
What’s on the menu…

Software Comprehension and Maintenance
June 2005

RF-IDs in the Kernel -- Episode III:
I want to File Away

Achilleas Anagnostopoulos
(archie@istlab.dmst.aueb.gr)

Department of Management Science and Technology
Athens University Of Economics and Business

Flashback: What we are trying to accomplish

We need a unified
way for reading and
writing RF-ID tags

from our own
applications.Event collector/dispatcher

Low level access to readers

Linux Kernel

Applications

Linux Virtual File System The proposed
solution involves a
specialized kernel

module for linux to
service this need.

The Roadmap or “Where are we now?”
Initial Concept

Plan of attack

Select the best way to implement the module

Define Interface for “talking” to applications

Define Interface for “talking” to transponders

Write and Test the moduleWe are here

Submit the module for evaluation

File Systems in Linux: The boring technical stuff (I)
The notion of the “i-node”

• A structure describing an entity in the filesystem and
containing all its attributes (size,owner,timestamps…)
• The kernel provides hooks which the filesystem uses to

map files and folders to i-nodes, create, move(rename) and
delete files.

• When the kernel runs our module for the first time we supply
a list with all the filesystem functions implemented by our
module.

Kernel RFID-fs module Kernelinit Our
functions

Example: If the kernel wants to look up a file in our filesystem:
Lookup
resultRfid_fs_lookup(…);Kernel Kernel

File Systems in Linux: The boring technical stuff (II)
MANYJust how many hook-able functions are there?

void (*read_inode) (struct inode *);
void (*write_inode) (struct inode *, int);
void (*put_inode) (struct inode *);
void (*delete_inode) (struct inode *);
void (*put_super) (struct super_block *);
void (*write_super) (struct super_block *);
int (*statfs) (struct super_block *, struct statfs *);
int (*remount_fs) (struct super_block *, int *, char *);
void (*clear_inode) (struct inode *);
void (*umount_begin) (struct super_block *);
ssize_t (*readv) (struct file *, const struct iovec *, unsigned long,
loff_t *);
……

loff_t (*llseek) (struct file *, loff_t, int);
ssize_t (*read) (struct file *, char *, size_t, loff_t *);
ssize_t (*write) (struct file *, const char *, size_t, loff_t *);
int (*readdir) (struct file *, void *, filldir_t);
unsigned int (*poll) (struct file *, struct poll_table_struct *);
int (*ioctl) (struct inode *, struct file *, unsigned int, unsigned long);
int (*mmap) (struct file *, struct vm_area_struct *);
int (*open) (struct inode *, struct file *);
int (*flush) (struct file *);
int (*release) (struct inode *, struct file *);
int (*fsync) (struct file *, struct dentry *, int datasync);
int (*fasync) (int, struct file *, int);
…….

• Do I need to write ALL those functions myself? Eeek!!!
• Nope! You just have to supply the functions you need to use. If you

are the kind of lazy programmer (like I am ☺) you should consider
yourself lucky! The kernel writers even provide you with generic
functions to do most of the boring filesystem chores.

• You can actually write an FS in about 245 LOC! (ramfs)

RFID-fs: How is it organized

tag_data

void *data
int data_len

long data_hash

bool is_dirty

reader *my_reader

tag_list

tag_data *item

tag_list *next
tag_list *prev

file_data

char *name
int name_len

char type

inode* my_inode

reader

Inode *my_inode
tag_list *my_tags

void *reader_data

reader_callbacks

reader_list

reader *item

reader_list *next
reader_list *prev

file_list

file_data *item

file_list *next
file_list *prev

inode_data

tag_data *my_tag

file_data *my_file

file_list *children

Speaking of Files and Folders

In RFID-fs there are three types of objects.

• Tag Files : They represent RFID-tags. You can read them.
like ordinary files and depending on the transponder h/w, also
write them.

• Reader Dirs : These are automatically allocated by the
module when a reader module is enabled. Inside them you
can find all tags in the reader’s range. However, you cannot
copy, rename, move or delete them.

• User Dirs : These are directories the user may create for
organizing his tags. You can do pretty much whatever you
want with these folders.

The Problem: Detecting RFID-tags in the reader’s range.

• How can we detect which tags are currently in the reader’s
range? Remember that if a tag cannot be read anymore, it has
to be removed from the filesystem as well.

• The current solution involves polling readers at fixed intervals.

• Readers are generally “slow”. Most are in the 10-100 tags/sec
range. So, polling isn’t really a bad solution! We use the
kernel timer mechanism for polling hw every 600-700 ms.

• Before polling, we flag all tags as “dirty”. Once a tag is read,
we clear its “dirty” flag. Any tags remaining “dirty” are
automatically removed.

Some final tips regarding kernel hacking…

• Google is your best friend!

• Use the source, Luke!

• There are a lot of e-books out there describing the
ins and outs of the linux kernel and its API

• When everything else fails, use a hammer…

The complete source code of the
rfid-fs module will be soon available onlineThe END - Any Questions?

	What’s on the menu…
	Flashback: What we are trying to accomplish
	The Roadmap or “Where are we now?”
	File Systems in Linux: The boring technical stuff (I)
	File Systems in Linux: The boring technical stuff (II)
	RFID-fs: How is it organized
	Speaking of Files and Folders
	The Problem: Detecting RFID-tags in the reader’s range.
	Some final tips regarding kernel hacking…

