
Τεχνολογία λογισμικού στην πράξη
Java Style

Διομήδης Σπινέλλης
Τμήμα Διοικητικής Επιστήμης και Τεχνολογίας

Οικονομικό Πανεπιστήμιο Αθηνών

dds@aueb.gr
http://www.dmst.aueb.gr/dds

@CoolSWEng

2022-11-03

Ποιότητα κώδικα

Figure 1: Ποιότητα κώδικα

(XKCD — BY NC 2.5)

Overview
• Coding style
• Writing testable code
• Best practices

Recommended reading
• Google’s Java Style Guide.
• Oracle’s Code Conventions for the Java Programming Language
• Twitter’s Java Style Guide (covered here)
• Effective Java
• Java Practices
• Java Concurrency in Practice
• Code Complete 2

1

mailto:dds@aueb.gr
http://www.dmst.aueb.gr/dds
https://twitter.com/CoolSWEng
https://xkcd.com/1513/
https://google.github.io/styleguide/javaguide.html
http://www.oracle.com/technetwork/java/codeconvtoc-136057.html
https://github.com/twitter/commons/blob/master/src/java/com/twitter/common/styleguide.md
http://www.amazon.com/Effective-Java-Edition-Joshua-Bloch/dp/0321356683
http://www.javapractices.com/home/HomeAction.do
http://jcip.net/
http://www.stevemcconnell.com/cc.htm

Coding style

Formatting

Use line breaks wisely
There are generally two reasons to insert a line break:

1. Your statement exceeds the column limit.

2. You want to logically separate a thought.

Writing code is like telling a story. Written language constructs like chapters,
paragraphs, and punctuation (e.g. semicolons, commas, periods, hyphens)
convey thought hierarchy and separation. We have similar constructs in
programming languages; you should use them to your advantage to effectively
tell the story to those reading the code.

Indent style
Use the “one true brace style” (1TBS). Indent size is 4 columns.

// Like this.
if (x < 0) {

negative(x);
} else {

nonnegative(x);
}

// Not like this.
if (x < 0)

negative(x);

// Also not like this.
if (x < 0) negative(x);

Continuation style
Continuation indent is 8 columns.

// Bad.
// ‐ Line breaks are arbitrary.
// ‐ Scanning the code makes it difficult to piece the message together.
throw new IllegalStateException("Failed to process request" + request.getId()

+ " for user " + user.getId() + " query: '" + query.getText()
+ "'");

// Good.

2

http://en.wikipedia.org/wiki/Indent_style#Variant:_1TBS

// ‐ Each component of the message is separate and self‐
contained.
// ‐ Adding or removing a component of the message requires minimal reformatting.
throw new IllegalStateException("Failed to process"

+ " request " + request.getId()
+ " for user " + user.getId()
+ " query: '" + query.getText() + "'");

Don’t break up a statement unnecessarily.
// Bad.
final String value =

otherValue;

// Good.
final String value = otherValue;

Method declaration continuations.
// Sub‐optimal since line breaks are arbitrary and only filling lines.
String downloadAnInternet(Internet internet, Tubes tubes,

Blogosphere blogs, Amount<Long, Data> bandwidth) {
tubes.download(internet);
...

}

// Acceptable.
String downloadAnInternet(Internet internet, Tubes tubes, Blogosphere blogs,

Amount<Long, Data> bandwidth) {
tubes.download(internet);
...

}

// Nicer, as the extra newline gives visual separation to the method body.
String downloadAnInternet(Internet internet, Tubes tubes, Blogosphere blogs,

Amount<Long, Data> bandwidth) {

tubes.download(internet);
...

}

// Also acceptable, but may be awkward depending on the column depth of the opening parenthesis.
public String downloadAnInternet(Internet internet,

Tubes tubes,
Blogosphere blogs,

3

Amount<Long, Data> bandwidth) {
tubes.download(internet);
...

}

// Preferred for easy scanning and extra column space.
public String downloadAnInternet(

Internet internet,
Tubes tubes,
Blogosphere blogs,
Amount<Long, Data> bandwidth) {

tubes.download(internet);
...

}

Chained method calls
// Bad.
// ‐ Line breaks are based on line length, not logic.
Iterable<Module> modules = ImmutableList.<Module>builder().add(new LifecycleModule())

.add(new AppLauncherModule()).addAll(application.getModules()).build();

// Better.
// ‐ Calls are logically separated.
// ‐ However, the trailing period logically splits a statement across two lines.
Iterable<Module> modules = ImmutableList.<Module>builder().

add(new LifecycleModule()).
add(new AppLauncherModule()).
addAll(application.getModules()).
build();

// Good.
// ‐ Method calls are isolated to a line.
// ‐ The proper location for a new method call is unambiguous.
Iterable<Module> modules = ImmutableList.<Module>builder()

.add(new LifecycleModule())

.add(new AppLauncherModule())

.addAll(application.getModules())

.build();

No tabs
An oldie, but goodie. We’ve found tab characters to cause more harm than
good.

4

70 column limit
You should follow the convention set by the body of code you are working with.
We tend to use 70 columns for a balance between fewer continuation lines but
still easily fitting two editor tabs side-by-side on a reasonably-high resolution
display.

CamelCase for types, camelCase for variables, UPPER_SNAKE
for constants

No trailing whitespace
Trailing whitespace characters, while logically benign, add nothing to the pro-
gram. However, they do serve to frustrate developers when using keyboard
shortcuts to navigate code.

Field, class, and method declarations

Modifier order
Follow the Java Language Specification for modifier ordering (sections 8.1.1,
8.3.1 and 8.4.3).

// Bad.
final volatile private String value;

// Good.
private final volatile String value;

Variable naming

Extremely short variable names should be reserved for in-
stances like loop indices.
// Bad.
// ‐ Field names give little insight into what fields are used for.
class User {
private final int a;
private final String m;

...
}

// Good.
class User {
private final int ageInYears;

5

http://docs.oracle.com/javase/specs/
http://docs.oracle.com/javase/specs/jls/se7/html/jls-8.html#jls-8.1.1
http://docs.oracle.com/javase/specs/jls/se7/html/jls-8.html#jls-8.3.1
http://docs.oracle.com/javase/specs/jls/se7/html/jls-8.html#jls-8.4.3

private final String maidenName;

...
}

Include units in variable names
// Bad.
long pollInterval;
int fileSize;

// Good.
long pollIntervalMs;
int fileSizeGb.

// Better.
// ‐ Unit is built in to the type.
// ‐ The field is easily adaptable between units, readability is high.
Amount<Long, Time> pollInterval;
Amount<Integer, Data> fileSize;

Don’t embed metadata in variable names
• A variable name should describe the variable’s purpose.

• Adding extra information like scope and type is generally a sign of a bad
variable name.

• Avoid embedding the field type in the field name.

// Bad. Map<Integer, User> idToUserMap; String valueString;

// Good. Map<Integer, User> usersById; String value;

Don’t embed scope in variable names
Avoid embedding scope information in a variable. Hierarchy-based naming sug-
gests that a class is too complex and should be broken apart.

// Bad.
String _value;
String mValue;

// Good.
String value;

6

Space pad operators and equals.
// Bad.
// ‐ This offers poor visual separation of operations.
int foo=a+b+1;

// Good.
int foo = a + b + 1;

Be explicit about operator precedence
Don’t make your reader open the spec to confirm, if you expect a specific oper-
ation ordering, make it obvious with parenthesis.

// Bad.
return a << 8 * n + 1 | 0xFF;

// Good.
return (a << (8 * n) + 1) | 0xFF;

It’s even good to be really obvious.

if ((values != null) && (10 > values.size())) {
...

}

Make structure match intent
// Bad
if (booleanExpression) {

return TRUE;
} else {

return FALSE;
}

// Good
return booleanExpression;

Documentation
The more visible a piece of code is (and by extension - the farther away con-
sumers might be), the more documentation is needed.

“I’m writing a report about…”
Your elementary school teacher was right - you should never start a statement
this way. Likewise, you shouldn’t write documentation this way.

7

http://docs.oracle.com/javase/tutorial/java/nutsandbolts/operators.html

// Bad.
/**
* This is a class that implements a cache. It does caching for you.
*/

class Cache {
...

}

// Good.
/**
* A volatile storage for objects based on a key, which may be invalidated and discarded.
*/

class Cache {
...

}

Documenting a class
Documentation for a class may range from a single sentence to paragraphs with
code examples. Documentation should serve to disambiguate any conceptual
blanks in the API, and make it easier to quickly and correctly use your API. A
thorough class doc usually has a one sentence summary and, if necessary, a
more detailed explanation.

/**
* An RPC equivalent of a unix pipe tee. Any RPC sent to the tee input is guaranteed to have
* been sent to both tee outputs before the call returns.
*
* @param <T> The type of the tee'd service.
*/

public class RpcTee<T> {
...

}

Documenting a method
A method doc should tell what the method does. Depending on the argument
types, it may also be important to document input format.

// Bad.
// ‐ The doc tells nothing that the method declaration didn't.
// ‐ This is the 'filler doc'. It would pass style checks, but doesn't help anybody.
/**
* Splits a string.
*
* @param s A string.

8

* @return A list of strings.
*/

List<String> split(String s);

// Better.
// ‐ We know what the method splits on.
// ‐ Still some undefined behavior.
/**
* Splits a string on whitespace.
*
* @param s The string to split. An {@code null} string is treated as an empty string.
* @return A list of the whitespace‐delimited parts of the input.
*/

List<String> split(String s);

// Great.
// ‐ Covers yet another edge case.
/**
* Splits a string on whitespace. Repeated whitespace characters are collapsed.
*
* @param s The string to split. An {@code null} string is treated as an empty string.
* @return A list of the whitespace‐delimited parts of the input.
*/

List<String> split(String s);

Be professional
We’ve all encountered frustration when dealing with other libraries, but ranting
about it doesn’t do you any favors. Suppress the expletives and get to the point.

// Bad.
// I hate xml/soap so much, why can't it do this for me!?
try {
userId = Integer.parseInt(xml.getField("id"));

} catch (NumberFormatException e) {
...

}

// Good.
// TODO(Jim): Tuck field validation away in a library.
try {
userId = Integer.parseInt(xml.getField("id"));

} catch (NumberFormatException e) {
...

}

9

Don’t document overriding methods (usually)
interface Database {
/**
* Gets the installed version of the database.
*
* @return The database version identifier.
*/

String getVersion();
}

// Bad.
// ‐ Overriding method doc doesn't add anything.
class PostgresDatabase implements Database {
/**
* Gets the installed version of the database.
*
* @return The database version identifier.
*/

@Override
public String getVersion() {
...

}
}

// Good.
class PostgresDatabase implements Database {
@Override
public int getVersion();

}

// Great.
// ‐ The doc explains how it differs from or adds to the interface doc.
class TwitterDatabase implements Database {
/**
* Semantic version number.
*
* @return The database version in semver format.
*/

@Override
public String getVersion() {
...

}
}

10

Use javadoc features

No author tags
Code can change hands numerous times in its lifetime, and quite often the
original author of a source file is irrelevant after several iterations. We find it’s
better to trust commit history and OWNERS files to determine ownership of a body
of code.

Imports

Import ordering
Imports are grouped by top-level package, with blank lines separating groups.
Static imports are grouped in the same way, in a section below traditional im-
ports.

import java.*
import javax.*

import scala.*

import com.*

import net.*

import org.*

import com.twitter.*

import static *

No wildcard imports
Wildcard imports make the source of an imported class less clear. They also
tend to hide a high class fan-out. See also texas imports

// Bad.
// ‐ Where did Foo come from?
import com.twitter.baz.foo.*;
import com.twitter.*;

interface Bar extends Foo {
...

}

// Good.

11

http://en.wikipedia.org/wiki/Coupling_(computer_programming)#Module_coupling

import com.twitter.baz.foo.BazFoo;
import com.twitter.Foo;

interface Bar extends Foo {
...

}

Use annotations wisely

@Nullable
By default - disallow null. When a variable, parameter, or method return value
may be null, be explicit about it by marking @Nullable. This is advisable even
for fields/methods with private visibility.

class Database {
@Nullable private Connection connection;

@Nullable
Connection getConnection() {
return connection;

}

void setConnection(@Nullable Connection connection) {
this.connection = connection;

}
}

@VisibleForTesting
Sometimes members and functions may be required for good test coverage.
Make these package-private and tag with @VisibleForTesting to indicate the
purpose for visibility.

Constants are a great example of things that are frequently exposed in this way.

// Bad.
// ‐ Any adjustments to field names need to be duplicated in the test.
class ConfigReader {
private static final String USER_FIELD = "user";

Config parseConfig(String configData) {
...

}
}
public class ConfigReaderTest {
@Test

12

http://code.google.com/p/jsr-305/source/browse/trunk/ri/src/main/java/javax/annotation/Nullable.java?r=24
http://docs.guava-libraries.googlecode.com/git-history/v11.0.2/javadoc/com/google/common/annotations/VisibleForTesting.html

public void testParseConfig() {
...

assertEquals(expectedConfig, reader.parseConfig("{user: bob}"));
}

}

// Good.
// ‐ The test borrows directly from the same constant.
class ConfigReader {
@VisibleForTesting static final String USER_FIELD = "user";

Config parseConfig(String configData) {
...

}
}
public class ConfigReaderTest {
@Test
public void testParseConfig() {
...
assertEquals(expectedConfig,
reader.parseConfig(String.format("{%s: bob}", ConfigReader.USER_FIELD)));

}
}

Use interfaces
• Interfaces decouple functionality from implementation, allowing you to use
multiple implementations without changing consumers.

• Interfaces are a great way to isolate packages - provide a set of interfaces,
and keep your implementations package private.

Small interfaces
Many small interfaces can seem heavyweight, since you end up with a large
number of source files. Consider the pattern below as an alternative.

interface FileFetcher {
File getFile(String name);

// All the benefits of an interface, with little source management overhead.
// This is particularly useful when you only expect one implementation of an interface.
static class HdfsFileFetcher implements FileFetcher {
@Override File getFile(String name) {
...

}
}

13

}

Leverage existing interfaces
Sometimes an existing interface allows your class to easily ‘plug in’ to other
related classes. This leads to highly cohesive code.

// An unfortunate lack of consideration. Anyone who wants to interact with Blobs will need to
// write specific glue code.
class Blobs {
byte[] nextBlob() {
...

}
}

// Much better. Now the caller can easily adapt this to standard collections, or do more
// complex things like filtering.
class Blobs implements Iterable<byte[]> {
@Override
Iterator<byte[]> iterator() {
...

}
}

Warning - don’t bend the definition of an existing interface to make this work. If
the interface doesn’t conceptually apply cleanly, it’s best to avoid this.

Writing testable code
Writing unit tests doesn’t have to be hard. You can make it easy for yourself if
you keep testability in mind while designing your classes and interfaces.

Let your callers construct support objects
// Bad.
// ‐ A unit test needs to manage a temporary file on disk to test this class.
class ConfigReader {
private final InputStream configStream;
ConfigReader(String fileName) throws IOException {
this.configStream = new FileInputStream(fileName);

}
}

// Good.
// ‐ Testing this class is as easy as using ByteArrayInputStream with a String.
class ConfigReader {

14

http://en.wikipedia.org/wiki/Cohesion_(computer_science)

private final InputStream configStream;
ConfigReader(InputStream configStream){
this.configStream = checkNotNull(configStream);

}
}

Testing antipatterns

Time-dependence
Code that captures real wall time can be difficult to test repeatably, especially
when time deltas are meaningful. Therefore, try to avoid new Date(), Sys‐
tem.currentTimeMillis(), and System.nanoTime(). A suitable replace-
ment for these is Clock; using Clock.SYSTEM_CLOCK when running normally,
and FakeClock in tests.

The hidden stress test
Avoid writing unit tests that attempt to verify a certain amount of performance.
This type of testing should be handled separately, and run in a more controlled
environment than unit tests typically are.

Thread.sleep()
Sleeping is rarely warranted, especially in test code. Sleeping is expressing
an expectation that something else is happening while the executing thread is
suspended. This quickly leads to brittleness; for example if the background
thread was not scheduled while you were sleeping.

Sleeping in tests is also bad because it sets a firm lower bound on how fast
tests can execute. No matter how fast the machine is, a test that sleeps for one
second can never execute in less than one second. Over time, this leads to
very long test execution cycles.

Avoid randomness in tests
Using random values may seem like a good idea in a test, as it allows you to
cover more test cases with less code. The problem is that you lose control over
which test cases you’re covering. When you do encounter a test failure, it may
be difficult to reproduce. Pseudorandom input with a fixed seed is slightly better,
but in practice rarely improves test coverage. In general it’s better to use fixed
input data that exercises known edge cases.

15

https://github.com/twitter/commons/blob/master/src/java/com/twitter/common/util/Clock.java
https://github.com/twitter/commons/blob/master/src/java/com/twitter/common/util/Clock.java#L32
https://github.com/twitter/commons/blob/master/src/java/com/twitter/common/util/testing/FakeClock.java

Best practices

Defensive programming

Preconditions
Preconditions checks are a good practice, since they serve as a well-defined
barrier against bad input from callers. As a convention, object parameters to
public constructors and methods should always be checked against null, unless
null is explicitly allowed.

// Bad.
// ‐ If the file or callback are null, the problem isn't noticed until much later.
class AsyncFileReader {
void readLater(File file, Closure<String> callback) {
scheduledExecutor.schedule(new Runnable() {
@Override public void run() {
callback.execute(readSync(file));

}
}, 1L, TimeUnit.HOURS);

}
}

// Good.
class AsyncFileReader {
void readLater(File file, Closure<String> callback) {
checkNotNull(file);

checkArgument(file.exists() && file.canRead(), "File must exist and be readable.");
checkNotNull(callback);

scheduledExecutor.schedule(new Runnable() {
@Override public void run() {
callback.execute(readSync(file));

}
}, 1L, TimeUnit.HOURS);

}
}

Minimize visibility
In a class API, you should support access to any methods and fields that you
make accessible. Therefore, only expose what you intend the caller to use.
This can be imperative when writing thread-safe code.

public class Parser {
// Bad.
// ‐ Callers can directly access and mutate, possibly breaking internal assumptions.

16

public Map<String, String> rawFields;

// Bad.
// ‐ This is probably intended to be an internal utility function.
public String readConfigLine() {
..

}
}

// Good.
// ‐ rawFields and the utility function are hidden
// ‐ The class is package‐private, indicating that it should only be accessed indirectly.
class Parser {
private final Map<String, String> rawFields;

private String readConfigLine() {
..

}
}

Favor immutability
Mutable objects carry a burden - you need to make sure that those who are
able to mutate it are not violating expectations of other users of the object, and
that it’s even safe for them to modify.

// Bad.
// ‐ Anyone with a reference to User can modify the user's birthday.
// ‐ Calling getAttributes() gives mutable access to the underlying map.
public class User {
public Date birthday;
private final Map<String, String> attributes = Maps.newHashMap();

...

public Map<String, String> getAttributes() {
return attributes;

}
}

// Good.
public class User {
private final Date birthday;
private final Map<String, String> attributes = Maps.newHashMap();

...

17

public Map<String, String> getAttributes() {
return ImmutableMap.copyOf(attributes);

}

// If you realize the users don't need the full map, you can avoid the map copy
// by providing access to individual members.
@Nullable
public String getAttribute(String attributeName) {
return attributes.get(attributeName);

}
}

Be wary of null
Use @Nullable where prudent, but favor Optional over @Nullable. Op‐
tional provides better semantics around absence of a value.

Clean up with finally
FileInputStream in = null;
try {
...

} catch (IOException e) {
...

} finally {
Closeables.closeQuietly(in);

}

Use finally to avoid leaks
Even if there are no checked exceptions, there are still cases where you should
use try/finally to guarantee resource symmetry.

// Bad.
// ‐ Mutex is never unlocked.
mutex.lock();
throw new NullPointerException();
mutex.unlock();

// Good.
mutex.lock();
try {
throw new NullPointerException();

} finally {

18

https://docs.oracle.com/javase/8/docs/api/java/util/Optional.html

mutex.unlock();
}

// Bad.
// ‐ Connection is not closed if sendMessage throws.
if (receivedBadMessage) {
conn.sendMessage("Bad request.");
conn.close();

}

// Good.
if (receivedBadMessage) {
try {
conn.sendMessage("Bad request.");

} finally {
conn.close();

}
}

Clean code

Disambiguate
Favor readability - if there’s an ambiguous and unambiguous route, always favor
unambiguous.

// Bad.
// ‐ Depending on the font, it may be difficult to discern 1001 from 100l.
long count = 100l + n;

// Good.
long count = 100L + n;

Remove dead code
Delete unused code (imports, fields, parameters, methods, classes). They will
only rot.

Use general types
When declaring fields and methods, it’s better to use general types whenever
possible. This avoids implementation detail leak via your API, and allows you
to change the types used internally without affecting users or peripheral code.

// Bad.
// ‐ Implementations of Database must match the ArrayList return type.

19

// ‐ Changing return type to Set<User> or List<User> could break implementations and users.
interface Database {
ArrayList<User> fetchUsers(String query);

}

// Good.
// ‐ Iterable defines the minimal functionality required of the return.
interface Database {
Iterable<User> fetchUsers(String query);

}

Always use type parameters
Java 5 introduced support for generics. This added type parameters to col-
lection types, and allowed users to implement their own type-parameterized
classes. Backwards compatibility and type erasure mean that type parameters
are optional, however depending on usage they do result in compiler warnings.

We conventionally include type parameters on every declaration where the type
is parameterized. Even if the type is unknown, it’s preferable to include a wild-
card or wide type.

Stay out of Texas
Try to keep your classes bite-sized and with clearly-defined responsibilities.
This can be really hard as a program evolves.

• texas imports
• texas constructors: Can the class be cleanly broken apart? If not, con-
sider builder pattern.

• texas methods

We could do some science and come up with a statistics-driven threshold for
each of these, but it probably wouldn’t be very useful. This is usually just a gut
instinct, and these are traits of classes that are too large or complex and should
be broken up.

Avoid typecasting
Typecasting is a sign of poor class design, and can often be avoided. An obvi-
ous exception here is overriding equals.

Use final fields
See also favor immutability

20

http://docs.oracle.com/javase/tutorial/java/generics/index.html
http://docs.oracle.com/javase/tutorial/java/generics/erasure.html
http://en.wikipedia.org/wiki/Texas-sized
http://docs.oracle.com/javase/7/docs/api/java/lang/Object.html#equals(java.lang.Object)

Final fields are useful because they declare that a field may not be reassigned.
When it comes to checking for thread-safety, a final field is one less thing that
needs to be checked.

Avoid mutable static state
Mutable static state is rarely necessary, and causes loads of problems when
present. A very simple case that mutable static state complicates is unit testing.
Since unit tests runs are typically in a single VM, static state will persist through
all test cases. In general, mutable static state is a sign of poor class design.

Exceptions

Catch narrow exceptions
Sometimes when using try/catch blocks, it may be tempting to just catch Ex‐
ception, Error, or Throwable. This is a bad idea, for example, catch Ex‐
ception would capture NullPointerException, and catch Throwable
would capture OutOfMemoryError.

// Bad.
// ‐ If a RuntimeException happens, the program continues rather than aborting.
try {
storage.insertUser(user);

} catch (Exception e) {
LOG.error("Failed to insert user.");

}

try {
storage.insertUser(user);

} catch (StorageException e) {
LOG.error("Failed to insert user.");

}

Don’t swallow exceptions
An empty catch block is usually a bad idea, as you have no signal of a problem.
Coupled with narrow exception violations, it’s a recipe for disaster.

Throw specific exceptions
Let your API users obey catch narrow exceptions, don’t throw Exception. You
should alsomake an effort to hide implementation details from your callers when
it comes to exceptions.

21

// Bad.
// ‐ Caller is forced to catch Exception, trapping many unnecessary types of issues.
interface DataStore {
String fetchValue(String key) throws Exception;

}

// Better.
// ‐ The interface leaks details about one specific implementation.
interface DataStore {
String fetchValue(String key) throws SQLException, UnknownHostException;

}

// Good.
// ‐ A custom exception type insulates the user from the implementation.
// ‐ Different implementations aren't forced to abuse irrelevant exception types.
interface DataStore {
String fetchValue(String key) throws StorageException;

static class StorageException extends Exception {
...

}
}

Use newer/better libraries

StringBuilder over StringBuffer
StringBuffer is thread-safe, which is rarely needed.

List over Vector
Vector is synchronized, which is often unneeded. When synchronization is
desirable, a synchronized list can usually serve as a drop-in replacement for
Vector.

equals() and hashCode()
• If you override one, you must implement both.
• In brief, the equals/hashCode contract specifies:

– Whenever invoked on the same object, hashCode must return the
same integer, provided no information used in equals comparisons
is modified

– For objects where equals(Object) is true, calling hashCode on each
must produce the same result.

– Unequal objects should but need not return different hash codes.

22

http://docs.oracle.com/javase/7/docs/api/java/lang/StringBuffer.html
http://docs.oracle.com/javase/7/docs/api/java/util/Collections.html#synchronizedList(java.util.List)
https://docs.oracle.com/javase/8/docs/api/java/lang/Object.html#hashCode--

• Objects.equal() and Objects.hashCode(), which handle null val-
ues, make it very easy to follow these contracts.

Premature optimization is the root of all evil.
Donald Knuth is a smart guy, and he had a few things to say on the topic.

Unless you have strong evidence that an optimization is necessary, it’s usually
best to implement the un-optimized version first (possibly leaving notes about
where optimizations could be made).

So before you spend a week writing your memory-mapped compressed
huffman-encoded hashmap, use the stock stuff first and measure.

Special comments
• Use TODO for work that still needs to be done.
• Use XXX in a comment to flag something that is bogus but works.
• Use FIXME to flag something that is bogus and broken.

Leave TODOs early and often
A TODO isn’t a bad thing - it’s signaling a future developer (possibly yourself)
that a consideration was made, but omitted for various reasons. It can also
serve as a useful signal when debugging.

Leave no TODO unassigned
TODOs should have owners, otherwise they are unlikely to ever be resolved.

// Bad.
// ‐ TODO is unassigned.
// TODO: Implement request backoff.

// Good.
// TODO(George Washington): Implement request backoff.

Adopt TODOs
You should adopt an orphan if the owner has left the company/project, or if you
make modifications to the code directly related to the TODO topic.

Obey the Law of Demeter (LoD)
The Law of Demeter is most obviously violated by breaking the one dot rule,
but there are other code structures that lead to violations of the spirit of the law.

23

http://c2.com/cgi/wiki?PrematureOptimization
http://en.wikipedia.org/wiki/Law_of_Demeter
http://en.wikipedia.org/wiki/Law_of_Demeter#In_object-oriented_programming

In classes
Take what you need, nothing more. This often relates to texas constructors but
it can also hide in constructors or methods that take few parameters. Defer
assembly to code that knows enough to assemble and instead just take the
minimal interface you need to get your work done.

// Bad.
// ‐ Weigher uses hosts and port only to immediately construct another object.
class Weigher {
private final double defaultInitialRate;

Weigher(Iterable<String> hosts, int port, double defaultInitialRate) {
this.defaultInitialRate = validateRate(defaultInitialRate);
this.weightingService = createWeightingServiceClient(hosts, port);
}

}

// Good.
class Weigher {
private final double defaultInitialRate;

Weigher(WeightingService weightingService, double defaultInitialRate) {
this.defaultInitialRate = validateRate(defaultInitialRate);
this.weightingService = checkNotNull(weightingService);

}
}

Convenience constructors
If you want to provide a convenience constructor, a factory method or an exter-
nal factory in the form of a builder you still can, but by making the fundamental
constructor of a Weigher only take the things it actually uses it becomes easier
to unit-test and adapt as the system involves.

In methods
If a method has multiple isolated blocks consider naming these blocks by ex-
tracting them to readable helper methods that do just one thing. The classic
case is branched variable assignment. In the extreme, never do this:

void calculate(Subject subject) {
double weight;
if (useWeightingService(subject)) {
try {
weight = weightingService.weight(subject.id);

} catch (RemoteException e) {

24

throw new LayerSpecificException("Failed to look up weight for " + subject, e)
}

} else {
weight = defaultInitialRate * (1 + onlineLearnedBoost);

}

// Use weight here for further calculations
}

Better method example
void calculate(Subject subject) {
double weight = calculateWeight(subject);

// Use weight here for further calculations
}

private double calculateWeight(Subject subject) throws LayerSpecificException {
if (useWeightingService(subject)) {
return fetchSubjectWeight(subject.id)

} else {
return currentDefaultRate();

}
}

private double fetchSubjectWeight(long subjectId) {
try {
return weightingService.weight(subjectId);

} catch (RemoteException e) {
throw new LayerSpecificException("Failed to look up weight for " + subject, e)
}

}

private double currentDefaultRate() {
defaultInitialRate * (1 + onlineLearnedBoost);

}

A code reader that generally trustsmethods dowhat they say can scan calculate
quickly now and drill down only to those methods where I want to learn more.

Don’t Repeat Yourself (DRY)
Every piece of knowledge must have a single, unambiguous, authoritative rep-
resentation within a system.

For a more long-winded discussion on this topic, read here.

25

http://en.wikipedia.org/wiki/Don't_repeat_yourself
http://c2.com/cgi/wiki?DontRepeatYourself

Extract constants whenever it makes sense

Centralize duplicate logic in utility functions

Avoid unnecessary code

Superfluous temporary variables.
// Bad.
// ‐ The variable is immediately returned, and just serves to clutter the code.
List<String> strings = fetchStrings();
return strings;

// Good.
return fetchStrings();

Unneeded assignment.
// Bad.
// ‐ The null value is never realized.
String value = null;
try {
value = "The value is " + parse(foo);

} catch (BadException e) {
throw new IllegalStateException(e);

}

// Good
String value;
try {
value = "The value is " + parse(foo);

} catch (BadException e) {
throw new IllegalStateException(e);

}

The ‘fast’ implementation
Don’t bewilder your API users with a ‘fast’ or ‘optimized’ implementation of a
method.

int fastAdd(Iterable<Integer> ints);

// Why would the caller ever use this when there's a 'fast' add?
int add(Iterable<Integer> ints);

26

Complete example
/*
* Copyright (c) 1994‐1999 Sun Microsystems, Inc.
* 901 San Antonio Road, Palo Alto, California, 94303, U.S.A.
* All rights reserved.
*
* This software is the confidential and proprietary information of Sun
* Microsystems, Inc. ("Confidential Information"). You shall not
* disclose such Confidential Information and shall use it only in
* accordance with the terms of the license agreement you entered into
* with Sun.
*/

package java.blah;

import java.blah.blahdy.BlahBlah;

/**
* Class description goes here.
*/

public class Blah extends SomeClass {
/* A class implementation comment can go here. */

/** classVar1 documentation comment */
public static int classVar1;

/**
* classVar2 documentation comment that happens to be
* more than one line long
*/

private static Object classVar2;

/** instanceVar1 documentation comment */
public Object instanceVar1;

/** instanceVar2 documentation comment */
protected int instanceVar2;

/** instanceVar3 documentation comment */
private Object[] instanceVar3;

/**
* ...constructor Blah documentation comment...
*/

27

public Blah() {
// ...implementation goes here...

}

/**
* ...method doSomething documentation comment...
*/

public void doSomething() {
// ...implementation goes here...

}

/**
* ...method doSomethingElse documentation comment...
* @param someParam description
*/

public void doSomethingElse(Object someParam) {
// ...implementation goes here...

}
}

Acknowledgement
These notes are based on Twitter’s Java Style Guide, licensed under the
Apache License Version 2.0.

Άδεια διανομής

Εκτός αν αναφέρεται κάτι διαφορετικό, όλο το πρωτότυπο υλικό της σελίδας
αυτής του οποίου δημιουργός είναι ο Διομήδης Σπινέλλης παρέχεται σύμφωνα
με τους όρους της άδειας Creative Commons Αναφορά-Παρόμοια διανομή 3.0
Ελλάδα.

28

https://github.com/twitter/commons/blob/master/src/java/com/twitter/common/styleguide.md
http://www.apache.org/licenses/LICENSE-2.0
http://creativecommons.org/licenses/by-sa/3.0/gr/deed.el
http://creativecommons.org/licenses/by-sa/3.0/gr/deed.el

	Ποιότητα κώδικα
	Overview
	Recommended reading
	Coding style
	Formatting
	Use line breaks wisely
	Indent style
	Continuation style
	Don’t break up a statement unnecessarily.
	Method declaration continuations.
	Chained method calls
	No tabs
	70 column limit
	CamelCase for types, camelCase for variables, UPPER_SNAKE for constants
	No trailing whitespace
	Field, class, and method declarations
	Modifier order
	Variable naming
	Extremely short variable names should be reserved for instances like loop indices.
	Include units in variable names
	Don’t embed metadata in variable names
	Don’t embed scope in variable names
	Space pad operators and equals.
	Be explicit about operator precedence
	Make structure match intent
	Documentation
	“I’m writing a report about…”
	Documenting a class
	Documenting a method
	Be professional
	Don’t document overriding methods (usually)
	Use javadoc features
	No author tags
	Imports
	Import ordering
	No wildcard imports
	Use annotations wisely
	@Nullable
	@VisibleForTesting
	Use interfaces
	Small interfaces
	Leverage existing interfaces
	Writing testable code
	Let your callers construct support objects
	Testing antipatterns
	Time-dependence
	The hidden stress test
	Thread.sleep()
	Avoid randomness in tests
	Best practices
	Defensive programming
	Preconditions
	Minimize visibility
	Favor immutability
	Be wary of null
	Clean up with finally
	Use finally to avoid leaks
	Clean code
	Disambiguate
	Remove dead code
	Use general types
	Always use type parameters
	Stay out of Texas
	Avoid typecasting
	Use final fields
	Avoid mutable static state
	Exceptions
	Catch narrow exceptions
	Don’t swallow exceptions
	Throw specific exceptions
	Use newer/better libraries
	StringBuilder over StringBuffer
	List over Vector
	equals() and hashCode()
	Premature optimization is the root of all evil.
	Special comments
	Leave TODOs early and often
	Leave no TODO unassigned
	Adopt TODOs
	Obey the Law of Demeter (LoD)
	In classes
	Convenience constructors
	In methods
	Better method example
	Don’t Repeat Yourself (DRY)
	Extract constants whenever it makes sense
	Centralize duplicate logic in utility functions
	Avoid unnecessary code
	Superfluous temporary variables.
	Unneeded assignment.
	The ‘fast’ implementation
	Complete example
	Acknowledgement
	Άδεια διανομής

