
Spinellis codequal March 9, 2006 16:23

7.4 Stability 425

readdir(dir)
char *dir;
{
 static struct direct dentry;
 register int j;
 register struct lbuf *ep;

 if ((dirf = fopen(dir, "r")) == NULL) {
 printf("%s unreadable\n", dir);
 return;
 }
 for(;;) {
 if (fread((char *)&dentry, sizeof(dentry), 1, dirf) != 1)
 break;
 if (dentry.d_ino==0
 || aflg==0 && dentry.d_name[0]==’.’ && (dentry.d_name[1]==’\0’
 || dentry.d_name[1]==’.’ && dentry.d_name[2]==’\0’))
 continue;
 ep = gstat(makename(dir, dentry.d_name), 0);
 [...]
 for (j=0; j<DIRSIZ; j++)
 ep->ln.lname[j] = dentry.d_name[j];
 }
 fclose(dirf);
}

readdir(dir)
char *dir;
{
 static struct direct dentry;
 register int j;
 register struct lbuf *ep;

 if ((dirf = fopen(dir, "r")) == NULL) {
 printf("%s unreadable\n", dir);
 return;
 }
 for(;;) {
 if (fread((char *)&dentry, sizeof(dentry), 1, dirf) != 1)
 break;
 if (dentry.d_ino==0
 || aflg==0 && dentry.d_name[0]==’.’ && (dentry.d_name[1]==’\0’
 || dentry.d_name[1]==’.’ && dentry.d_name[2]==’\0’))
 continue;
 ep = gstat(makename(dir, dentry.d_name), 0);
 [...]
 for (j=0; j<DIRSIZ; j++)
 ep->ln.lname[j] = dentry.d_name[j];
 }
 fclose(dirf);
}

readdir(dir)
char *dir;
{
 static struct direct dentry; Structure for holding the directory entries
 register int j;
 register struct lbuf *ep;

 if ((dirf = fopen(dir, "r")
Open the directory as a file

) == NULL) {
 printf("%s unreadable\n", dir);
 return;
 }
 for(;;) {
 if (fread((char *)&dentry, sizeof(dentry), 1, dirf)

Read a directory entry
into memory != 1)

 break; No more directory entries
 if (dentry.d_ino==0
 || aflg==0 && dentry.d_name[0]==’.’ && (dentry.d_name[1]==’\0’
 || dentry.d_name[1]==’.’ && dentry.d_name[2]==’\0’))
 continue;

Ignore it if it is
an unused entry,
or not a file

 ep = gstat(makename(dir, dentry.d_name), 0); Obtain the file’s metadata
 [...]
 for (j=0; j<DIRSIZ; j++)
 ep->ln.lname[j] = dentry.d_name[j];

Get and save the file’s name

 }
 fclose(dirf); Close the directory’s stream
}

Figure 7.35 Directly interpreting a directory’s data in the Seventh Edition Unix

cause programs that directly interpreted directory data to display wrong results or fail
in mysterious ways.

Exercise 7.55 What are the disadvantages of data abstraction in terms of efficiency and read-
ability? Provide concrete examples. How can these problems be avoided?

7.4.3 Type Checking

If data abstraction is a policy promoting (among other things) a system’s stability !

and maintainability, type-checking is the enforcement mechanism. An implementa-
tion that takes advantage of a language’s type-checking features will catch erroneous
modifications at compile time; an implementation based around loose types or one
that circumvents the language’s type system can result in difficult-to-locate runtime
errors.

Designs, apis, or implementations that fail to take advantage of a language’s
type system involve two symmetrical operations: one whereby information about an
element’s type is lost as this element is upcast into a more generic type (commonly
void * or Object) and one whereby the assumed type information is plucked out of
thin air when a generic type is downcast into a more specific type. The first operation
is generally harmless, but the second one assumes that the element being downcast is
indeed of the corresponding type; if this is not true, depending on the language, we
may end up with a runtime error or a difficult-to-trace bug. You can see a concrete

Spinellis codequal March 9, 2006 16:23

426 Maintainability

public class ArgoEventPump {
 [...]
 private ArrayList _listeners = null;
 [...]
 protected void doAddListener(int event, ArgoEventListener listener) {
 if (_listeners == null) _listeners = new ArrayList();
 _listeners.add(new Pair(event, listener));
 }
 [...]
 protected void doFireEvent(ArgoEvent event) {
 [...]
 ListIterator iterator = _listeners.listIterator();
 while (iterator.hasNext()) {
 Pair pair = (Pair)iterator.next();
 [...]
 }

 }
}

public class ArgoEventPump {
 [...]
 private ArrayList _listeners = null;
 [...]
 protected void doAddListener(int event, ArgoEventListener listener) {
 if (_listeners == null) _listeners = new ArrayList();
 _listeners.add(new Pair(event, listener));
 }
 [...]
 protected void doFireEvent(ArgoEvent event) {
 [...]
 ListIterator iterator = _listeners.listIterator();
 while (iterator.hasNext()) {
 Pair pair = (Pair)iterator.next();
 [...]
 }

 }
}

public class ArgoEventPump {
 [...]
 private ArrayList _listeners = null; A container of typeless (Object) elements
 [...]
 protected void doAddListener(int event, ArgoEventListener listener) {
 if (_listeners == null) _listeners = new ArrayList();
 _listeners.add(new Pair(event, listener));

1 A Pair element is added to the Object
container (an upcast from Pair to Object)

 }
 [...]
 protected void doFireEvent(ArgoEvent event) {
 [...]
 ListIterator iterator = _listeners.listIterator();
 while (iterator.hasNext()) {
 Pair pair = (Pair)iterator.next(); 2 An (assumed to be Pair) element is

extracted from the Object container
(a downcast from Object to Pair)

 [...]
 }

 }
}

Figure 7.36 Playing loose with types in pre–Java 1.5 code

example in Figure 7.36.185 This (pre–Java 1.5) code uses an ArrayList as a container
for storing Pair elements as plain Java Objects. When a Pair element is added to
_listeners (Figure 7.36:1), it is implicitly cast into an Object for the purposes
of compile-time type checks. Then, when an element is retrieved (Figure 7.36:2),
the code assumes that the Object is indeed a Pair and downcasts it into that type.
The compiler cannot verify this assumption; if we changed the code in the doAdd-!

Listenet method to add a different element type into the container, we would find
the problem only at runtime, as a ClassCastException when doFireEvent got
executed. Worse, the runtime error would manifest itself only if our test coverage
included both doAddListenet and doFireEvent, in that order. In Java 1.5, we cani

avoid this (quite common) coding style by using the generics language extension.
Legacy apis often force us to abandon strict type checking. Two prime culprits

in this category are the pre-Win32 swaths of the Windows platform api and the Unix
ioctl interface. Both interfaces use “integer” arguments that can variously hold
many other different and incompatible types. The type information is communicated
through an out-of-band mechanism that the compiler can neither check nor enforce.
Have a look at the following (fairly typical) Windows code, implementing a callback
function: a user-level function that the Windows system calls when a specific event
class occurs:186

185argouml/org/argouml/application/events/ArgoEventPump.java:29–34, 58–61, 140–175
186apache/src/os/win32/Win9xConHook.c:413–461

Spinellis codequal March 9, 2006 16:23

7.4 Stability 427

static LRESULT CALLBACK
ttyConsoleCtrlWndProc(HWND hwnd, UINT msg, WPARAM wParam,

LPARAM lParam)
{

if (msg == WM_CREATE) {
tty_info *tty =
(tty_info*) (((LPCREATESTRUCT)lParam)->lpCreateParams);

[...]
} else if ((msg == WM_QUERYENDSESSION) ||

(msg == WM_ENDSESSION)) {
if (lParam & ENDSESSION_LOGOFF)

In that code, the same lParam argument is used as a pointer to a CREATESTRUCT if
the msg argument has a value of WM_CREATE and as a bitfield if the msg argument has
a value of WM_QUERYENDSESSION or WM_ENDSESSION.

The Unix ioctl and fcntl system calls suffer from a similar problem. The type
of their third (and following) arguments depends on the value passed as the second
argument. For example, in the following code extracts from the Unix mt magnetic
tape control command,187 an ioctl operation is used to

• Perform a tape operation (MTIOCTOP), passing as the third argument a struct
mtop pointer

• Get the tape’s status (MTIOCGET), passing as the third argument a struct

mt_status pointer

• Get the tape’s logical or hardware block address (MTIOCRDSPOS, MTIOCR-
DHPOS), passing as the third argument a pointer to an integer

int
main(int argc, char *argv[])
{

struct mtget mt_status;
struct mtop mt_com;
int ch, len, mtfd, flags;
int count;

switch (comp->c_spcl) {
case MTIOCTOP:

if (ioctl(mtfd, MTIOCTOP, &mt_com) < 0)
err(2, "%s", tape);

break;

187netbsdsrc/bin/mt/mt.c:111–211

Spinellis codequal March 9, 2006 16:23

428 Maintainability

case MTIOCGET:
if (ioctl(mtfd, MTIOCGET, &mt_status) < 0)

err(2, "%s: %s", tape, comp->c_name);
break;

case MTIOCRDSPOS:
case MTIOCRDHPOS:

if (ioctl(mtfd, comp->c_spcl, (caddr_t) &count) < 0)
err(2, "%s", tape);

break;

The type of the third ioctl argument is not checked at compile time. Therefore,
small changes to the ioctl interface are unthinkable; the affected programs would
still compile without problems but fail in mysterious ways when executed. Although
this situation of a difficult-to-change api may appear as stable (exactly what we are
looking for in this section), the stability we have is that of a house of cards: We dare
not make any changes to it lest it collapse.

Exercise 7.56 Comment on the type-safety of the C printf function. Some compilers can
check the types of the data elements, based on the string passed as the format specification. Is this
approach watertight? Does it overcome the problem?

7.4.4 Compile-Time Assertions

There are cases in which implementation choices cannot be abstracted in a way that
will cleanly solve the problem at hand in an acceptable fashion. The underlying reasons
can be traced back to efficiency concerns or language limitations. In such cases, the
C/C++ language preprocessor allows us to use compile-time assertions to verify that
the implementation assumptions we made remain valid in the face of maintenance
changes. These compile-time assertions ensure that the software is always built within
the context of the operational envelope it was designed for.

As an example of a compile-time assertion used to verify the compilation environ-
ment, the following code forms a table for converting ascii characters into lowercase.
This task can be efficiently implemented through a simple lookup table mapping char-
acter codes to their lowercase values. For historical reasons, the conversion should
also be able to handle the EOF value. As this value is typically −1, it can be conve-
niently put at the table’s first element, with the lookup function adjusted to add 1 to
the value being examined.188

188netbsdsrc/lib/libc/gen/tolower_.c

