
THE MAGAZINE OF USENIX & SAGE
June 2003 • volume 28 • number 3

The Advanced Computing Systems Association &

The System Administrators Guild

&

inside:
SYSADMIN

Organized Pruning of File Sets

by Diomidis D. Spinellis

39June 2003 ;login:

�

SY

SA
D

M
INIn a number of backup scenarios, backup files simply accrue in a directory

that should be periodically cleaned up. Typical examples include backup

data from databases, PDAs, network clients, and routers. The data contents

of the above are often not directly backed up onto tapes, but are copied to

disk-based files by an appropriately scheduled cron(8) job.

The continuous increase in disk capacities enables us, in many cases, to keep multiple
sets of these backup files in a given directory as a substitute for a regular tape backup.
These files are typically kept in a manageable size by periodically purging all old files.
Well-organized tape-based backups, however, offer an additional advantage: Through
a carefully staged tape retention schedule, users can often retrieve files much older
than the number of retained tapes would suggest.

A tape backup schedule might, for example, involve daily incremental backups, weekly
full backups retained for two months, and monthly tapes retained for two years. If I
discover today that sometime in the previous six months I deleted a file I had created a
year ago, I can go to the retained monthly backups that followed the file’s creation and
retrieve it from there.

Backups to files are not often organized in this manner. Two approaches I have seen
for managing their size involve either naming each file with a periodically repeated
date element, such as the day of the week or month, so that newer files will overwrite
older ones, or tagging each file with a unique identifier, such as the complete date, and
having a separate script remove files older than a given date. Both approaches, how-
ever, lack the property of selectively retaining a subset of older files. More elaborate
schemes can, of course, be constructed by carefully synchronizing and staging separate
cron(8) jobs, but I have never seen them applied in practice. The problem of selectively
retaining old files gets especially difficult when the backups are created at irregular
intervals – for example, each time I synchronize my PDA or remember to back up my
cellular phone directory.

On the other hand, a file-based backup scheme offers the additional possibility of
automatically examining all the retained files and selectively pruning those we decide
are not worth keeping. The key concept for deciding which files to keep is a retention
schedule. In tape-based schemes, this simply revolves around weeks, months, and years.
If we have a tool for managing the file pruning, we can be more creative in selecting a
retention schedule and, hopefully, use one that will, violating Murphy’s Law, offer us
an increased probability of recovering that old file we discovered missing.

Retention Schedules
When I first decided to work on the file pruning problem, I considered using an expo-
nential retention schedule. I would like to keep yesterday’s backup, a backup from two
days ago, then backups aged 4, 8, 16, 32, and 64 days. With 10 files I could cover a
period lasting more than a year. This schedule uses two as the schedule’s base; one
could select any smaller number to increase the number of retained files or a larger
number to decrease them. The idea behind this schedule is that recent backups are
more valuable than older ones.

Creeping featurism made me think of different possible schedules. One other possibil-
ity is a Fibonacci schedule. Here the retention sequence starts with 1, 1, and each sub-
sequent term is the sum of the two previous ones: 2, 3, 5, 8, 13, 21 34, 55. At that point,
I had to wonder which of the two schedules was better for securing my valuable data.

organized pruning
of file sets

by Diomidis D.
Spinellis

Diomidis Spinellis is an
Assistant Professor in
the Department of
Management Science
and Technology at the
Athens University of
Economics and Busi-
ness; he is the author
of Code Reading: The
Open Source Perspec-
tive (Addison Wesley,
2003).

dds@aueb.gr

ORGANIZED PRUNING OF FILE SETS �

Vol. 28, No. 3 ;login:

It turns out that neither is. If we were to
sample data recovery requests in a large
data center, we would probably find that
the age of the requested files would fol-
low the ubiquitous bell-shaped normal,
or Gaussian, distribution. The exact
shape of the bell is determined by the
standard deviation of the requested file
ages; this expresses the variation (in the
same unit as we measure the file ages)
between the ages of different requested
files. Since recovery requests from all
users (apart from pointy-haired man-
agers) always refer to the past, the shape
is actually one-half of a bell curve. You
can see the normal curve for a standard
deviation of 200 in Figure 1.

The formula defining the normal curve is
actually quite complex:

but once it is coded in a program, its application can be a breeze. The curve represents
the probability that a file of a given age will be requested.

You can see that, following intuitive expectation, as files age they are less likely to be
needed. In order to distribute our archive files in a way that reflects this diminishing
probability distribution, we need to define our retention interval schedule so that the
interval’s length is proportional to the probability of requiring a file within that inter-
val. This is represented by the area under the curve for the given interval; for the math-
ematically inclined, the area for an interval from a to b is given by the integral

We therefore need to divide the whole area under the curve into a number of equally
sized parts, as many as the files we can afford to retain, and then calculate the respec-
tive intervals.

Unfortunately, there is no mathematical formula with a finite number of terms that
can give us the numbers we are looking for. Initially, I wrote code to numerically inte-
grate the normal function, adjusting the interval while moving back into time. A few
days later, my colleague Stavros Grigorakakis, reading a draft of these notes, pointed
me to an excellent analysis of the Gaussian function available online at http://math-
world.wolfram.com/GaussianDistribution.html. There I found that the cumulative dis-
tribution function (the integral I was painstakingly calculating) can be determined by
means of the so-called error function, which – surprise, surprise – is part of the UNIX
C math library. You can see in Figure 2 how we would spread 30 files in a period of
around 2000 days using an exponential distribution with a base of 1.3 and a normal

40

0 100 200 300 400 500 600 700

Days

Normal distribution

Figure 1 f(x)=
1

√ 2π σ
e

−x2

2σ 2

b

a
∫ f(x)dx

http://math-world.wolfram.com/GaussianDistribution.html

41June 2003 ;login:

�

SY

SA
D

M
INdistribution with a standard deviation of

1000. For comparison purposes, I have
also included how a Fibonacci distribu-
tion and an exponential distribution
with a base of 2 would appear in the
above scheme; only 18 files would fit in
the Fibonacci distribution and 12 in the
base-2 exponential.

The Prune Tool
Putting code where my mouth is, I wrote
a C program to implement the file-prun-
ing strategies described above. It is avail-
able for download in source form
through a BSD-style license from
http://www.spinellis.gr/sw/unix/prune.
Prune will delete files from the specified
set, targeting a given distribution of the
files within a certain time, while also
supporting size, number, and age con-
straints. Its main purpose is to keep a set
of daily-created backup files in manage-
able size while still providing reasonable
access to older versions. Specifying a size, file number, or age constraint will simply
remove files starting from the oldest, until the constraint is met. The distribution spec-
ification (exponential, Gaussian, or Fibonacci) provides finer control of the files to
delete, allowing the retention of recent copies and the increasingly aggressive pruning
of the older files. The retention schedule specifies the age intervals for which files will
be retained. As an example, an exponential retention schedule for 10 files with a base
of 2 will be:

1 2 4 8 16 32 64 128 256 512 1024

This schedule specifies that for the interval of 65 to 128 days there should be (at least)
one retained file (unless constraints or other options override this setting). Retention
schedules are always calculated and evaluated in integer days. By default prune will
keep the oldest file within each day interval, allowing files to gradually migrate from
one interval to the next as time goes by. It may also keep additional files, if the com-
plete file set satisfies the specified constraint. The algorithm used for pruning does not
assume that the files are uniformly distributed; prune will successfully prune files
stored at irregular intervals.

Prune is invoked through the following syntax:

prune [-n|-N|-p] [-c count|-s size[k|m|g|t]|-a age[w|m|y]]
[-e base|-g standard deviation|-f] [-t a|m|c] [-FK] file ...

The numerous options reflect the tool’s flexibility. You can specify the distribution to
use (exponential, Gaussian, or Fibonacci) using the -e, -g, and -f options as well as the
constraints for the number (count), size, or age of the files to retain using the -c, -s, and
-a options. By default the constraints are used to specify the upper limit of the size or
number of files that will be retained. If more files can be accommodated (because, e.g.,

0 500 1000 1500 2000 2500 3000

Days

Fibonacci
Exponential 1.3

Normal 1000
Exponential 2

Figure 2

ORGANIZED PRUNING OF FILE SETS �

http://www.spinellis.gr/sw/unix/prune

Vol. 28, No. 3 ;login:

some intervals are empty), or the specified size limit has not been reached, prune will
retain additional files, deleting old files until the constraint is satisfied. The -F flag can
be used to override this behavior. On the other hand, if a constraint is violated, prune
may not retain any files in a given interval; the -K flag can be used to always keep at
least one file in each interval. Finally, the -t flag allows you to specify whether prune
will use the creation, access, or modification time of the specified files for determining
their age.

The following examples illustrate some possible uses for prune:

ssh remotehost tar cf - /datafiles \ >backup/`date +'%Y%m%d'`
prune -e 2 backup/*

backs up remotehost, storing the result in a file named with today’s timestamp (e.g.,
20021219). Subsequently, prunes the files in the backup directory so that each retained
file’s age will be double that of its immediately younger neighbor.

prune -g 365 -c 30 *

keeps at most 30 files. The ages of these files will follow a Gaussian (normal) distribu-
tion, with a standard deviation of one year.

prune -e 2 -s 5G *

prunes the specified files following an exponential schedule so that no more than 5GB
are occupied. More than one file may be left in an interval if the size constraint is met.
Alternatively, some old intervals may be emptied in order to satisfy the size constraint.

prune -F -e 2 -s 5G *

acts as above, but leaves no more than one file in each scheduled interval.

prune -K -e 2 -s 5G *

acts as in the first example of the 5GB-constrained series, but leaves exactly one file in
each interval, even if this will violate the size constraint.

prune -a 1m -f

deletes all files older than one month; it uses a Fibonacci distribution for pruning the
remaining ones.

Conclusion
Increasing disk capacities and network bandwidth allow us to implement disk-based
backup mechanisms. An important aspect of a disk-based backup system is the
employed retention schedule. The prune tool allows you to rationally specify and auto-
matically manage the retention schedule to suit your needs. An exponential schedule
with an integer base or a Fibonacci-based schedule can be easily understood by unso-
phisticated users, while a schedule with a normal distribution and an appropriately set
standard deviation is more likely to reflect your true file-retention requirements.

42

An important aspect of a

disk-based backup system is

the employed retention

schedule.

