Software Comprehension and Maintenance
June 2005

RF-IDs in the Kernel -- Episode 111:
I want to File Away

Achilleas Anagnostopoulos
(archie@istlab.dmst.aueb.gr)

Department of Management Science and Technology
Athens University Of Economics and Business

E .. E We need a uniﬁed

Low level access to readers | i way for reading and
‘ ' writing RF-ID tags

: from our own

f applications.

¥

: | Linux Virtual File System [The proposed
Linux Kernel ¢ Solution involves a
l I module for linux to

service this need.

Applications

We are here =9

Initial Concept

v

Plan of attack

<+

Select the best way to implement the module

<4

Define Interface for “talking” to applications

<4

Define Interface for “talking” to transponders

<

Write and Test the module

+

Submit the module for evaluation

The notion of the “i-node”
* A structure describing an entity in the filesystem and

containing all its attributes (size,owner,timestamps...)

 The kernel provides hooks which the filesystem uses to
map files and folders to i-nodes, create, move(rename) and
delete files.

* When the kernel runs our module for the first time we supply
a list with all the filesystem functions implemented by our

module.
Kernel iy, | RFID-fs module &b Kernel
functions

Example: If the kernel wants to look up a file in our filesystem:

Lookup

Kernel
result

Kernel | =-—p | Rfid fs lookup(...);

Just how many hook-able functions are there? MANY

void (*read_inode) (struct inode *);

void (*write_inode) (struct inode *, int);

void (*put_inode) (struct inode *);

void (*delete_inode) (struct inode *);

void (*put_super) (struct super_block *);

void (*write_super) (struct super_block *);

int (*statfs) (struct super_block *, struct statfs *);

int (*remount_fs) (struct super_block *, int *, char *);
void (*clear_inode) (struct inode *);

void (*umount begin) (struct super block *);

ssize_t (*readv) (struct file *, const struct iovec *, unsigned long,
loff t *);

loff t (*1lseek) (struct file *, loff t, int);

ssize t (*read) (struct file *, char *, size t, loff t *);

ssize t (*write) (struct file *, const char *, size t, loff t *);
int (*readdir) (struct file *, void *, filldir_t);

unsigned int (*poll) (struct file *, struct poll table struct *);
int (*ioctl) (struct inode *, struct file *, unsigned int, unsigned long);
int (*mmap) (struct file *, struct vim_area_struct *);

int (*open) (struct inode *, struct file *);

int (*flush) (struct file *);

int (*release) (struct inode *, struct file *);

int (*fsync) (struct file *, struct dentry *, int datasync);

int (*fasync) (int, struct file *, int);

* Do I need to write ALL those functions myself? Eeek!!!

* Nope! You just have to supply the functions you need to use. If you
are the kind of lazy programmer (like I am ©) you should consider
yourself lucky! The kernel writers even provide you with generic
functions to do most of the boring filesystem chores.

* You can actually write an FS 1n about 245 LOC! (ramfs)

RFID-fs: How is it organized

char *name void “data
int name_len int data_len tag_data *item
- long data_hash 9
char type bool is_dirty tag_list *next

tag_list *prev
inode™ my_inode reader *my_reader

Inode *my_inode
tag_list *my_tags reader *item

file_list *next file_data *my_file reader_callbacks
file_list *prev

file_data *item tag_data "my_tag

reader_list *next

file_list *children . reader_list *prev
void *reader_data

In RFID-fs there are three types of objects.

» Tag Files : They represent RFID-tags. You can read them.
like ordinary files and depending on the transponder h/w, also

write them.

* Reader Dirs : These are automatically allocated by the
module when a reader module 1s enabled. Inside them you
can find all tags in the reader’s range. However, you cannot

copy, rename, move or delete them.

 User Dirs : These are directories the user may create for
organizing his tags. You can do pretty much whatever you

want with these folders.

* How can we detect which tags are currently in the reader’s
range? Remember that if a tag cannot be read anymore, 1t has
to be removed from the filesystem as well.

 The current solution involves polling readers at fixed intervals.

» Readers are generally “slow”. Most are in the 10-100 tags/sec
range. So, polling 1sn’t really a bad solution! We use the
kernel timer mechanism for polling hw every 600-700 ms.

 Before polling, we flag all tags as “dirty”. Once a tag 1s read,
we clear its “dirty” flag. Any tags remaining “dirty” are
automatically removed.

e Google is your best friend!

e Use the source, Luke!

* There are a lot of e-books out there describing the
l ins and outs of the linux kernel and its API

* When everything else fails, use a hammer...

The complete source code of the
rfid-fs module will be soon available online

‘ The END - Any Questions?

	What’s on the menu…
	Flashback: What we are trying to accomplish
	The Roadmap or “Where are we now?”
	File Systems in Linux: The boring technical stuff (I)
	File Systems in Linux: The boring technical stuff (II)
	RFID-fs: How is it organized
	Speaking of Files and Folders
	The Problem: Detecting RFID-tags in the reader’s range.
	Some final tips regarding kernel hacking…

