May/June 2001

tation problems of enterprise systems
is the CorbaFacilities. These specifica-
tions are oriented to solve domain-spe-
cific problems. Right now, the OMG’s
Domain Technology Committee in-
cludes task forces to manage issues for
financing, electronic commerce, manu-
facturing, telecommunications, health-
care, and more. As Siegel expresses in
the book, this is the fastest-growing
OMG committee, and it will help the
interoperability (at system level) of
different domain and nondomain
systems.

In summary, the book explains
what all the specifications do but in a
more readable way, suitable to peo-
ple who are less technical. It lacks the
details needed to implement a Corba
system, but it is good for people who
need to know about the big picture

of Corba. @

Hernan Wilkinson is an architect at the Banco Galicia,
Argentina. Contact him at hernan.wilkinson@bancogalicia.com.ar.

You work hard.
We notice.

IEEE

COMPUTER
SOCIETY

