156 Time Performance

printf("%s %1d bytes in %.1f seconds",
direction, amount, delta);
printf(" [%.0f bits/sec]", (amount*8.)/delta);

On the implementation front, when you consider alternatives, you should always use
measurement data to evaluate them; then, when you write the corresponding code,
measure its performance-critical components early and often, to avoid nasty surprises
later on.

You will read more about measurement techniques in the next section. In many
cases, a major source of performance improvements is the use of a more efficient
algorithm; this topic is covered in Section 4.2. Having ruled out important algorith-
mic inefficiencies, you can begin to look for expensive operations that impact your
program’s performance. Such operations can range from expensive CPU instructions
to operating system and peripheral interactions; all are covered in Sections 4.3—4.6.
Finally, in Section 4.7, we examine how caching is often used to trade memory space
for execution time.

Exercise 4.1 Choose five personal productivity applications and five infrastructure applica-
tions your organization relies on. For each application, list its most important time-related attribute.

Exercise 4.2 Your code provides a horrendously complicated yet remarkably efficient imple-
mentation of a simple algorithm. Although it works correctly, measurements have demonstrated
that a simple call to the language’s runtime library implementation would work just as well for all
possible input cases. Provide five arguments for scrapping the existing code.

4.1 Measurement Techniques

Humans are notoriously bad at guessing why a system is exhibiting a particular time-
related behavior. Starting your search by plunging into the system’s source code,
looking for the time-wasting culprit, will most likely be a waste of your time. The
only reliable and objective way to diagnose and fix time inefficiencies and problems
is to use appropriate measurement tools. Even tools, however, can lie when applied to
the wrong problem. The best approach, therefore, is to first evaluate and understand
the type of workload a program imposes on your system and then use the appropriate
tools for each workload type to analyze the problem in detail.



4.1 Measurement Techniques 157

4.1.1 Workload Characterization

A loaded program on an otherwise idle system can at any time instance be in one of
the three different states:

1. Directly executing code. The time spent directly executing code is termed
user time (u), denoting that the process operates in the context of its user.

2. Having the kernel execute code on its behalf. Correspondingly, the time the
kernel devotes to executing code in response to a process’s requests is termed
system time (s), or kernel time.

3. Waiting for an external operation to complete. Operations that cause a pro-
gram to wait are typically read or write requests to slow peripherals, such as
disks and printers, input from human users, and communication with other
processes, often over a network link. This time is referred to as idle time.

The total time a program spends in all three states is termed the real time (r)
the program takes to operate, often also referred to as the program’s wall clock time:
the time we can measure using a clock on the wall or a stopwatch. The sum of the
program’s user and system time is also referred to as CPU time.

The relationship among the real, kernel, and user time in a program’s (or com-
plete system’s) execution is an important indicator of its workload type, the relevant
diagnostic analysis tools, and the applicable problem-resolution options. You can see
these elements summarized in Table 4.1; we analyze each workload type in a separate
section.

On Unix-type systems, you can specify a process as an argument of the time'!
command to obtain the user, system, and real time the process took to its completion.
On Windows systems, the taskmgr command can list a process’s CPU time and show
a chart indicating the time the system spends executing kernel code. For nontermi-
nating processes, you will have to obtain similar figures on Unix systems through
the commonly available fop command. On an otherwise unloaded system, you can
easily determine a process’s user and system time from the corresponding times of the
whole system. When analyzing a process’s behavior, carefully choose its execution
environment: Execute the process either in a realistic setting that reflects the actual
intended use or on an unloaded system that will not introduce spurious noise in your
measurements.

netbsdsrc/usr.bin/time



158 Time Performance

Table 4.1 Timing Profile Characterization, Diagnostic Tools, and Resolution Options

Timing Profile r>u+s s> u u>r
Characterization 1/0-bound Kernel-bound CcPU-bound
Diagnostic tools Disk, network,  System call Function profil-
and virtual mem-  tracing ing; basic block
ory  statistics; counting
network packet
dumps; system
call tracing
Resolution options ~ Caching;  effi- Caching; a faster ~ Efficient algo-

rithms and data
structures; other

cient network cPuU

protocols  and
disk data struc-

code improve-

tures; faster 1/0 ments; a faster
interfaces or CPU Or memory

peripherals system

4.1.2 1/0-Bound Tasks

Programs and workloads whose real time r is a lot larger than their cpU time u + s
are characterized as 1/0-bound. Such programs spend most of their time idle, waiting
for slower peripherals or processes to respond. Consider as an example the task of
creating a copy of the word dictionary on a diskless system with an NFs-mounted disk
and a 10mb/s network interface:

$ /usr/bin/time cp /usr/share/dict/words wordcopy
5.68 real 0.00 user 0.32 sys

It would be futile to try to analyze the cp'> command, looking for optimization op-
portunities that would make it execute faster than the 5.68 seconds it took. The results
of the time command indicate that cp spent negligible cpuU time; for 94% of its clock
time, it was waiting for a response from the NFs-mounted disk.

The diagnostic tools we use to analyze 1/0-bound tasks aim to find the source of
the bottleneck and any physical or operational constraints affecting it. The physical
constraint could be lagging responses from a genuinely slow disk or the network;

Zpetbsdsre/bin/cp



4.1 Measurement Techniques 159

the corresponding operational constraints could be the overloading of the disk or the
network with other requests that are not part of our workload. On Unix systems, the
iostat,13 netstat,14 nfsstat,15 and vmstat'® commands provide summaries and contin-
uous textual updates of a system’s disk and terminal, network, and virtual memory
performance. On Windows systems, the management console performance monitor
(invoked as the perfimon command) can provide similar figures in the form of detailed
charts. After we find the source of the bottleneck, we can either improve the hardware
performance of the corresponding peripheral (by deploying a faster one in its place)
or reduce the load we impose on it. Strategies for reducing the load include caching
(discussed in Section 4.7) and the adoption of more efficient disk data structures or
network protocols, which will minimize the expensive transactions. We discuss how
these elements relate to specific source code instances in Section 4.5.

Analyzing the disk performance on the NFS server hosting the words file in our

example using iostat shows the load on the disk to be quite low:

ado

KB/t tps MB/s

0.00 0 0.00

32.80 15 0.47
27.12 24 0.63
37.31 26 0.94
73.60 10 0.71
35.24 33 1.14
25.14 21 0.51
7.00 4 0.03

0.00 0 0.00

The load never exceeded 1.14MB/s, well below even the lowly 3.3mB/s Pro'” mode 0
transfer mode limit. Therefore, the problem is unlikely to be related to the actual disk
/0. However, using netstat to monitor the network 1/0 on the diskless machine does
provide us with an insight:

3netbsdsrc/ust.sbin/iostat

4netbsdsrc/usr.bin/netstat

Snetbsdsrc/usr.bin/nfsstat

10petbsdsrc/usr.bin/vmstat

17The programmed input/output mode is a legacy ATAPI hard disk data transfer protocol that supports data
transfer rates ranging from 3.3MB/s (P10 mode 0) to 16.6MB/s (P10 mode 4). Modern ATAPI drives typically
operate using the Ultra-DMA protocol, supporting transfer rates up to 133MB/s.



160 Time Performance

input (Total) output

packets errs bytes packets errs bytes colls
1 0 60 1 0 250 0
210 0 237744 204 0 230648 113
417 0 515196 418 0 513722 324
383 0 467208 402 0 496650 292
368 0 451418 381 0 470212 259
425 0 519588 430 0 515714 301
400 0 488434 400 0 496816 287
9 0 6106 15 0 11886 7

1 0 60 1 0 138 0

The maximum network throughput attained is 7.9Mb/s,'® which is very near the limit
of what the particular machine’s half-duplex 10mMb/s ethernet interface can deliver in
practice. We can therefore safely say that the operation efficiency of the particular
command invocation is bound by the capacity of the machine’s network interface.
Minimizing the network traffic (by adding, for example, a local disk and keeping
copies of the data on it) or improving the network interface (for example, to 100Mb/s)
will most probably correct the particular deficiency.

In some cases, a more detailed examination of the 1/0 operations may be required
to locate the problem. Two tool categories that will provide such details are system
call tracers and network packet-monitoring tools. On Unix systems, you will find such
commands as strace, dtrace, truss, ltrace,'® tcpdump, and ethereal;?® for Windows
systems, you will have to download such programs as apispy and windump. Your
objective here is to examine either the sheer volume of the corresponding transactions
or the time a single transaction takes to complete. Most tools provide options for time
stamping each transaction, thus providing you with an easy way to reason about the
program’s behavior.

Consider, for example, the performance of the Apache logresolve?! command.
The command reads a web server log and replaces numeric 1P addresses with the
corresponding host name. Examining its operation with time reveals that it spends
99.99%72 of its time sitting idle:

$ /usr/bin/time logresolve <httpd-access.log >/dev/null
1230.55 real 0.04 user 0.03 sys

18Calculated as 8 (519, 5884515, 714) /1, 0242
19freshmeat.net/projects/ltrace
2Ohttp://www.ethereal.com
2lapache/src/support/logresolve.c

22Calculated as 100 (1 — (0.04 +0.03) /1, 230.55).



4.1 Measurement Techniques 161

The output of the netstat command also shows an (almost) idle network connection:

input (Total) output
packets errs bytes packets errs bytes colls
7 0 486 8 0 108 0
14 0 229 11 0 383 0
3 0 336 3 0 324 0
3 0 216 4 0 301 0
3 0 667 3 0 216 0
6 0 98 2 0 301 0

However, obtaining a network packet dump with fcpdump and examining the
timestamps of a single name lookup operation reveal that this may require up to
150 ms:?3

16:15:33.283221 istlab.dmst.aueb.gr.1024 > gnsl.nominum.com.domain:
9529 [lau] PTR? 105.199.133.198.1in-addr.arpa. (57)

16:15:33.433305 gnsl.nominum.com.domain > istlab.dmst.aueb.gr.1024:
9529*- 1/2/0 (122) (DF) [tos 0x80]

Ignoring the effects of caching (which logresolve does perform),2* we can easily see
that processing a 10 million log file may require 17 days.?> Thus, logresolve’s caching
is certainly a worthwhile investment.

4.1.3 Kernel-Bound Tasks

Programs and workloads whose system time s is larger than their user time u can
be characterized as kernel-bound. Strictly speaking, the kernel-bound tasks are also
cpU-bound in the sense that improving the processor’s speed will often increase their
performance. However, we treat such programs as a separate class because they require
different diagnostic and resolution techniques. Your objective when dealing with a
kernel-bound task is first to determine what kernel system calls the task performs.
A system call tracing utility, such as strace or apispy, will be your tool of choice
here.2 Such a program will provide you with a list of all the system calls a process
has performed. As we discuss in Section 4.4, system calls are relatively expensive

BCalculated as (433, 305 — 283,221) /1,000.

24apache/src/support/logresolve.c:32-34

2 Calculated as 0.150 x 107 /60,/60/24.

26Don’t confuse system call tracing with the program comprehension human activity with the same name
we discuss in Section 7.2.



162 Time Performance

operations; therefore, you will then browse the system call list to see whether any
calls could be eliminated by the use of appropriate user-level caching strategies.

Consider, as an example, running the directory listing Is command to recursively
list the contents of a large directory tree:

$ /usr/bin/time 1s -1R >/dev/null
4.59 real 1.28 user 2.73 sys

We can easily see that Is spends twice as much time operating in the context of
the kernel than the time it spends executing user code. Examining the output of the
strace command, we see that for listing 7,263 files, Is performs 18,289 system calls.
The strace command also provides a summary display, which we can use to see the
number of different system calls and the average time each one took:

% time seconds usecs/call calls errors syscall

42.52 5.604588 994 5638 Tstat

13.95 1.838295 842 2183 open

12.38 1.632320 599 2727 fstat

12.37 1.630742 747 2182 fchdir

11.41 1.503261 690 2180 close

2.94 0.387360 353 1096 getdirentries

[...]

Armed with that information, we can reason that Is performs an 1stat or fstat
system call for every file it visits.

Based on those results, we can look at the source to find the cause of the various
stat calls:?’

if (!f_inode && !'f_longform && !'f_size && !f_type &&
sortkey == BY_NAME)
fts_options |= FTS_NOSTAT;

The preceding snippet tells us that by omitting the “long” option, we will probably
eliminate the corresponding stat calls. The improvement in the execution perfor-
mance figures corroborates this insight:

$ /usr/bin/time 1s -R >/dev/null
1.08 real 0.28 user 0.77 sys

2Thetbsdsre/bin/ls/ls.c:232-234



