Basic Programming Elements

What we observe is not nature itself, but nature exposed to our method of
questioning.

—Werner Heisenberg

ode reading is in many cases a bottom-up activity. In this chapter we review

the basic code elements that comprise programs and outline how to read and

reason about them. In Section 2.1 we dissect a simple program to demonstrate
the type of reasoning necessary for code reading. We will also have the first oppor-
tunity to identify common traps and pitfalls that we should watch for when reading
or writing code, as well as idioms that can be useful for understanding its meaning.
Sections 2.2 and onward build on our understanding by examining the functions,
control structures, and expressions that make up a program. Again, we will reason
about a specific program while at the same time examining the (common) control
constructs of C, C++, Java, and Perl. Our first two complete examples are C programs
mainly because realistic self-standing Java or C++ programs are orders of magni-
tude larger. However, most of the concepts and structures we introduce here apply
to programs written in any of the languages derived from C such as C++, C#, Java,
Perl, and PHP. We end this chapter with a section detailing how to reason about a pro-
gram’s flow of control at an abstract level, extracting semantic meaning out of its code
elements.

2.1 A Complete Program

A very simple yet useful program available on Unix systems is echo, which prints
its arguments on the standard output (typically the screen). It is often used to display

19

20 Basic Programming Elements

information to the user as in:

echo "Cool! Let's get to it..."

in the NetBSD upgrade script.! Figure 2.1 contains the complete source code of echo.?

As you can see, more than half of the program code consists of legal and admin-
istrative information such as copyrights, licensing information, and program version
identifiers. The provision of such information, together with a summary of the spe-
cific program or module functionality, is a common characteristic in large, organized
systems. When reusing source code from open-source initiatives, pay attention to the
licensing requirements imposed by the copyright notice (Figure 2.1:1).

C and C++ programs need to include header files (Figure 2.1:2) in order to
correctly use library functions. The library documentation typically lists the header
files needed for each function. The use of library functions without the proper header
files often generates only warnings from the C compiler yet can cause programs to
fail at runtime. Therefore, a part of your arsenal of code-reading procedures will be to
run the code through the compiler looking for warning messages (see Section 10.6).

Standard C, C++, and Java programs begin their execution from the function
(method in Java) called main (Figure 2.1:3). When examining a program for the first
time main can be a good starting point. Keep in mind that some operating environments
such as Microsoft Windows, Java applet and servlet hosts, palmtop PCs, and embedded
systems may use another function as the program’s entry point, for example, WinMain
orinit.

In C/C++ programs two arguments of the main function (customarily named argc
and argv) are used to pass information from the operating system to the program
about the specified command-line arguments. The argc variable contains the number
of program arguments, while argv is an array of strings containing all the actual
arguments (including the name of the program in position 0). The argv array is
terminated with a NULL element, allowing two different ways to process arguments:
either by counting based on argc or by going through argv and comparing each value
against NULL. In Java programs you will find the argv String array and its Tength
method used for the same purpose, while in Perl code the equivalent constructs you
will see are the @ARGV array and the $#ARGV scalar.

Inetbsdsrc/distrib/miniroot/upgrade.sh:98
Znetbsdsrc/bin/echo/echo.c:3-80

2.1 A Complete Program

~—fl Comment (copy

* Copyright (c) 1989, 1993
e The Regents of the University of California. A1l rights reserved.
* Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
* are met:

1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer
* 2. Redistributions in binary form must reproduce the above copyright
o notice, this 1list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. A1l advertising materials mentioning features or use of this software
o must display the following acknowledgement:
This product includes software developed by the University of

* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software

without specific prior written permission.

* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ‘‘AS IS’’ AND

* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. 1IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE

* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

* SUCH DAMAGE.

#include <sys/cdefs.h>

#ifndef Tint
__COPYRIGHT
"@(#) Copyright (c) 1989, 1993\n\
The Regents of the University of California. A1l rights reserved.\n");
__RCSID("$NetBSD: echo.c,v 1.7 1997/07/20 06:07:03 thorpej Exp $");
#endif /* not lint */

———— PStandard library headers for:
#include <stdio.hs P”.gtf

#include <stdlib.fs X1
#include <string.h> strcmp

int main __P(Cint, char *[1)); pre-ANS| compilers

int
main(argc, argv)
int argc;

] The program starts with this function
Number of arguments to the program

char *argv[]; @ The actual arguments (starting with the program name, terminated with NULL)

right and distri-
bution license),
ignored by the
compiler. This
license appears
on most programs
of this collection.
It will not be
shown again.

Copyright and
program version
identifiers that
will appear as
strings in the
executable
program

~— Function declaration with macro to hide arguments for

{ int nflag ;o—EWhen true output will not be terminated with a newline

/* This utility may NOT do getopt(3) option parsing. */

if (*++argv && !strcmp(¥argv, "-n" . .
q g p(ang) The first argument is -n
++argv; 1

nflag = 1; {3 Skip the argument and set nflag

else
nflag = 0;

while (varg) T There are arguments to process

(Void)printf("%s", *argv) ;-—ﬂ Print the argument

if (*++arg®) ____ Isthere a next argument? (Advance argv)
putchar(C’ T Print the separating space

} ;]))

if (Inflag) +— Terminate output with newline unless -n was given
putchar(’\n’);

exit(0); Exit program indicating success

Figure 2.1 The Unix echo program.

21

22 Basic Programming Elements

The declaration of argc and argv in our example (Figure 2.1:4) is somewhat

unusual. The typical C/C++ definition of main is®

int

main(int argc, char **argv)

while the corresponding Java class method definition is*

public static void main(String args[]) {

The definition in Figure 2.1:4 is using the old-style (pre-ANSI C) syntax of C, also
known as K&R C. You may come across such function definitions in older programs;
keep in mind that there are subtle differences in the ways arguments are passed and
the checks that a compiler will make depending on the style of the function definition.

When examining command-line programs you will find arguments processed by
using either handcrafted code or, in POSIX environments, the getopt function. Java
programs may be using the GNU gnu. getopt package’ for the same purpose.

The standard definition of the echo command is not compatible with the getopt
behavior; the single -n argument specifying that the output is not to be terminated with
a newline is therefore processed by handcrafted code (Figure 2.1:6). The comparison
starts by advancing argv to the first argument of echo (remember that position 0
contains the program name) and verifying that such an argument exists. Only then is
strcmp called to compare the argument against -n. The sequence of a check to see
if the argument is valid, followed by a use of that argument, combined with using the
Boolean AND (&&) operator, is a common idiom. It works because the && operator will
not evaluate its righthand side operand if its lefthand side evaluates to false. Calling
strcmp or any other string function and passing it a NULL value instead of a pointer to
actual character data will cause a program to crash in many operating environments.

Note the nonintuitive return value of strcmp when it is used for comparing two
strings for equality. When the strings compare equal it returns 0, the C value of false.
For this reason you will see that many C programs define a macro STREQ to return
true when two strings compare equal, often optimizing the comparison by comparing
the first two characters on the fly:¢

#define STREQ(a, b) (*(a) == *(b) && strcmp((a), (b)) == 0)

3netbsdsrc/ust.bin/elf2aout/elf2aout.c:72-73
4jtd/catalina/src/share/org/apache/catalina/startup/Catalina.java: 161
Shttp://www.gnu.org/software/java/packages.html
Snetbsdsrc/usr.bin/file/ascmagic.c:45

2.1 A Complete Program 23

Fortunately the behavior of the Java equals method results in a more intuitive
reading:’

if (isConfig) {
configFile = args[i];
isConfig = false;

} else if (args[i].equals("-config")) {
isConfig = true;

} else if (args[i].equals("-debug")) {
debug = true;

} else if (args[i].equals("-nonaming™)) {

The above sequence also introduces an alternative way of formatting the indentation
of cascading 1 f statements to express a selection. Read a cascading if-else if-...-
else sequence as a selection of mutually exclusive choices.

An important aspect of our 1T statement that checks for the -n flag is that nflag
will always be assigned a value: 0 or 1. nflag is not given a value when it is defined
(Figure 2.1:5). Therefore, until it gets assigned, its value is undefined: it is the number
that happened to be in the memory place it was stored. Using uninitialized variables is
a common cause of problems. When inspecting code, always check that all program
control paths will correctly initialize variables before these are used. Some compilers
may detect some of these errors, but you should not rely on it.

The part of the program that loops over all remaining arguments and prints
them separated by a space character is relatively straightforward. A subtle pitfall is
avoided by using printf with a string-formatting specification to print each argument
(Figure 2.1:7). The printf function will always print its first argument, the format
specification. You might therefore find a sequence that directly prints string variables
through the format specification argument:®

printf(version);

Printing arbitrary strings by passing them as the format specification to printf will
produce incorrect results when these strings contain conversion specifications (for
example, an SCCS revision control identifier containing the % character in the case
above).

7jt4/catalina/src/share/org/apache/catalina/startup/CatalinaService.java: 136143
8netbsdsrc/sys/arch/mvme68k/mvme68k/machdep.c:347

>

24 Basic Programming Elements

Even so, the use of printf and putchar is not entirely correct. Note how the
return value of printf is cast to void. printf will return the number of characters
that were actually printed; the cast to void is intended to inform us that this result
is intentionally ignored. Similarly, putchar will return EOF if it fails to write the
character. All output functions—in particular when the program’s standard output is
redirected to a file—can fail for a number of reasons.

e The device where the output is stored can run out of free space.
e The user’s quota of space on the device can be exhausted.

e The process may attempt to write a file that exceeds the process’s or the
system’s maximum file size.

e A hardware error can occur on the output device.

e The file descriptor or stream associated with the standard output may not be
valid for writing.

Not checking the result of output operations can cause a program to silently fail, losing
output without any warning. Checking the result of each and every output operation
can be inconvenient. A practical compromise you may encounter is to check for errors
on the standard output stream before the program terminates. This can be done in Java
programs by using the checkError method (we have yet to see this used in practice
on the standard output stream; even some JDK programs will fail without an error when
running out of space on their output device); in C++ programs by using a stream’s
fail, good, or bad methods; and in C code by using the ferror function:®

if (ferror(stdout))
err(l, "stdout");

After terminating its output with a newline, echo calls exit to terminate the
program indicating success (0). You will also often find the same result obtained by
returning O from the function main.

Exercise 2.1 Experiment to find out how your C, C++, and Java compilers deal with
uninitialized variables. Outline your results and propose an inspection procedure for locating
uninitialized variables.

Exercise 2.2 (Suggested by Dave Thomas.) Why can’t the echo program use the getopt
function?

9netbsdsre/bin/cat/cat.c:213-214

2.2 Functions and Global Variables 25

Exercise 2.3 Discuss the advantages and disadvantages of defining a macro like STREQ.
Consider how the C compiler could optimize strcmp calls.

Exercise 2.4 Look in your environment or on the book’s CD-ROM for programs that do
not verify the result of library calls. Propose practical fixes.

Exercise 2.5 Sometimes executing a program can be a more expedient way to understand
an aspect of its functionality than reading its source code. Devise a testing procedure or
framework to examine how programs behave on write errors on their standard output. Try it
on a number of character-based Java and C programs (such as the command-line version of
your compiler) and report your results.

Exercise 2.6 Identify the header files that are needed for using the library functions
sscanf, gsort, strchr, setjmp, adjacent_find, open, FormatMessage, and XtOwn-
Selection. The last three functions are operating environment—specific and may not exist in
your environment.

2.2 Functions and Global Variables

The program expand processes the files named as its arguments (or its standard input if
no file arguments are specified) by expanding hard tab characters (\t, ASCII character 9)
to a number of spaces. The default behavior is to set tab stops every eight characters;
this can be overridden by a comma or space-separated numeric list specified using
the -t option. An interesting aspect of the program’s implementation, and the reason
we are examining it, is that it uses all of the control flow statements available in the
C family of languages. Figure 2.2 contains the variable and function declarations of
expand,'® Figure 2.3 contains the main code body,!! and Figure 2.5 (in Section 2.5)
contains the two supplementary functions used.'?

When examining a nontrivial program, it is useful to first identify its major con-
stituent parts. In our case, these are the global variables (Figure 2.2:1) and the functions
main (Figure 2.3), getstops (see Figure 2.5:1), and usage (see Figure 2.5:8).

The integer variable nstops and the array of integers tabstops are declared as
global variables, outside the scope of function blocks. They are therefore visible to
all functions in the file we are examining.

The three function declarations that follow (Figure 2.2:2) declare functions that
will appear later within the file. Since some of these functions are used before they are
defined, in C/C++ programs the declarations allow the compiler to verify the arguments

19netbsdsrc/usr.bin/expand/expand.c:36-62
" netbsdsrc/usr.bin/expand/expand.c:64—151
12netbsdsrc/usr.bin/expand/expand.c:153-185

26 Basic Programming Elements

e Header files
#include <sys/cdefs.h>
#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>
#include <unistd.h>

int nstops; Global variables
int tabstops[100];

—FPF Forward function declarations
static void getstops(char *);
int main(int, char *);
static void usage (void);

Figure 2.2 Expanding tab stops (declarations).

passed to the function and their return values and generate correct corresponding code.
When no forward declarations are given, the C compiler will make assumptions about
the function return type and the arguments when the function is first used; C++
compilers will flag such cases as errors. If the following function definition does
not match these assumptions, the compiler will issue a warning or error message.
A However, if the wrong declaration is supplied for a function defined in another file,
the program may compile without a problem and fail at runtime.
Notice how the two functions are declared as static while the variables are not.
This means that the two functions are visible only within the file, while the variables
are potentially visible to all files comprising the program. Since expand consists only
of a single file, this distinction is not important in our case. Most linkers that combine
A compiled C files are rather primitive; variables that are visible to all program files
(that is, not declared as static) can interact in surprising ways with variables with
the same name defined in other files. It is therefore a good practice when inspecting
code to ensure that all variables needed only in a single file are declared as static.
Letus now look at the functions comprising expand. To understand what a function
(or method) is doing you can employ one of the following strategies.

e Guess, based on the function name.

e Read the comment at the beginning of the function.
e Examine how the function is used.

e Read the code in the function body.

e Consult external program documentation.

In our case we can safely guess that the function usage will display program
[[] usage information and then exit; many command-line programs have a function with
the same name and functionality. When you examine a large body of code, you

2.2 Functions and Global Variables

int
main(int argc, char *argv)

fl Variables local to main

int ¢, column;
int n;

while ((c = getopt (argc, argv, "t:")) != -1) {——HB Argument processing using getopt
switch (o) {

case 't’: Process the -t option
getstops(optarg) ;
break; .
case ’'?’: default: Switch labels grouped together
usageQ;)
¥ F1End of switch block
}
argc -= optind;

argv += optind;

do { At least once

g Process remaining arguments
if (argc > 0) {
if (freopen(argv[0], "r", stdin) == NULL) {
perror(argv[0]);
exit(l);

argc--, argv++;

column = 0;

while ((c = getchar()) != EOF) { fd Read characters until EOF
switch (c) {
case '\t'? Tab character

if (nstops == 0) {
do {

putchar(’ ’);
column++;
} while (column & 07);
CONtINUE) Process next character

if (nstops == 1) {

do {

putchar(C’ ’);

column++;
} while (((column - 1) % tabstops[0]) != (tabstops[0] - 1));
continue;

for (n = 0; n < nstops; n++)
if (tabstops[n] > column)

break;
if (n == nstops) {
putchar(C’ ’);
column++;
continue; E
while (column < tabstops[n]) {
putchar(’ ");
column++;
}
continue; B
case ’\b’! Backspace
if (column)
column--;
putchar(’\b’);
continue;
default: All other characters
putchar(c);
column++;
continue; B
case '\n’? — Newline
putchar(c);
column = 0;
continue; .
¥ End of switch block
¥ End of whiTe block
} while (argc > 0);End of do block

exit(0);

Figure 2.3 Expanding tab stops (main part).

27

28 Basic Programming Elements

will gradually pick up names and naming conventions for variables and functions.
These will help you correctly guess what they do. However, you should always be
prepared to revise your initial guesses following new evidence that your code reading
will inevitably unravel. In addition, when modifying code based on guesswork, you
should plan the process that will verify your initial hypotheses. This process can
involve checks by the compiler, the introduction of assertions, or the execution of
appropriate test cases.

The role of getstops is more difficult to understand. There is no comment, the
code in the function body is not trivial, and its name can be interpreted in different ways.
Noting that it is used in a single part of the program (Figure 2.3:3) can help us further.
The program part where getstops is used is the part responsible for processing the
program’s options (Figure 2.3:2). We can therefore safely (and correctly in our case)
assume that getstops will process the tab stop specification option. This form of
gradual understanding is common when reading code; understanding one part of the
code can make others fall into place. Based on this form of gradual understanding you
can employ a strategy for understanding difficult code similar to the one often used
to combine the pieces of a jigsaw puzzle: start with the easy parts.

Exercise 2.7 Examine the visibility of functions and variables in programs in your envi-
ronment. Can it be improved (made more conservative)?

Exercise 2.8 Pick some functions or methods from the book’s CD-ROM or from your
environment and determine their role using the strategies we outlined. Try to minimize the
time you spend on each function or method. Order the strategies by their success rate.

2.3 while Loops, Conditions, and Blocks

We can now examine how options are processed. Although expand accepts only a
single option, it uses the Unix library function getopt to process options. A sum-
marized version of the Unix on-line documentation for the getopt function appears
in Figure 2.4. Most development environments provide on-line documentation for
library functions, classes, and methods. On Unix systems you can use the man com-
mand and on Windows the Microsoft Developer Network Library (MSDN),!? while
the Java API is documented in HTML format as part of the Sun JDK. Make it a habit to
read the documentation of library elements you encounter; it will enhance both your
code-reading and code-writing skills.

Bhttp://msdn.microsoft.com

2.3 while Loops, Conditions, and Blocks

29

GETOPT (3) UNIX Programmer’s Manual GETOPT (3)

NAME

getopt — get option character from command line argument list

SYNOPSIS

#include <unistd.h>

extern char =optarg;

extern int optind;

extern int optopt;

extern int opterr;

extern int optreset;

int

getopt(int argc, char *const xargv, const char *optstring)

DESCRIPTION

The getopt() function incrementally parses a command line argument list argv and returns the next
known option character. An option character is known if it has been specified in the string of accepted option
characters, optstring.

The option string optstring may contain the following elements: individual characters, and characters
followed by a colon to indicate an option argument is to follow. For example, an option string "X" recog-
nizes an option “~X”, and an option string "X : " recognizes an option and argument “~X argument”. It

does not matter to getopt() if a following argument has leading white space.

On return from getopt(), optarg points to an option argument, if it is anticipated, and the variable optind
contains the index to the next argv argument for a subsequent call to getopt(). The variable optopt saves
the last known option character returned by getopt().

The variable opterr and optind are both initialized to 1. The optind variable may be set to another value be-
fore a set of calls to getopt() in order to skip over more or less argv entries.

The getopt() function returns —1 when the argument list is exhausted, or a non-recognized option is en-
countered. The interpretation of options in the argument list may be cancelled by the option ‘--’ (double
dash) which causes getopt() to signal the end of argument processing and returns —1. When all options
have been processed (i.e., up to the first non-option argument), getopt() returns —1.

DIAGNOSTICS

If the getopt() function encounters a character not found in the string optstring or detects a missing
option argument it writes an error message to stderr and returns ‘?’. Setting opterr to a zero will disable
these error messages. If optstring has a leading ‘:’ then a missing option argument causes a ‘:’ to be re-
turned in addition to suppressing any error messages.

¢ .

Option arguments are allowed to begin with “~”; this is reasonable but reduces the amount of error checking
possible.

HISTORY

The getopt() function appeared 4.3BSD.

The getopt() function was once specified to return EOF instead of 1. This was changed by POSIX 1003.2—
92 to decouple getopt() from<stdio.h>.

4.3 Berkeley Distribution April 19, 1994 1

Figure 2.4 The getopt manual page.

30 Basic Programming Elements

Based on our understanding of getopt, we can now examine the relevant code
(Figure 2.3:2). The option string passed to getopt allows for a single option -t,
which is to be followed by an argument. getopt is used as a condition expression in
awhile statement. A while statement will repeatedly execute its body as long as the
condition specified in the parentheses is true (in C/C++, if it evaluates to a value other
than 0). In our case the condition for the while loop calls getopt, assigns its result
to ¢, and compares it with -1, which is the value used to signify that all options have
been processed. To perform these operations in a single expression, the code uses the
fact that in the C language family assignment is performed by an operator (=), that
is, assignment expressions have a value. The value of an assignment expression is the
value stored in the left operand (the variable c in our case) after the assignment has
taken place. Many programs will call a function, assign its return value to a variable,
and compare the result against some special-case value in a single expression. The
following typical example assigns the result of readLine to Tine and compares it
against nu11 (which signifies that the end of the stream was reached).'*

if ((Tine = input.readLine()) == null) [...]
return errors;

It is imperative to enclose the assignment within parentheses, as is the case in the
two examples we have examined. As the comparison operators typically used in
conjunction with assignments bind more tightly than the assignment, the following
expression

c = getopt (argc, argv, "t:") I= -1
will evaluate as
c = (getopt (argc, argv, "t:") != -1)

thus assigning to c the result of comparing the return value of getopt against -1
rather than the getopt return value. In addition, the variable used for assigning the
result of the function call should be able to hold both the normal function return values
and any exceptional values indicating an error. Thus, typically, functions that return
characters such as getopt and getc and also can return an error value such as -1 or

14cocoon/src/java/org/apache/cocoon/components/language/programming/java/JTavac.java: 106112

2.3 while Loops, Conditions, and Blocks 31

EOF have their results stored in an integer variable, not a character variable, to hold
the superset of all characters and the exceptional value (Figure 2.3:7). The following
is another typical use of the same construct, which copies characters from the file
stream pf to the file stream active until the pf end of file is reached."

while ((c = getc(pf)) != EOF)
putc(c, active);

The body of a wh1ile statement can be either a single statement or a block: one or
more statements enclosed in braces. The same is true for all statements that control the
program flow, namely, if, do, for, and switch. Programs typically indent lines to
show the statements that form part of the control statement. However, the indentation
is only a visual clue for the human program reader; if no braces are given, the control
will affect only the single statement that follows the respective control statement,
regardless of the indentation. As an example, the following code does not do what is

suggested by its indentation.'®

for (ntp = nettab; ntp != NULL; ntp = ntp->next) {
if (ntp->status == MASTER)
rmnetmachs (ntp) ;

ntp->status = NOMASTER;
b

The line ntp->status = NOMASTER; will be executed for every iteration of the for
loop and not just when the if condition is true.

Exercise 2.9 Discover how the editor you are using can identify matching braces and
parentheses. If it cannot, consider switching to another editor.

Exercise 2.10 The source code of expand contains some superfluous braces. Identify
them. Examine all control structures that do not use braces and mark the statements that will
get executed.

Exercise 2.11 Verify that the indentation of expand matches the control flow. Do the same
for programs in your environment.

Exercise 2.12 The Perl language mandates the use of braces for all its control structures.
Comment on how this affects the readability of Perl programs.

Snetbsdsrc/usr.bin/m4/eval.c:601-602
16netbsdsrc/usr.sbin/timed/timed/timed.c:564—568

32 Basic Programming Elements

2.4 switch Statements

The normal return values of getopt are handled by a swi tch statement. You will find
switch statements used when a number of discrete integer or character values are
being processed. The code to handle each value is preceded by a case label. When
the value of the expression in the switch statement matches the value of one of the
case labels, the program will start to execute statements from that point onward.
If none of the label values match the expression value and a default label exists,
control will transfer to that point; otherwise, no code within the switch block will get
executed. Note that additional labels encountered after transferring execution control
to a label will not terminate the execution of statements within the switch block; to
stop processing code within the switch block and continue with statements outside it,
abreak statement must be executed. You will often see this feature used to group case
labels together, merging common code elements. In our case when getoptreturns "t’,
the statements that handle -t are executed, with break causing a transfer of execution
control immediately after the closing brace of the switch block (Figure 2.3:4). In
addition, we can see that the code for the default switch label and the error return
value '?’ is common since the two corresponding labels are grouped together.

When the code for a given case or default label does not end with a statement
that transfers control out of the switch block (such as break, return, or continue),
the program will continue to execute the statements following the next label. When
examining code, look out for this error. In rare cases the programmer might actually
want this behavior. To alert maintainers to that fact, it is common to mark these places
with a comment, such as FALLTHROUGH, as in the following example.!”

case 'a’:
fts_options |= FTS_SEEDOT;
/* FALLTHROUGH */
case 'A’:
f_listdot = 1;
break;

The code above comes from the option processing of the Unix /s command, which
lists files in a directory. The option -A will include in the list files starting with a
dot (which are, by convention, hidden), while the option -a modifies this behavior
by adding to the list the two directory entries. Programs that automatically verify

netbsdsrc/bin/ls/ls.c:173-178

2.4 switch Statements 33

source code against common errors, such as the Unix /int command, can use the
FALLTHROUGH comment to suppress spurious warnings.

A switch statement lacking a default label will silently ignore unexpected
values. Even when one knows that only a fixed set of values will be processed by a
switch statement, it is good defensive programming practice to include a default
label. Such a default label can catch programming errors that yield unexpected
values and alert the program maintainer, as in the following example.'®

switch (program) {

case ATQ:
[...]

case BATCH:
writefile(time(NULL), 'b');
break;

default:
panic("Internal error");
break;

}

In our case the switch statement can handle two getopt return values.

1. "t’ is returned to handle the -t option. Optind will point to the argument
of -t. The processing is handled by calling the function getstops with the
tab specification as its argument.

2. '?’ is returned when an unknown option or another error is found by getopt.
In that case the usage function will print program usage information and
exit the program.

A switch statement is also used as part of the program’s character-processing
loop (Figure 2.3:7). Each character is examined and some characters (the tab, the
newline, and the backspace) receive special processing.

Exercise 2.13 The code body of switch statements in the source code collection is
formatted differently from the other statements. Express the formatting rule used, and explain
its rationale.

Exercise 2.14 Examine the handling of unexpected values in switch statements in the
programs you read. Propose changes to detect errors. Discuss how these changes will affect
the robustness of programs in a production environment.

18 netbsdsrc/usr.bin/at/at.c:535-561

A

0l

34 Basic Programming Elements

Exercise 2.15 Is there a tool or a compiler option in your environment for detecting
missing break statements in switch code? Use it, and examine the results on some sample
programs.

2.5 for Loops

To complete our understanding of how expand processes its command-line options,
we now need to examine the getstops function. Although the role of its single cp
argument is not obvious from its name, it becomes apparent when we examine how
getstops is used. getstops is passed the argument of the -t option, which is a
list of tab stops, for example, 4, 8, 16, 24. The strategies outlined for determining
the roles of functions (Section 2.2) can also be employed for their arguments. Thus
a pattern for reading code slowly emerges. Code reading involves many alternative
strategies: bottom-up and top-down examination, the use of heuristics, and review of
comments and external documentation should all be tried as the problem dictates.
After setting nstops to 0, getstops enters a for loop. Typically a for loop is
specified by an expression to be evaluated before the loop starts, an expression to be
evaluated before each iteration to determine if the loop body will be entered, and an
expression to be evaluated after the execution of the loop body. for loops are often

used to execute a body of code a specific number of times.’

for (i =0; i < len; i++) {

Loops of this type appear very frequently in programs; learn to read them as “execute
the body of code Ten times.” On the other hand, any deviation from this style, such as
an initial value other than 0 or a comparison operator other than <, should alert you
to carefully reason about the loop’s behavior. Consider the number of times the loop
body is executed in the following examples.

Loop extrknt + 1 times:?

for (i =0; 1 <= extrknt; i++)

Loop month - 1 times:?!

for (i = 1; i < month; i++)

19cocoon/src/java/org/apache/cocoon/util/StringUtils.java: 85

2Onetbsdsrc/usr.bin/fsplit/fsplit.c:173
2l petbsdsre/usr.bin/cal/cal.c:332

2.5 for Loops 35

Loop nargs times:>

for (i = 1; i <= nargs; i++)

Note that the last expression need not be an increment operator. The following line

will loop 256 times, decrementing code in the process:*>

for (code = 255; code >= 0; code--) {

In addition, you will find for statements used to loop over result sets returned by
library functions. The following loop is performed for all files in the directory dir.>*

if ((dd = opendir(dir)) == NULL)
return (CC_ERROR);
for (dp = readdir(dd); dp != NULL; dp = readdir(dd)) {

The call to opendir returns a value that can be passed to readdir to sequentially
access each directory entry of dir. When there are no more entries in the directory,
readdir will return NULL and the loop will terminate.

The three parts of the for specification are expressions and not statements. There-
fore, if more than one operation needs to be performed when the loop begins or at
the end of each iteration, the expressions cannot be grouped together using braces.
You will, however, often find expressions grouped together using the expression-
sequencing comma (,) operator.?

for (cnt = 1, t = p; cnt <= cnt_orig; ++t, ++cnt) {

The value of two expressions joined with the comma operator is just the value of the
second expression. In our case the expressions are evaluated only for their side effects:
before the loop starts, cnt will be set to 1 and t to p, and after every loop iteration t
and cnt will be incremented by one.

Any expression of a for statement can be omitted. When the second expression
is missing, it is taken as true. Many programs use a statement of the form for (;;) to
perform an “infinite” loop. Very seldom are such loops really infinite. The following

22netbsdsrc/usr.bin/apply/apply.c:130
Znetbsdsrc/usr.bin/compress/zopen.c:510
2*netbsdsrc/usr.bin/ftp/complete.c:193-198
Znetbsdsrc/usr.bin/vi/vi/vs_smap.c:389

36 Basic Programming Elements

—fl Parse tab stop specification

static void
getstops(char *cp)
{

int 1i;

nstops = 0;
for G5) {

«—H Convert string to number

i=0;
while (¥cp >= "0’ && *cp <= '9’)
i=1 %10 + *cp++ - '0’;
if (i <=0 || 1> 256) { . I
bad: —— R Complain about unreasonable specifications
fprintf(stderr, "Bad tab stop spec\n");
exit(l);
3

if (nstops > 0 & i <= tabstops[nstops-1]) E]Verlfy ascendmg order

goto bad;
tabstops[nstops++] = i;
if (*CE — 0)p HEBreak out of the loop
break;) i o
iF (fcp I= 7,7 8& *cp 1= ' ' [Verify valid delimiters
goto bad;
Cp++;)
X @ break will transfer control here

—HPrint program usage and exit
static void
usage(void)

(void)fprintf (stderr, "usage: expand [-t tablist] [file ...]J\n");
exit(l);

Figure 2.5 Expanding tab stops (supplementary functions).

example—taken out of init, the program that continuously loops, controlling all Unix
processes—is an exception.?®

for (5;) {
s = (state_t) (¥*s)Q;
quiet = 0;

}

In most cases an “infinite” loop is a way to express a loop whose exit condition(s)
cannot be specified at its beginning or its end. These loops are typically exited either
by a return statement that exits the function, a break statement that exits the loop
body, or a call to exit or a similar function that exits the entire program. C++, C#,
and Java programs can also exit such loops through an exception (see Section 5.2).

A quick look through the code of the loop in Figure 2.5 provides us with the
possible exit routes.

26petbsdsre/sbin/init/init.c:540-545

2.6 break and continue Statements 37

e A bad stop specification will cause the program to terminate with an error
message (Figure 2.5:3).

e The end of the tab specification string will break out of the loop.

Exercise 2.16 The for statement in the C language family is very flexible. Examine the
source code provided to create a list of ten different uses.

Exercise 2.17 Express the examples in this section using while instead of for. Which
of the two forms do you find more readable?

Exercise 2.18 Devise a style guideline specifying when whiTe loops should be used in
preference to for loops. Verify the guideline against representative examples from the book’s
CD-ROM.

2.6 break and continue Statements

A break statement will transfer the execution to the statement after the innermost
loop or switch statement (Figure 2.5:7). In most cases you will find break used
to exit early out of a loop. A continue statement will continue the iteration of the
innermost loop without executing the statements to the end of the loop. A continue
statement will reevaluate the conditional expression of while and do loops. In for
loops it will evaluate the third expression and then the conditional expression. You
will find continue used where a loop body is split to process different cases; each
case typically ends with a continue statement to cause the next loop iteration. In the
program we are examining, continue is used after processing each different input
character class (Figure 2.3:8).

Note when you are reading Perl code that break and continue are correspond-

ingly named last and next.?’

while (<UD>) {
chomp;
it (s/0x[\d\w]+\s+\((.*?)\)// and $wanted eq $1) {
[...]

last;

2Tperl/lib/unicode/mktables.PL:415-425

38 Basic Programming Elements

To determine the effect of a break statement, start reading the program upward
from break until you encounter the first while, for, do, or switch block that en-
closes the break statement. Locate the first statement after that loop; this will be
the place where control will transfer when break is executed. Similarly, when ex-
amining code that contains a continue statement, start reading the program upward
from continue until you encounter the first while, for, or do loop that encloses the
continue statement. Locate the last statement of that loop; immediately after it (but
not outside the loop) will be the place where control will transfer when continue is
executed. Note that continue ignores switch statements and that neither break nor
continue affect the operation of i f statements.

There are situations where a loop is executed only for the side effects of its
controlling expressions. In such cases continue is sometimes used as a placeholder
instead of the empty statement (expressed by a single semicolon). The following

example illustrates such a case.”®

for (; *string & isdigit(*string); string++)
continue;

In Java programs break and continue can be followed by a label identifier. The
same identifier, followed by a colon, is also used to label a loop statement. The labeled
form of the continue statement is then used to skip an iteration of a nested loop; the
label identifies the loop statement that the corresponding continue will skip. Thus,
in the following example, the continue skip; statement will skip one iteration of
the outermost for statement.?’

skip:
for ([...1) {
if (ch == Timit.charAt(0)) {
for (int i =1 ; i < Timlen ; i++) {
if C [...]1)
continue skip;
3
return ret;
}
b

28 netbsdsrc/usr.bin/error/pi.c:174-175
2jt4/jasper/src/share/org/apache/jasper/compiler/JspReader. java:472-482

2.7 Character and Boolean Expressions 39

Similarly, the labeled form of the break statement is used to exit from nested
loops; the label identifies the statement that the corresponding break will terminate.
In some cases a labeled break or continue statements is used, even when there are [i]

no nested loops, to clarify the corresponding loop statement.*’

comp : while(prev < length) {
[...]
if (pos >= length || pos == -1) {
[...]

break comp;

}

Exercise 2.19 Locate ten occurrences of break and continue in the source code pro-
vided with the book. For each case indicate the point where execution will transfer after the
corresponding statement is executed, and explain why the statement is used. Do not try to un-
derstand in full the logic of the code; simply provide an explanation based on the statement’s
use pattern.

2.7 Character and Boolean Expressions

The body of the for loop in the getstops function starts with a block of code
that can appear cryptic at first sight (Figure 2.5:2). To understand it we need to
dissect the expressions that comprise it. The first, the condition in the while loop, is
comparing *cp (the character cp points to) against two characters: "0’ and '9’. Both
comparisons must be true and both of them involve *cp combined with a different
inequality operator and another expression. Such a test can often be better understood
by rewriting the comparisons to bring the value being compared in the middle of the
expression and to arrange the other two values in ascending order. This rewriting in
our case would yield

while (‘0" <= *cp && *cp <= '9")
This can then be read as a simple range membership test for a character c.

0<c<9

3cocoon/sre/scratchpad/sre/org/apache/cocoon/treeprocessor/MapStackResolver.java:201-244

40 Basic Programming Elements

Note that this test assumes that the digit characters are arranged sequentially in
ascending order in the underlying character set. While this is true for the digits in
all character sets we know, comparisons involving alphabetical characters may yield
surprising results in a number of character sets and locales. Consider the following
typical example.’!

if (‘a’ <= *s && *s <= 'z")
ks = ('a’ - 'AY:

The code attempts to convert lowercase characters to uppercase by subtracting from
each character found to be lowercase (as determined by the i f test) the character set
distance from ‘a’ to "A’. This fragment will fail to work when there are lowercase
characters in character set positions outside the range a. ..z, when the character set
range a. ..z contains nonlowercase characters, and when the code of each lowercase
character is not a fixed distance away from the corresponding uppercase character.
Many non-ASCII character sets exhibit at least one of these problems.

The next line in the block (Figure 2.5:2) can also appear daunting. It modifies the
variable i based on the values of i and *cp and two constants: 10 and "0’ while at
the same time incrementing cp. The variable names are not especially meaningful,
and the program author has not used macro or constant definitions to document the
constants; we have to make the best of the information available.

We can often understand the meaning of an expression by applying it on sample
data. In our case we can work based on the initial value of i (0) and assume that cp
points to a string containing a number (for example, 24) based on our knowledge of the
formatting specifications that expand accepts. We can then create a table containing
the values of all variables and expression parts as each expression part is evaluated.
We use the notation i” and *cp’ to denote the variable value after the expression has
been evaluated.

Iteration i i*10 *cp cp-'0’ i’ *cp/
0 0 0 2’ 2 2 4
1 2 20 "4’ 4 24 0
The expression *cp - "0’ uses a common idiom: by subtracting the ordinal

value of "0’ from *cp the expression yields the integer value of the character digit
pointed to by *cp. Based on the table we can now see a picture emerging: after the

3l netbsdsrc/games/hack/hack.objnam.c:352-253

2.7 Character and Boolean Expressions 41

loop terminates, i will contain the decimal value of the numeric string pointed to by
cp at the beginning of the loop.

Armed with the knowledge of what i stands for (the integer value of a tab-stop
specification), we can now examine the lines that verify the specification. The expres-
sion that verifies i for reasonable values is straightforward. It is a Boolean expression
based on the logical OR (| |) of two other expressions. Although this particular expres-
sion reads naturally as English text (print an error message if i is either less than or
equal to zero, or greater than 255), it is sometimes useful to transform Boolean expres-
sions to a more readable form. If, for example, we wanted to translate the expression
into the range membership expression we used above, we would need to substitute
the logical OR with a logical AND (&&). This can easily be accomplished by using
De Morgan’s rules.*

I(a || b) <=> la && !b
I(a & b) <=> ta || !b

We can thus transform the testing code as follows:

i<=01]] 1> 256 <=>

(MG <= 0) & '(7 > 256)) <=>
(i > 0 &% i <= 256) <=>

1(0 <7 & i <= 256) <=>

-(0 < i < 256)

In our example we find both the initial and final expressions equally readable; in
other cases you may find that De Morgan’s rules provide you a quick and easy way
to disentangle a complicated logical expression.

When reading Boolean expressions, keep in mind that in many modern languages
Boolean expressions are evaluated only to the extent needed. In a sequence of expres-
sions joined with the && operator (a conjunction), the first expression to evaluate to
false will terminate the evaluation of the whole expression yielding a false result. Sim-
ilarly, in a sequence of expressions joined with the | | operator (a disjunction), the first
expression to evaluate to true will terminate the evaluation of the whole expression
yielding a true result. Many expressions are written based on this short-circuit evalu-
ation property and should be read in the same way. When reading a conjunction, you
can always assume that the expressions on the left of the expression you are examining

32We use the operator <=> to denote that two expressions are equivalent. This is not a C/C++/C#/JTava
operator.

42 Basic Programming Elements

are true; when reading a disjunction, you can similarly assume that the expressions on
the left of the expression you are examining are false. As an example, the expression
in the following 1if statement will become true only when all its constituent elements

are true, and t->type will be evaluated only when t is not NULL.??

if (t !'= NULL && t->type != TEOF && interactive && really_exit)
really_exit = 0;

Conversely, in the following example argv[1] will be checked for being NULL only
if argv is not NULL.>*

if (argv == NULL || argv[1l] == NULL || argv[2] == NULL)
return -1;

In both cases, the first check guards against the subsequent dereference of a NULL
pointer. Our getstops function also uses short-circuit evaluation when checking
that a delimiter specified (i) is larger than the previous one (tabstops[nstops-1])
(Figure 2.5:4). This test will be performed only if at least one additional delimiter
specification has been processed (nstops > 0). You can depend on the short-circuit
evaluation property in most C-derived languages such as C++, Perl, and Java; on the
other hand, Fortran, Pascal, and most Basic dialects will always evaluate all elements
of a Boolean expression.

Exercise 2,20 Locate expressions containing questionable assumptions about character
code values in the book’s CD-ROM. Read about the Java Character class test and conversion
methods such as isUpper and toLowerCase or the corresponding ctype family of C functions
(isupper, tolower, and so on). Propose changes to make the code less dependent on the target
architecture character set.

Exercise 2.21 Find, simplify, and reason about five nontrivial Boolean expressions in the
source code base. Do not spend time on understanding what the expression elements mean;
concentrate on the conditions that will make the expression become true or false. Where
possible, identify and use the properties of short-circuit evaluation.

Exercise 2.22 Locate and reason about five nontrivial integer or character expressions in
the source code base. Try to minimize the amount of code you need to comprehend in order to
reason about each expression.

3 netbsdsre/bin/ksh/main.c:606-607
3 netbsdsre/lib/libedit/term.c:1212-1213

2.8 goto Statements 43

static int
gen_init(void)

[...]

if ((sigaction(SICGXCPU, &n_hand, &o_hand) < 0) &&
(o_hand.sa_handler == SIG_IGN) &&
(sigaction(SIGXCPU, &o_hand, &o_hand) < 0))

goto out; fl Failure; exit with an error
:

n_hand.sa_handler = SIG_IGN;

if ((sigaction(SIGPIPE, &n_hand, &o_hand) < 0) ||
(sigaction(SIGXFSZ, &n_hand, &o_hand) < 0))
goto out;

Failure; exit with an error

return(0) : Normal function exit (success)

«#1 Common error handling code
out:

syswarn(l, errno, "Unable to set up signal handler™);
return(-1);

Figure 2.6 The goto statement used for a common error handler.

2.8 goto Statements

The code segment that complains about unreasonable tab specifications (Figure 2.5:3)
begins with a word followed by a colon. This is a label: the target of a goto instruction.
Labels and goto statements should immediately raise your defenses when reading
code. They can be easily abused to create “spaghetti” code: code with a flow of control
that is difficult to follow and figure out. Therefore, the designers of Java decided not
to support the goto statement. Fortunately, most modern programs use the goto
statement in a small number of specific circumstances that do not adversely affect the
program’s structure.

You will find goto often used to exit a program or a function after performing
some actions (such as printing an error message or freeing allocated resources). In our
example the exit (1) call at the end of the block will terminate the program, returning
an error code (1) to the system shell. Therefore all goto statements leading to the
bad label are simply a shortcut for terminating the program after printing the error
message. In a similar manner, the listing in Figure 2.6% illustrates how a common
error handler (Figure 2.6:4) is used as a common exit point in all places where an error
is found (Figure 2.6:1, Figure 2.6:2). A normal exit route for the function, located
before the error handler (Figure 2.6:3), ensures that the handler will not get called
when no error occurs.

3 netbsdsre/bin/pax/pax.c:309—412

0l

|

44 Basic Programming Elements

again: Lo
if ((p = fgets(line, BUFSIZ, servf)) == NULLy— Read a line; return on EOF
return (NULL);

if (fp == #7) Comment? Retry
goto again;

1?? zc:tizb;EEBL Incomplete line? Retry
goto again;

*cp = '\0’;

[...]

return (&serv);

Complete entry

Figure 2.7 The use of goto to reexecute code.

You will also find the goto statement often used to reexecute a portion of code,
presumably after some variables have changed value or some processing has been per-
formed. Although such a construct can often be coded by using a structured loop
statement (for example, for (;;)) together with break and continue, in practice
the coder’s intent is sometimes better communicated by using goto. A single label,
almost invariably named again or retry, is used as the goto target. The example
in Figure 2.7,% which locates the entry of a specific service in the system’s database
while ignoring comments and overly large lines, is a typical case. (Interestingly, the
code example also seems to contain a bug. If a partial line is read, it continues by
reading the remainder as if it were a fresh line, so that if the tail of a long line happened
to look like a service definition it would be used. Such oversights are common targets
for computer security exploits.)

Finally, you will find the goto statement used to change the flow of control in
nested loop and switch statements instead of using break and continue, which
affect only the control flow in the innermost loop. Sometimes goto is used even if
the nesting level would allow the use of a break or continue statement. This is
used in large, complex loops to clarify where the flow of control will go and to avoid
the possibility of errors should a nested loop be added around a particular break or
continue statement. In the example in Figure 2.8%’ the statement goto have_msg
is used instead of break to exit the for loop.

Exercise 2.23 Locate five instances of code that use the goto statement in the code base.
Categorize its use (try to locate at least one instance for every one of the possible uses we
outlined), and argue whether each particular goto could and should be replaced with a loop or
other statement.

3 netbsdsrc/lib/libc/net/getservent.c:65—104
3netbsdsrc/sys/dev/ic/ncr5380sbe.c:1575-1654

2.9 Refactoring in the Small 45

—— for loop
for (5) {
[...]
if ((sc->sc_state & NCR_DROP_MSGIN) == 0) {
if (n >= NCR_MAX_MSG_LEN) {
ncr_sched_msgout(sc, SEND_REJECT);
sc->sc_state |= NCR_DROP_MSGIN;
} else {
[oosl
if (n == 1 & IS1BYTEMSG(sc->sc_imess[0])) .
goto have_msg Exit the for loop

have_msg: goto target

Figure 2.8 Exiting a loop using the goto statement.

Exercise 2.24 The function getstops produces the same error message for a number
of different errors. Describe how you could make its error reporting more user-friendly while
at the same time eliminating the use of the goto statement. Discuss when such source code
changes are appropriate and when they should be avoided.

2.9 Refactoring in the Small

The rest of the getstops code is relatively straightforward. After checking that each
tab stop is greater than the previous one (Figure 2.5:4), the tab stop offset is stored in
the tabstops array. After a single tab stop number has been converted into an integer
(Figure 2.5:2), cp will point to the first nondigit character in the string (that is, the
loop will process all digits and terminate at the first nondigit). At that point, a series
of checks specified by if statements control the program’s operation. If cp points
to the end of the tab stop specification string (the character with the value 0, which
signifies the end of a C string), then the loop will terminate (Figure 2.5:5). The last i f
(Figure 2.5:6) will check for invalid delimiters and terminate the program operation
(using the goto bad statement) if one is found

The body of each one of the if statements will transfer control somewhere else
via a goto or break statement. Therefore, we can also read the sequence as:

if (Fcp == 0)
break;

else if (¥cp !='," && *cp =" ")
goto bad;

else
Cp++;

46 Basic Programming Elements

This change highlights the fact that only one of the three statements will ever get
executed and makes the code easier to read and reason about. If you have control
over a body of code (that is, it is not supplied or maintained by an outside vendor or
an open-source group), you can profit by reorganizing code sections to make them
more readable. This improvement of the code’s design after it has been written is
termed refactoring. Start with small changes such as the one we outlined—you can
find more than 70 types of refactoring changes described in the relevant literature.
Modest changes add up and often expose larger possible improvements.

As a further example, consider the following one-line gem.3®
op = &(!x ? (ly ? upleft : (y == bottom ? Towleft : left))
(x == Tast ? (ly ? upright : (y == bottom ? lowright : right))
(!y ? upper : (y == bottom ? Tower : normal))))[w->orientation];

The code makes excessive use of the conditional operator ?:. Read expressions

using the conditional operator like i f code. As an example, read the expression®

sign ? -n : n
as follows:

“If sign is true, then the value of the expression is -n; otherwise, the value of the expression
isn”.

Since we read an expression like an 1 f statement, we can also format it like an i f
statement; one that uses x ? instead of if (x), parentheses instead of curly braces,
and : instead of else. To reformat the expression, we used the indenting features of
our editor in conjunction with its ability to show matching parentheses. You can see
the result in Figure 2.9 (lef?).

Reading the conditional expression in its expanded form is certainly easier, but
there is still room for improvement. At this point we can discern that the x and y
variables that control the expression evaluation are tested for three different values:

1. 0 (expressed as !x or !y)
2. bottomor Tast
3. All other values

Bnetbsdsrc/games/worms/worms.c:419
Fnetbsdsre/bin/csh/set.c:852

2.9 Refactoring in the Small 47

op = &(op = &(
Ix ? (Ix ? (
ly ? ly 7
upleft upleft
(: (y == bottom ?
y == bottom ? Towleft
Towleft
Teft
Teft)
)) : (x == last ? (
) (ly ?
X == last ? (upright
ly ? : (y == bottom ?
upright Towright
¢ :
y == bottom ? right
Towright)
)
right ly ?
) upper
) = (: (y == bottom ?
ly ? Tower
upper
¢ normal
y == bottom ?)
Tower)
)) [w->orientation];
normal
)
D)
)) [w->orientation];

Figure 2.9 A conditional expression formatted like an 1f statement (leff) and like
cascading if-else statements (right).

We can therefore rewrite the expression formatted as a series of cascading if—else
statements (expressed using the ?: operator) to demonstrate this fact. You can see the
result in Figure 2.9 (right).

The expression’s intent now becomes clear: the programmer is selecting one
of nine different location values based on the combined values of x and y. Both
alternative formulations, however, visually emphasize the punctuation at the expense

48 Basic Programming Elements

struct options *locations[3][3] = {
Location map

{upleft, upper, upright},
{left, normal, right},
{lowleft, Tower, lowright},

};

int xlocation, ylocation;

To store the x, y map offsets

Determine x offset
if (x == 0)
xlocation = 0;
else if (x == last)
xlocation = 2;
else
xlocation = 1;

Determine y offset
if (y == 0)
ylocation = 0;
else if (y == bottom)
ylocation = 2;
else
ylocation = 1;

op = &(locations[ylocation][xlocation]) [w->orientation];

Figure 2.10 Location detection code replacing the conditional expression.

of the semantic content and use an inordinate amount of vertical space. Nevertheless,
based on our newly acquired insight, we can create a two-dimensional array containing
these location values and index it using offsets we derive from the x and y values.
You can see the new result in Figure 2.10. Notice how in the initialization of the
array named locations, we use a two-dimensional textual structure to illustrate
the two-dimensional nature of the computation being performed. The initializers are
laid out two-dimensionally in the program text, the array is indexed in the normally
unconventional order [y] [x], and the mapping is to integers “0, 2, 17 rather than the
more obvious “0, 1, 2”, so as to make the two-dimensional presentation coincide with
the semantic meanings of the words upleft, upper, and so on.

The code, at 20 lines, is longer than the original one-liner but still shorter by
7 lines from the one-liner’s readable cascading-else representation. In our eyes it
appears more readable, self-documenting, and easier to verify. One could argue that
the original version would execute faster than the new one. This is based on the fallacy
that code readability and efficiency are somehow incompatible. There is no need to
sacrifice code readability for efficiency. While it is true that efficient algorithms and
certain optimizations can make the code more complicated and therefore more difficult
to follow, this does not mean that making the code compact and unreadable will make
it more efficient. On our system and compiler the initial and final versions of the
code execute at exactly the same speed: 0.6 us. Even if there were speed differences,
the economics behind software maintenance costs, programmer salaries, and CPU
performance most of the time favor code readability over efficiency.

2.9 Refactoring in the Small 49

However, even the code in Figure 2.10 can be considered a mixed blessing: it
achieves its advantages at the expense of two distinct disadvantages. First, it separates
the code into two chunks that, while shown together in Figure 2.10, would neces-
sarily be separated in real code. Second, it introduces an extra encoding (0, 1, 2), so
that understanding what the code is doing requires two mental steps rather than one
(map “0, last, other” to “0, 2, 1” and then map a pair of “0, 2, 1" values to one of
nine items). Could we somehow directly introduce the two-dimensional structure of
our computation into the conditional code? The following code fragment*” reverts to
conditional expressions but has them carefully laid out to express the computation’s
intent.

op =
&(ly 2 (Ix ? upleft : x!=last ? upper : upright)
y!=bottom ? (!x ? left : x!=last ? normal : right)
('x ? Towleft : x!=Tast ? Tower : lowright)
) [w->orientation];

The above formulation is a prime example on how sometimes creative code layout can
be used to improve code readability. Note that the nine values are right-justified within
their three columns, to make them stand out visually and to exploit the repetition of
“left” and “right” in their names. Note also that the usual practice of putting spaces
around operators is eschewed for the case of !=in order to reduce the test expressions
to single visual tokens, making the nine data values stand out more. Finally, the fact
that the whole expression fits in five lines makes the vertical alignment of the first and
last parentheses more effective, making it much easier to see that the basic structure
of the entire statement is of the form

op = &(<conditional-mess>)[w->orientation];

The choice between the two new alternative representations is largely a matter of taste;
however, we probably would not have come up with the second formulation without
expressing the code in the initial, more verbose and explicit form.

The expression we rewrote was extremely large and obviously unreadable. Less
extreme cases can also benefit from some rewriting. Often you can make an expression
more readable by adding whitespace, by breaking it up into smaller parts by means
of temporary variables, or by using parentheses to amplify the precedence of certain
operators.

40Suggested by Guy Steele.

50 Basic Programming Elements

You do not always need to change the program structure to make it more read-
able. Often items that do not affect the program’s operation (such as comments, the
use of whitespace, and the choice of variable, function, and class names) can affect
the program’s readability. Consider the work we did to understand the code for the
getstops function. A concise comment before the function definition would enhance
the program’s future readability.

/%

* Parse and verify the tab stop specification pointed to by cp
* setting the global variables nstops and tabstops[].

* Exit the program with an error message on bad specifications.

:’:/

When reading code under your control, make it a habit to add comments as needed.

In Sections 2.2 and 2.3 we explained how names and indentation can provide
hints for understanding code functionality. Unfortunately, sometimes programmers
choose unhelpful names and indent their programs inconsistently. You can improve
the readability of poorly written code with better indentation and wise choice of
variable names. These measures are extreme: apply them only when you have full
responsibility and control over the source code, you are sure that your changes are a
lot better than the original code, and you can revert to the original code if something
goes wrong. Using a version management system such as the Revision Control System
(RCS), the Source Code Control System (SCCS), the Concurrent Versions System (CVS),
or Microsoft’s Visual SourceSafe can help you control the code modifications. The
adoption of a specific style for variable names and indentation can appear a tedious
task. When modifying code that is part of a larger body to make it more readable, try
to understand and follow the conventions of the rest of the code (see Chapter 7). Many
organizations have a specific coding style; learn it and try to follow it. Otherwise, adopt
one standard style (such as one of those used by the GNU*! or BsD*? groups) and use it
consistently. When the code indentation is truly inconsistent and cannot be manually
salvaged, a number of tools (such as indent) can help you automatically reindent it to
make it more readable (see Section 10.7). Use such tools with care: the judicious use
of whitespace allows programmers to provide visual clues that are beyond the abilities
of automated formatting tools. Applying indent to the code example in Figure 2.10
would definitely make it less readable.

Keep in mind that although reindenting code may help readability, it also messes
up the program’s change history in the revision control system. For this reason it

“Thttp://www.gnu.org/prep/standards_toc.html
“2netbsdsrc/share/misc/style:1-315

2.10 do Loops and Integer Expressions 51

is probably best not to combine the reformatting with any actual changes to the
program’s logic. Do the reformat, check it in, and then make the other changes. In this
way future code readers will be able to selectively retrieve and review your changes to
the program’s logic without getting overwhelmed by the global formatting changes.
On the flip side of the coin, when you are examining a program revision history that
spans a global reindentation exercise using the diff program, you can often avoid the
noise introduced by the changed indentation levels by specifying the -w option to have
diff ignore whitespace differences.

Exercise 2.25 Provide five examples from your environment or the book’s CD-ROM where
the code structure can be improved to make it more readable.

Exercise 2.26 You can find tens of intentionally unreadable C programs at the Interna-
tional Obfuscated C Code Contest Web site.*> Most of them use several layers of obfuscation
to hide their algorithms. See how gradual code changes can help you untangle their code. If
you are not familiar with the C preprocessor, try to avoid programs with a large number of
#define lines.

Exercise 2.27 Modify the position location code we examined to work on the mirror
image of a board (interchange the right and left sides). Time yourself in modifying the original
code and the final version listed in Figure 2.10. Do not look at the readable representations; if
you find them useful, create them from scratch. Calculate the cost difference assuming current
programmer salary rates (do not forget to add overheads). If the readable code runs at half
the speed of the original code (it does not), calculate the cost of this slowdown by making
reasonable assumptions concerning the number of times the code will get executed over the
lifetime of a computer bought at a given price.

Exercise 2.28 If you are not familiar with a specific coding standard, locate one and adopt
it. Verify local code against the coding standard.

2.10 do Loops and Integer Expressions

We can complete our understanding of the expand program by turning our attention
to the body that does its processing (Figure 2.3, page 27). It starts with a do loop. The
body of a do loop is executed at least once. In our case the do loop body is executed
for every one of the remaining arguments. These can specify names of files that are to
be tab-expanded. The code processing the file name arguments (Figure 2.3:6) reopens
the stdin file stream to access each successive file name argument. If no file name
arguments are specified, the body of the if statement (Figure 2.3:6) will not get

http://www.iocce.org

52 Basic Programming Elements

executed and expand will process its standard input. The actual processing involves
reading characters and keeping track of the current column position. The switch
statement, a workhorse for character processing, handles all different characters that
affect the column position in a special way. We will not examine the logic behind the
tab positioning in detail. It is easy to see that the first three and the last two blocks
can again be written as a cascading if—else sequence. We will focus our attention
on some expressions in the code.

Sometimes equality tests such as the ones used for nstops (for example,
nstops == 0) are mistakenly written using the assignment operator = instead of
the equality operator ==. In C, C++, and Perl a statement like the following:**

if ((p = q))
q[-1] = "\n’";

uses a valid test expression for the i f statement, assigning q to p and testing the result
against zero. If the programmer intended to test p against ¢, most compilers would
generate no error. In the statement we examined, the parentheses around (p = q) are
probably there to signify that the programmer’s intent was indeed an assignment and
a subsequent test against zero. One other way to make such an intention clear is to
explicitly test against NULL.*

if ((p = strchr(name, '=")) != NULL) {
p++;
In this case the test could also have been written as if (p = strchr(name, '=")),

but we would not know whether this was an intentional assignment or a mistake.
Finally, another approach you may come across is to adopt a style where all

comparisons with constants are written with the constant on the lefthand side of the

comparison.*®

if (0 == serconsole)
serconsinit = 0;

When such a style is used, mistaken assignments to constants are flagged by the
compiler as errors.

#netbsdsrc/bin/ksh/history.c:313-314
#netbsdsrc/bin/sh/var.c:507-508
46 netbsdsrc/sys/arch/amiga/dev/ser.c:227-228

2.10 do Loops and Integer Expressions 53

When reading Java or C# programs, there are fewer chances of encountering such
errors since these languages accept only Boolean values as control expressions in the
corresponding flow statements. We were in fact unable to locate a single suspicious
statement in the Java code found in the book’s CD-ROM.

The expression column & 7 used to control the first do loop of the loop-processing
code is also interesting. The & operator performs a bitwise-and between its two
operands. In our case, we are not dealing with bits, but by masking off the most
significant bits of the column variable it returns the remainder of column divided
by 8. When performing arithmetic, read a & basa % (b + 1) whenb = 2" — 1.
The intent of writing an expression in this way is to substitute a division with a—
sometimes more efficiently calculated—bitwise-and instruction. In practice, modern
optimizing compilers can recognize such cases and do the substitution on their own,
while the speed difference between a division and a bitwise-and instruction on modern
processors is not as large as it used to be. You should therefore learn to read code that
uses these tricks, but avoid writing it.

There are two other common cases where bit instructions are used as substitutes
for arithmetic instructions. These involve the shift operators << and >>, which shift
an integer’s bits to the left or right. Since every bit position of an integer has a value
equal to a power of 2, shifting an integer has the effect of multiplying or dividing it
by a power of 2 equal to the number of shifted bits. You can therefore think of shift
operators in an arithmetic context as follows.

e Reada << nasa * k,where k = 2". The following example uses the shift
operator to multiply by 4.4

n=(C{dp - cp) << 2) +1; /* 4 times + NULL */

e Reada >> nasa / k,where k = 2". The following example from a binary
search routine uses the right shift operator to divide by 2.4

bp = bpl + ((bp2 - bpl) >> 1);

Keep in mind that Java’s logical shift right operator >>> should not be used to
perform division arithmetic on signed quantities since it will produce erroneous results
when applied on negative numbers.

4Tnetbsdsrc/bin/csh/str.c:460
*petbsdsre/bin/csh/func.c:106

|

0l

A

54 Basic Programming Elements

Exercise 2.29 Most compilers provide a facility to view the compiled code in assembly
language. Find out how to generate assembly code when compiling a C program in your
environment and examine the code generated by your compiler for some instances of arithmetic
expressions and the corresponding expressions using bit instructions. Try various compiler
optimization levels. Comment on the readability and the code efficiency of the two alternatives.

Exercise 2.30 What type of argument could cause expand to fail? Under what circum-
stances could such an argument be given? Propose a simple fix.

2.11 Control Structures Revisited

Having examined the syntactic details of the control flow statements we can now focus
our attention on the way we can reason about them at an abstract level.

The first thing you should remember is to examine one control structure at a time,
treating its contents as a black box. The beauty of structured programming is that the
control structures employed allow you to abstract and selectively reason about parts
of a program, without getting overwhelmed by the program’s overall complexity.

Consider the following code sequence.*
while (enum.hasMoreElements()) {
[...]
if (object instanceof Resource) {
[...]
if (lcopy(is, o0s))
[...]
} else if (object instanceof InputStream) {
[...]
if (lcopy((InputStream) object, os))
[...]
} else if (object instanceof DirContext) {
[...]
3

Although we have removed a large part of the 20 lines of code, the loop still appears
quite complex. However, the way you should read the above loop is

whiTle (enum.hasMoreETements()) {
// Do something

4%jtd/catalina/src/share/org/apache/catalina/loader/StandardLoader.java:886-905

2.11 Control Structures Revisited 55

At that level of abstraction you can then focus on the loop body and examine its
functioning without worrying about the control structure in which it is enclosed. This
idea suggests a second rule we should follow when examining a program’s flow of
control: treat the controlling expression of each control structure as an assertion for
the code it encloses. Although the above statement may appear obtuse or trivial, its
significance to the understanding of code can be profound. Consider again the while
statement we examined. The typical reading of the control structure would be that
while enum.hasMoreElements () is true the code inside the loop will get executed.
When, however, you examine the loop’s body (in isolation as we suggested above), you
can always assume that enum.hasMoreElements () will be true and that, therefore,
the enclosed statement

NameClassPair ncPair = (NameClassPair) enum.nextETement();

will execute without a problem. The same reasoning also applies to i f statements. In
the code below you can be sure that when 11 nks . add is executed the 11 nks collection

will not contain a next element.

if (!Tinks.contains(next)) {
Tinks.add(next);

Unfortunately, some control statements taint the rosy picture we painted above.
The return, goto, break, and continue statements as well as exceptions interfere
with the structured flow of execution. Reason about their behavior separately since
they all typically either terminate or restart the loop being processed. This assumes
that for goto statements their target is the beginning or the end of a loop body, that
is, that they are used as a multilevel break or continue. When this is not the case,
all bets are off.

When going over loop code, you may want to ensure that the code will perform ac-
cording to its specification under all circumstances. Informal arguments are sufficient
for many cases, but sometimes a more rigorous approach is needed.

Consider the binary search algorithm. Getting the algorithm right is notoriously
difficult. Knuth [Knu98] details how its use was first discussed in 1946, but nobody
published a correct algorithm working for arrays with a size different from 2" — 1 until
1962. Bentley [Ben86] adds that when he asked groups of professional programmers
to implement it as an exercise, only 10% got it right.

30cocoon/src/java/org/apache/cocoon/Main.java:574-576

56 Basic Programming Elements

void *

bsearch(key, baseO, nmemb, size, compar)
register const void *key;
const void *base(; Start of element array
size_t nmemb; Number of elements

register size_t size; Size c_>f each element
Function to compare two elements

ltem to search for

register int (*compaf) __P((const void *, const void *));

{
register const char *base = base0;
register int Tim, cmp;
register const void *p;
for (1im = nmemb; Tim != 0; Tim >>= 1) { i
p = base + (1im >> 1) * size! Locate a point in the middle
cmp = (*compar) (key, p): Compare element against key
if Cemp == 0) Found; return its position
return ((void *)p);
if (cmp > 0) { /* key > p: move right */ .
base = (char *)p + size! Adjust base upwards
Tt Not sure why this is needed
} /* else move left */
return (NULL); Not found
}

Figure 2.11 Binary search implementation.

Consider the standard C library implementation of the binary search algorithm
listed in Figure 2.11.°>'. We can see that it works by gradually reducing the search
interval stored in the 1im variable and adjusting the start of the search range stored
in base, but it is not self-evident whether the arithmetic calculations performed are
correct under all circumstances. If you find it difficult to reason about the code, the
comment that precedes it might help you.

The code below is a bit sneaky. After a comparison fails, we divide the work in half by moving
either left or right. If 1im is odd, moving left simply involves halving 1im: e.g., when Tim is
5 we look at item 2, so we change 1im to 2 so that we will look at items O & 1. If 1imis even,
the same applies. If Tim is odd, moving right again involves halving T1im, this time moving the
base up one item past p: e.g., when Timis 5 we change base to item 3 and make 1im 2 so
that we will look at items 3 and 4. If Tim is even, however, we have to shrink it by one before
halving: e.g., when Timis 4, we still looked at item 2, so we have to make 1im 3, then halve,
obtaining 1, so that we will only look at item 3.

If you—Ilike myself—did not regard the above comment as particularly enlight-
ening or reassuring, you might consider employing more sophisticated methods.

A useful abstraction for reasoning about properties of loops is based around the
notions of variants and invariants. A loop invariant is an assertion about the program

Slnetbsdsre/lib/libe/stdlib/bsearch.c

2.11 Control Structures Revisited 57

state that is valid both at the beginning and at the end of a loop. By demonstrating
that a particular loop maintains the invariant, and by choosing an invariant so that
when the loop terminates it can be used to indicate that the desired result has been
obtained, we can ensure that an algorithm’s loop will work within the envelope of the
correct algorithm results. Establishing this fact, however, is not enough. We also need
to ensure that the loop will terminate. For this we use a variant, a measure indicating
our distance from our final goal, which should be decreasing at every loop iteration.
If we can demonstrate that a loop’s operation decreases the variant while maintaining
the invariant, we determine that the loop will terminate with the correct result.

Let us start with a simple example. The following code finds the maximum value
in the depths array.>

max = depths[n];
while (n--) {
if (depths[n] > max)
max = depths[n];

If we define n as the number of elements in the depths array (initially held in variable
n), we can formally express the result we want at the end of the loop as

max = maximum{depths[0 : ng)}

We use the symbolism [a : b) to indicate a range than includes a but ends one element
before b, that is, [a : b — 1]. A suitable invariant can then be

max = maximum{depths[n : ng)}

The invariant is established after the first assignment to max, so it holds at the beginning
of the loop. Once n is decremented, it does not necessarily hold, since the range [n : ng)
contains the element at index n, which might be larger than the maximum value held
in max. The invariant is reestablished after the execution of the if statement, which
will adjust max if the value of the new member of the now extended range is indeed
larger than the maximum we had to this point. We have thus shown that the invariant
will also be true at the end of every loop iteration and that therefore it will be true when
the loop terminates. Since the loop will terminate when n (which we can consider as
our loop’s variant) reaches 0, our invariant can at that point be rewritten in the form

32X Free86-3.3/xc/lib/Xt/GCManager.c:252-256

58 Basic Programming Elements

register const char *base = base(); IR in [base, base + nmemb)
for (1im = nmemb; Tim 1= 0;) { BR in [base, base + lim)
p = base + 1im / 2;
cmp = (*compar) (key, p);
if (cmp == 0)
return ((void *)p);
if (cmp > 0) { .
/*Key > p: move right*/*—EIRIn (p, base + lim)
Rin[p + 1, base + lim)
base = p + 15— fbase = base_old + lim /2 + 1
base_old = base - lim/2 - 1
R in [base, base_old + lim)
Rin [base, base - lim/2 -1 + lim)
Tim--;1 B R in [base, base - (lim+1)/2-1 +lim + 1)
R in [base, base + lim - (lim + 1) / 2)
R in [base, base + lim / 2)
} /* else move left */*———Rin [base, p)
. R in [base, base + lim / 2)
Tim /= 271 FR in [base, base + lim)

}
return (NULL);

Figure 2.12 Maintaining the binary search invariant.

of the original specification we wanted to satisfy, demonstrating that the loop does
indeed arrive at the result we want.

We can apply this reasoning to our binary search example. Figure 2.12 illustrates
the same algorithm slightly rearranged so as to simplify reasoning with the invariant.

e We substituted the right shift operations >> with division.

e We factored out the size variable since it is used only to simulate pointer
arithmetic without having to know the pointer’s type.

e We moved the last expression of the for statement to the end of the loop to
clarify the order of operations within the loop.

A suitable invariant can be the fact that the value we are looking for lies within
a particular range. We will use the notation R € [a : b) to indicate that the result of
the search lies between the array elements a (including a) and b (excluding b). Since
base and 1im are used within the loop to delimit the search range, our invariant will
be R € [base : base 4+ Tim). We will show that the bsearch function will indeed
find the value in the array, if such a value exists, by demonstrating that the invariant is
maintained after each loop iteration. Since the comparison function compar is always
called with an argument from within the invariant’s range (base 4 T1im/2), and since
Tim (our variant) is halved after every loop iteration, we can be sure that compar will
eventually locate the value if that value exists.

At the beginning of the bsearch function we can only assert the function’s
specification: R € [base0 : base(O + nmemb). However, after Figure 2.12:1 this

2.11 Control Structures Revisited 59

can be expressed as R € [base : base 4 nmemb), and after the for assignment
(Figure 2.12:2) as R € [base : base+ 1im)—our invariant. We have thus established
that our invariant holds at the beginning of the loop.
The result of the compar function is positive if the value we are looking for is
greater than the value at point p. Therefore, at Figure 2.12:3 we can say that
R € (p:base+ Tim) =
Re[p+1:base+ Tim).

If we express the original base value as base,, our original invariant, after the
assignment at Figure 2.12:4, is now

R € [base : base,; + 1im).

Given that p was given the value of base + 1im/2, we have
base = base,,;+ hTm +1<&

base,;, = base— hTm —

By substituting the above result in the invariant we obtain
R € {base : base — 'hTm —1 +'I1'm).

When 11im is decremented by one at Figure 2.12:5 we substitute 1im+ 1 in our in-
variant to obtain

R e [base:base—%—l—#h’m—#l) =
. . Tim+1Y) _
R e [base.base—i—hm—T) =

R € [base : base + hTm) .

By a similar process, in the case where the result of the compar function is
negative, indicating that the value we are looking for is less than the value at point p,
we obtain

R € [base : p) =
R e [base : base + hTm) .

Note that the invariant is now the same for both comparison results. Furthermore,
when Tim is halved at Figure 2.12:7 we can substitute its new value in the invariant to
obtain R € [base : base + 1im), that is, the invariant we had at the top of the loop.
We have thus shown that the loop maintains the invariant and therefore will correctly

60 Basic Programming Elements

locate the value within the array. Finally, when 1im becomes zero, the range where
the value can lie is empty, and it is therefore correct to return NULL, indicating that
the value could not be located.

Exercise 2.31 Locate five control structures spanning more than 50 lines in the book’s
CD-ROM and document their body with a single-line comment indicating its function.

Exercise 2.32 Reason about the body of one of the above control structures, indicating
the place(s) where you use the controlling expression as an assertion.

Exercise 2.33 Provide a proof about the correct functioning of the insertion sort function
found as part of the radix sort implementation in the book’s CD-ROM. Hint: The innermost for
loop just compares two elements; the swap function is executed only when these are not
correctly ordered.

Further Reading

Kernighan and Plauger [KP78] and, more recently, Kernighan and Pike [KP99, Chap-
ter 1] provide a number of suggestions to improve code style; these can be used to
disentangle badly written code while reading it. Apart from the specific style sheets
mentioned in Section 2.9, a well-written style guide is the Indian Hill C Style and
Coding Standard; you can easily find it on-line by entering its title in a Web search
engine. For a comprehensive bibliography on programming style, see Thomas and
Oman [TO90]. The now classic article presenting the problems associated with the
goto statement was written by Dijkstra [Dij68]. The effects of program indentation
on comprehensibility are studied in the work by Miara et al. [MMNSS83], while the
effects of formatting and commenting are studied by Oman and Cook [OC90]. For an
experiment of how comments and procedures affect program readability, see Tenny
[Ten88]. Refactoring as an activity for improving the code’s design (and readability)
is presented in Fowler [Fow00, pp. 56-57]. If you want to see how a language is intro-
duced by its designers, read Kernighan and Ritchie [KR88] (covering C), Stroustrup
[Str97] (C++), Microsoft Corporation [Mic01] (C#), and Wall et al. [WCSPOO0] (Perl).
In addition, Ritchie [Rit79] provides an in-depth treatment of C and its libraries, while
Linden [Lin94] lucidly explains many of the C language’s finer points.

Invariants were introduced by C. A. R. Hoare [Hoa71]. You can find them also
described in references [Ben86, pp. 36-37; Mey88, pp. 140-143; Knu97, p. 17; HT00,
p- 116.] A complete analysis of the binary search algorithm is given in Knuth [Knu98].

3 netbsdsre/lib/libe/stdlib/radixsort.c:310-330

