

 A Dynamically Linkable Graphics Library

 Diomidis D. Spinellis
 Department of Computing, Imperial College of Science and
 Technology, 180 Queens Gate, London SW7 2BZ, U.K.

 March 1988

 DRAFT

 A Dynamically Linkable Graphics Library

 Diomidis D. Spinellis
 Department of Computing, Imperial College of Science and
 Technology, 180 Queens Gate, London SW7 2BZ, U.K.

 SUMMARY

 The design issues behind the implementation of an efficient and
 portable graphics library are discussed. A description of its
 components is given and the constraints leading to dynamic
 linking are presented. Techniques allowing the transparent
 dynamic linking of library elements are analysed and two
 implementations of a system that automatically creates
 dynamically linkable code are presented. The one implementation
 is based on traditional UNIX tools and the other on the perl
 programming language. The two implementations are compared.

 KEY WORDS : Dynamic linking Graphics libraries Perl

 INTRODUCTION

 During the design of an interactive graphics pre- and post-
 processor for a finite element analysis system, the problem of
 portably displaying the output on a wide variety of graphics
 output devices was encountered. The program, initially, had to
 run on IBM-PC class machines running the MS-DOS operating system.
 In a latter stage it was ported to run under the UNIX operating
 system on Sun and microVAX workstations.
 The program is used to inspect structures represented by wire
 frames containing hundreds of elements in two distinct phases.
 First, before input to the finite element analysis program, the
 wire frame is examined in order to visually verify its form.
 After the analysis the program is used to inspect the distortions
 suffered under specific loads. The user may rotate the structure
 in three dimensions, view specific parts of it, label its joints
 and members and perform various other operations on it. The
 interactive nature of the program and the range of machines it
 was designed to operate on, made its design focus on a fast
 implementation. The main program consists of about 7000 lines of
 code written in the C[1] programming language.
 MS-DOS does not provide an application graphics interface and the
 ROM Basic Input Output System (BIOS)[2] that is available on
 these machines does not support devices other than those
 manufactured by the machine vendor. In addition the functions it
 provides are minimal. Typical functions could display a
 character, set a point to a specified colour and set up the

 DRAFT

 2 D. Spinellis

 screen for a particular graphics mode. The implementation of more
 advanced commands using the BIOS would suffer from the overhead
 of calling it for every point drawn. Some experimenting using its
 functions demonstrated that the speed of a program using it, was
 clearly unacceptable for interactive use.
 The use of a graphics platform like GKS[3] or Microsoft
 Windows[4] was considered. GKS offers device independent graphics
 functions and would offer the portability desired. Microsoft
 Windows is a window oriented user interface. Applications written
 using the functions it provides are portable among a range of
 hardware as it is responsible for implementing the input/output
 functions for a particular device. The use of those programs was
 not opted for, because they were not widely available among the
 user base. Particularly the use of a Microsoft Windows interface
 would burden the application with one more level of
 non-portability to machines not running MS-DOS.

 THE LIBRARY APPROACH

 The initial approach to the problem was the isolation of the
 graphics functions from the main program in order to achieve
 portability. In addition to that some useful, but not device
 specific graphics functions were identified. Thus two function
 libraries were created. The one consists of all device specific
 functions and the other of device independent ones.
 The criterion used to isolate the functions in those two groups
 was mainly the efficiency with which a particular function could
 be implemented using other device specific functions. Furthermore
 device specific functions should only do the absolute minimum
 work that was device specific. Non device specific functions
 would provide better interfaces. This was decided in order to
 simplify the implementation of the graphics library on a wide
 variety of graphics devices.
 Using this criterion functions like draw-a-line and
 display-a-character were immediately put in the device specific
 library. An example of a function that was put in the device
 dependent library only because it could be implemented very
 efficiently in a device specific way was the crosshair function.
 This function allows the identification of a screen point by the
 intersection of two lines at right angles, covering the whole
 screen. The implementation should be very efficient as this
 function is usually driven by a mouse forming a part of the user
 interface. Efficient implementations for this function are device
 specific as they can range from manipulating whole words, for the
 horizontal line in bit mapped displays, to invoking device
 specific functions, as for the Tektronix[5] type displays.
 Apart from the functions provided a number of global variables
 was also included in the device specific part of the library.
 These specified various display characteristics such as the
 screen size and aspect.
 All the portable library is written in C and its size is about
 1500 lines. Some of the device specific libraries are written in
 C, but others have parts written in assembly language. Their size

 DRAFT

 A Dynamically Linkable Graphics Libary 3

 varies from 140 lines which is the library interfacing to the
 graphics library provided by the compiler vendor to 1300 lines
 which is the size of the EGA[6] interface library. Up to now 12
 different libraries have been developed.

 Functions provided

 The device specific part

 The functions that the device dependent library provides are
 listed in table 1. Table 2 outlines the global variables that are
 made available.

 Name Function

 cls Clear the screen.
 disp Display a given graphics page.
 gmode Set graphics mode in effect.
 gpage Set graphics page to be used for output.
 grpoint Graphics cross hair pointer.
 horxor Invert a character row.
 line Draw a line.
 locate Change the cursor position.
 plot Plot a point on the screen
 point Return the colour of a point on the screen.
 scr_get Save the screen buffer to memory.
 scr_put Restore the screen buffer from memory.
 tmode Set text mode in effect.
 win_get Save an area of the screen to memory.
 win_put Restore an area of the screen from memory.
 win_size Return memory required for a screen area.
 wrt Write a character attribute on the screen.
 wrtrep Write a character a number of times.

 Table 1

 Name Function

 aspect The screen aspect ratio.
 cols The screen size in columns.
 rows The screen size in rows.
 scr_can_do The availability of the scr_ functions.
 scr_planes The number of screen planes.
 scr_size The size of one screen plane in bytes.
 xpels The number of pixels in the screen x coordinate.
 xsize The width in pixels of one character.
 ypels The number of pixels in the screen y coordinate.
 ysize The height in pixels of one character.
 win_can_do The availability of the win_ functions.

 DRAFT

 4 D. Spinellis

 Table 2

 Not all functions are supported by all hardware specific
 libraries. Some may be just stubs in a particular implementation.
 Where this can affect the program function, variables specify
 whether a function is available for a specific configuration.
 The functions were initially designed as part of the three
 dimensional view program and based on the functions provided by
 the IBM-PC BIOS. The interface design strongly reflects this
 fact. The function interface is efficient as used in that program
 and relatively easy to implement in machines with PC BIOS
 support. For efficiency reasons parameters that tend to stay the
 same between a number of calls to functions (such as the output
 screen page) are specified by a different function in order to
 avoid the argument passing overhead. On the other hand parameters
 that would change from one function call to another are arguments
 of one function in order to minimise the function calling
 overhead. Thus the sequence of calls needed for drawing a line in
 a specific colour are not :

 SetDrawColour(colour) ;
 SetDrawingFunction(copy) ;
 MoveTo(x1, y1) ;
 DrawTo(x2, y2) ;

 A single function provides this interface :

 line(x1, y1, x2, y2, colour) ;

 The interface is thus less general and focused towards a specific
 application. However the library has been successfully used in
 the design of other packages without any serious problems.
 A more serious design error is the name specification of the
 routines which results in considerable name space pollution in
 flat naming programming systems such as the C programming
 language. The choice of some function names can also be described
 as unfortunate (this applies to the device independent library as
 well).

 The portable part

 The functions that are currently provided by the device
 independent library are listed in table 3.

 Name Function

 accept Get user input at a specific screen position.
 circle Draw a circle.
 displayf Display formatted data at a specific screen position.
 horchar Repeat a character horizontally on the screen.
 hpick Pick an item from a horizontal menu, providing help.

 DRAFT

 A Dynamically Linkable Graphics Libary 5

 lineclip Draw a line, clipping parts outside screen limits.
 mpick Pick an items from a table, providing help.
 text Draw text using vector fonts.
 userin Get input form the user allowing line editing.
 verchar Repeat a character vertically on the screen.
 vpick Pick an item from a vertical menu.
 wclose Close a window.
 wdel Delete a window from the screen.
 wdrag Change the position of a window.
 wleave Leave a window.
 wopen Open a new window.
 wscroll Scroll the contents of a window.
 wsize Change the window size.
 wuse Use a window.

 Table 3

 No global variables are defined by the library. The functions
 provided rely on functions from the device specific library. The
 dichotomy of the two libraries was established gradually and in
 the early phases of the development functions tended to migrate
 from one to the other, as it was tried to create a balance
 between efficiency and ease of implementation.
 The windowing functions provided, form a rather crude windowing
 system and have not been extensively used. With the constantly
 increasing use of many different windowing environments a
 portable windowing library is under consideration.
 Two families of functions provide character output. Raster fonts
 are used for speed and vector fonts for efficiency. Naturally all
 user interface functions such as menus and input procedures use
 the raster font.

 Initial implementation

 The initial implementation of the graphics library was in the
 form of two MS-DOS object libraries. The program was linked with
 the device independent library and one of the device dependant
 ones. No recompilation was needed for different devices. This
 method had the drawback of producing a different executable
 module for every device.

 DYNAMIC LINKING

 Design constraints

 As the number of devices for which libraries were created
 increased the drawbacks of the separate linking became apparent.
 More and more different executable programs had to be stored,
 distributed and maintained. The testing of those programs became

 DRAFT

 6 D. Spinellis

 difficult as a different linking session was needed for every
 executable module. At that point the quest for alternative
 solutions began.
 For producing an alternative method the following constraints
 were set :

 a) One executable program should be able to run on any graphics
 hardware configuration.
 b) The original, library based, interface should still be a valid
 linking option.
 c) No changes to the program should be required.
 d) The solution should draw upon the resources of the compiled
 device specific libraries.
 e) No performance penalties should be paid.
 f) The solution should be part of the application program and not
 part of the operating system or environment.

 In addition to the constraints noted above it should be noted
 that the operating system does not offer any support for shared
 or dynamically linked libraries (it is a feature of OS/2 though),
 no memory protection is available and code is stored in the same
 type of memory as data.

 Module decomposition

 Constraint a) hinted the solution of a device specific driver
 that would be loaded by the application program at run time. Due
 to constraints f) and e) a special output format that would be
 interpreted by a filter or a resident device driver was not opted
 for.
 The constraints b), c) and d) set the framework for the following
 solution : The library code was divided into two parts. A stub
 part would resolve all references during the linking phase by
 providing dummy procedures and global variables. These procedures
 would, when called, initialize the driver by loading device
 specific code, replace the reference to themselves with a
 reference to the real routine and repeat the original call.
 The format of the device specific code is ordinary relocatable
 executable code in the same format as that used by executable
 programs. The operating system provides a function to load such a
 file into memory performing relocation of entries. The first
 items in the file are the locations of all functions and global
 variables. That file could be generated just by linking one of
 the device specific libraries with a small assembly program
 containing the initial table and references to all the functions.
 Thus no specific linking tools needed to be implemented.

 DRAFT

 A Dynamically Linkable Graphics Libary 7

 Call implementation

 The re-execution of a function call after patching the original
 code with a new address was tricky and the end code is not
 something one should be proud of. The code is highly compiler
 specific, but it survived three consecutive releases of the
 compiler. The example that follows is the stub function for cls.

 void cls(ab)
 int ab ;
 {
 char ** caller = (char **)((char *)&ab - sizeof(char *)) ;
 if(! init_drv)_init() ;
 *(char **)(*caller - sizeof(char *)) = addr[11] ;
 *caller -= sizeof(char *) + 1 ;
 }

 The argument ab is not an argument that is passed to cls. It is
 used to find the location of the return address in memory. As
 ab is the last argument pushed onto the stack before the function
 call (or at least that’s what the compiler thinks) its address is
 one pointer location after the return address of the function.
 Having the return address into the variable caller, the need for
 driver initialisation is checked. If initialisation is needed it
 is performed. After initialisation the addresses of all external
 references are placed in the array addr. Here addr[11] is the
 address of the cls routine in the code that was loaded. The next
 line sets the address used by the call instruction to the address
 of the real cls routine and after that the return address is
 adjusted so that the call will be repeated. From then on every
 time that instruction is encountered the real cls function will
 be called instead of the stub one.

 Static data implementation

 Having solved the problem of integrating the graphics functions
 into the main instruction stream one more problem needed solving.
 That was the provision of data space for the graphics functions
 to use. As the graphics functions were separately linked from the
 main program no information was available on the memory size
 required by them and thus the memory references to the main
 programs static variables and those of the graphics functions
 overlapped.
 The way this problem was solved was by noticing that because the
 graphics functions were not linked with any other code the only
 static data they required was allocated at the start of the DATA
 segment. Furthermore by explicitly initialising all variables to
 a value the additional complication of catering for data in the
 BSS segment was eliminated. Thus after linking all different
 device dependent drivers the linker output maps were examined,
 the largest amount of static data required was noted and another
 object module to be linked to the main program was created. That
 module contained a new NULL segment (which is the segment

 DRAFT

 8 D. Spinellis

 immediately before the DATA segment) whose contents were the ones
 supplied by the compiler (library copyright message and a
 checksum) plus empty space for the graphics functions static
 data.
 As the maximum amount of static data required by a function was
 about 30 bytes this was no an inefficient implementation. It is
 not very clean however, as it includes some code from the
 compiler runtime library.

 Prototype solution

 With the way to implement the dynamically linkable device drivers
 designed and tested, a way was needed to automatically create all
 the modules required for such a library. Specifically such a
 system should take a library description and a set of device
 dependent libraries as input and produce code and data object
 file stubs and dynamically linkable device driver files as output
 as seen in figure 1.

Dynalib
Generator

Library
description

Graphics
Libraries

Code
Interface

Data
Interface

Driver
Files

 Figure 1

 It was decided to use standard UNIX tools to create such a
 system. The tools used were awk[7] and sed[8]. The library
 description file format was defined to be composed of two parts.
 In the first part the various libraries are described. For every
 device specific library, its name and the location of a file that
 can be used to resolve are references are given. The name, is
 used for naming the driver file. Following that list comes the
 word ENDLIB and then a list of all symbols that compose the
 library. After each symbol comes its type which can be one of
 ‘word dword qword far’. These indicate the size of the symbol if
 it is a variable, or that it is a function. Currently pointers
 are not supported. The following is a fragment from the original
 specification file :

 cga lcga.lib
 mcga lmcga.lib
 ega lega.lib
 herc lherc.lib
 vga lvga.lib
 wy700 lwy700.lib

 DRAFT

 A Dynamically Linkable Graphics Libary 9

 ENDLIB
 aspect qword
 cols word
 scr_planes word
 cls far
 disp far

 This file is input to an awk script. The awk script generates an
 assembly file, which when linked with a particular graphics
 library will create a driver file, the stub code file to be
 linked with the main program in C and a command file to be
 executed in order to do the actual linkings required. The command
 file also contains instructions that will pipe the output from
 linking the particular driver file through a sed script in order
 to generate the data binding.
 Three awk arrays are used to store the names and types of all
 variables referenced in the library description file. For every
 function found in the file a stub function is output in the C
 file. If a variable reference is encountered, a global variable
 definition for the particular size is emitted and the name of the
 variable is stored in an array used for the particular type. This
 is a code fragment that generates references to double
 variables :

 start == 1 && /[]+qword[]*$/ {
 initqword[addr++] = $1 ;
 printf "double %s ; ", $1 >>cfile ;
 initqwords++ ;
 }

 The variable start holds state information needed for awk to know
 which part of the library description file it is processing. When
 the end of file is reached the code for the initialising function
 is generated.
 The initialising function finds the size of the driver and
 allocates memory to store it using malloc. It then loads the
 driver code into memory, initialises the pointer addr which
 contains the addresses of all elements to point to the correct
 part of the driver and then outputs code to initialise the global
 variables in the stub module to the values found in the real
 module. Again an example for the double variables follows :

 if(initqwords)
 for(i in initqword)
 printf " %s = *(double *)addr[%d] ; ",
 initqword[i], i >>cfile ;

 The assembly file that is linked to a library in order to produce
 the driver file is generated on the fly. Every line that
 specifies an entry is emitted with ‘extern _’ perpended to it and
 followed by a line ‘dd _name’ where name is the name of the
 function or variable.

 DRAFT

 10 D. Spinellis

 The processing of the initial driver names and library
 descriptions generates the command file that takes control after
 this point is reached. That command file links the assembly file
 generated with each library and renames the result to the driver
 name specified. The linker map output is passed through sed in
 order to create an assembly file that will create a NULL segment
 with extra length equal to the maximum data segment length
 encountered. The sed command that does this is :

 /^ [0-9A-F]*H [0-9A-F]*H [0-9A-F]*H _DATA/s/^ [^H]*H [^H]*H
 \([^H]*H\).*$/IF \1 GT DATALEN
 DATALEN = \1
 ENDIF
 /p

 For every data segment length is encounters it generates a
 sequence of commands of the type :

 IF length GT DATALEN
 DATALEN = length
 ENDIF

 where length is the length of the particular data segment. This
 sequence is recognised by the macro assembler and as a result at
 the end of the final sequence DATALEN is set to he maximum length
 required.

 Unified solution

 From the above description it is evident that the whole system
 used to generate the drivers although working is not a good
 example of nice code. Its interfaces are unclear and much of the
 work is done in an non-obvious and highly involved way. Although
 the system was used for a period of six months in order to
 develop more screen drivers the author always felt that a better
 implementation was needed.
 During February 1988 Larry Wall released on the USENET the source
 for a programming language called perl (Practical Extraction and
 Report Language)[9]. According to the manual page perl was
 supposed to combine the best features of C, sed, awk and sh. It
 was felt that perl was an ideal language to implement this
 system. The rewrite process was easy and at the end the three
 (plus one intermediate) file original system was reduced to one
 perl script. The size of the system was reduced by 25% and the
 execution speed increased by 31%.
 The more important results were gains in the overall quality of
 the system. By putting the whole system into one file its
 interfaces became clear and the way it functioned obvious. This
 may seem as a paradox, taking into account the rationale behind
 modular implementations. The reason why the system broken into
 parts was worse than one program, is that the breaking into parts
 was not directed by a functional decomposition, but by deciding

 DRAFT

 A Dynamically Linkable Graphics Libary 11

 what parts of the system could be managed by a particular tool.
 The maximalist design philosophy behind perl clearly helped to
 improve the quality of the finished design.

 CONCLUSIONS

 Although the initial design of the library was designed to be
 used on a specific hardware device and by one program over the
 last two years this has changed. Currently 12 different output
 devices or protocols are supported ranging from the PS/2 VGA
 adapter to an X Windowing System[10] interface. The programs that
 have used it are a three dimensional perspective view system, a
 star chart display program and a specialised CAD program.
 The library worked well for the scope it was designed for. It
 provided a portable interface across many hardware
 configurations. The dynamic linking capability was found to be
 easy and efficient to use and resulted in better and more
 portable programs. With the ever increasing use of windowing
 systems the library design has started to affect the usability of
 the programs that depend on it. User friendliness and conformance
 with a particular windowing, presentation and user interface
 standard are compromised in order to increase portability. This
 is an issue that has to be addressed in the future and there are
 already steps towards a solution.
 Dynamic linking is an interesting possibility in application
 areas with diverse equipment and/or user requirements. The
 technique described is almost totally transparent to the
 application programmer. It can be extended to allow users or OEMs
 to create their own drivers. Currently experimentation is being
 made with input libraries and language specific drivers.

 REFERENCES

 1. B. W. Kernighan and D. M. Ritchie, ‘The C Programming
 Language’, Prentice-Hall, 1978.
 2. ‘IBM Personal Computer, Technical Reference, First Edition’
 (Revised May 1983).
 3. F. R. A. Hopgood and D.A. Duce, ‘Graphics Standards - The
 Current State’, August 1986.
 4. Microsoft Corporation, ‘Microsoft Windows, Operating
 Environment, Users Guide’, 1985.
 5. ‘Tektronix, 4014 and 4014-1 Computer Display Terminal’, 1974
 6. ‘IBM Enhanced Graphics Adapter, Technical Reference Manual’,
 August 2, 1984.
 7. A. V. Aho, B. W. Kernighan and P. J. Weinberger, ‘Awk - A
 Pattern Scanning and Processing Language,(Second Edition)’,
 September 1, 1978.
 8. L. E. McMahon,‘SED - A Non-interactive Text Editor’, August
 15, 1978.
 9. L. Wall, ‘Perl - Practical Extraction and Report Language’,
 March 15 1988.

 DRAFT

 12 D. Spinellis

 10. J. Gettys, R. Newman and T. D. Fera, ‘Xlib - C Language X
 Interface’, November 16, 1986.

 APPENDIX

 The dynamically linked library generator in perl

 @REM=("
 @perl %0.bat %1 %2 %3 %4 %5 %6 %7 %8 %9
 @end ") if 0 ;

 # Create a driver interface
 # (C) Copyright 1987,88 Diomidis Spinellis. All rights reserved.
 # See driver.doc file for info.
 # The fast option produces only the .drv files and skips the compiling
 # process. It can be used when only the code of a driver has changed.

 # Generate assembly batch and C file
 # Pass 1 of mkdrv (create a driver)

 $#ARGV == 0 || die "$0 : Usage $0 file" ;

 open(infile , ’<’.($drivername = $ARGV[0])) || die "Unable to open $drive
 open(asmfile , ’>’.($asmfilename = ($ARGV[0].’.asm’))) ;
 open(cfile , ’>’.($cfilename = (’c’.$ARGV[0].’.c’))) ;
 print asmfile "
 ;Automaticaly generated assembly file
 ; Prohibit null pointer assignments by leaving space for NULL sgement
 NULL SEGMENT PARA PUBLIC ’BEGDATA’
 db 37h dup(?)
 " ;
 print cfile "
 /*Automaticaly generated C file */

 #include <stdio.h>
 #include <dos.h>
 #include <malloc.h>
 #include <errno.h>

 #define NULLLEN 0x37

 static int init_drv = 0 ;
 static char **addr ;
 static void drv_init() ;
 extern int errno ;

 " ;
 # Process all the library info
 while(($_ = <infile>) && ($_ ne "ENDLIB ")){
 ($name, $lib) = split ;
 push(names, $name) ;
 push(libraries, $lib) ;

 DRAFT

 A Dynamically Linkable Graphics Libary 13

 }

 # Check for EOF
 if($_ ne "ENDLIB "){
 unlink $asmfilename, $cfilename ;
 die ’EOF reached before ENDLIB’ ;
 }

 # Process external symbols
 while(<infile>){
 ($name, $distance) = split ;
 push(externs, sprintf(" extrn _%s : %s ", $name, $distance)) ;
 printf asmfile " dd _%s ", $name ;
 # Have the caller call the new function and redo the call
 if($distance eq ’far’){
 printf cfile "
 void %s(ab)
 int ab ;
 {
 char ** caller = (char **)((char *)&ab - sizeof(char *)) ;
 if(! init_drv) drv_init() ;
 *(char **)(*caller - 4) = addr[%d] ;
 *caller -= 5 ;
 }

 ", $name, $addr++ ;
 } elsif($distance eq ’word’){
 # Store variable occurances in an array to create init()
 $initword{ $addr++ } = $name ;
 printf cfile "int %s ; ", $name ;
 $initwords = 1 ;
 } elsif($distance eq ’dword’){
 $initdword{ $addr++ } = $name ;
 printf cfile "long %s ; ", $name ;
 $initdwords = 1 ;
 } elsif($distance eq ’qword’){
 $initqword{ $addr++ } = $name ;
 printf cfile "double %s ; ", $name ;
 $initqwords = 1 ;
 }
 }

 # The end of the cfile (Driver initialisation part)
 printf cfile ’
 static void drv_init()
 {
 FILE *f ;
 int codelen, flen ;
 int headerlen ;
 char *codep ;
 union REGS srv ;
 struct SREGS segs ;
 static char *name = "%s.drv" ;
 struct {

 DRAFT

 14 D. Spinellis

 int segmem ;
 int reloc ;
 } pblock , *pblockp = &pblock;

 init_drv++ ;
 /* Calculate length of code */
 if((f = fopen(name,"rb")) == NULL){
 perror("Erron in opening driver file %s.drv") ;
 exit(2) ;
 }
 fseek(f, 8l, 0) ;
 fread(&headerlen, sizeof(int), 1, f) ;
 fseek(f, 0l , 2) ;
 flen = (int)ftell(f) ;
 fclose(f) ;
 codelen = flen - headerlen*16 ;
 if((codep = malloc(codelen + 16)) == NULL){
 perror("Out of memory for driver storage") ;
 exit(2) ;
 }
 /*Allign codep on a paragraph boundary and zero offset*/
 codep = (char *)((long)(FP_SEG(codep)+(FP_OFF(codep)>>4)+1)<<16) ;
 /*Load overlay*/
 srv.h.ah = 0x4b ;
 srv.h.al = 0x03 ;
 srv.x.dx = FP_OFF(name) ;
 segs.ds = FP_SEG(name) ;
 pblock.segmem = pblock.reloc = FP_SEG(codep) ;
 segs.es = FP_SEG(pblockp) ;
 srv.x.bx = FP_OFF(pblockp) ;
 intdosx(&srv,&srv,&segs) ;
 if(srv.x.cflag){
 switch(srv.x.ax){
 case 1 :
 errno = EINVAL ;
 break ;
 case 2 :
 errno = ENOENT ;
 break ;
 case 8 :
 errno = ENOMEM ;
 break ;
 default :
 errno = EZERO ;
 break ;
 }
 perror("Error in loading driver") ;
 exit(2) ;
 }

 addr = (char **)(codep + NULLLEN) ;
 ’, $drivername, $drivername ;

 DRAFT

 A Dynamically Linkable Graphics Libary 15

 # Initialize variables (if neeeded)
 if($initwords){
 while(($address, $name) = each(initword)){
 printf cfile " %s = *(int *)addr[%d] ; ", $name, $address ;
 }
 }
 if($initdwords){
 while(($address, $name) = each(initdword)){
 printf cfile " %s = *(long *)addr[%d] ; ", $name, $address ;
 }
 }
 if($initqwords){
 while(($address, $name) = each(initqword)){
 printf cfile " %s = *(double *)addr[%d] ; ", $name, $address ;
 }
 }

 print cfile " } " ;

 print asmfile "
 NULL ENDS

 _DATA SEGMENT WORD PUBLIC ’DATA’
 _DATA ENDS

 _BSS SEGMENT WORD PUBLIC ’BSS’
 _BSS ENDS

 CONST SEGMENT WORD PUBLIC ’CONST’
 CONST ENDS

 DGROUP GROUP NULL,_DATA,_BSS,CONST
 " ;
 for($i = 0 ; $i <= $#externs ; $i++){
 print asmfile $externs[$i] ;
 }
 print asmfile "
 public __acrtused ; To resolve external refs
 __acrtused = 9876h ; Funny value not matched by CV
 END

 " ;

 close cfile ;
 close asmfile ;

 system (’masm’, ’/Mx’, $asmfilename, ’;’) ;

 $datalen = 0 ;
 for($i = 0 ; $i < $#names ; $i++){
 if($libraries[$i] =~ /.[lL][iI][Bb]/){
 $command = sprintf (’link /MAP /NOI %s,%s,con,%s|’, $drivername,
 } else {

 DRAFT

 16 D. Spinellis

 $command = sprintf (’link /MAP /NOI %s+%s,%s,con;|’, $drivername
 }
 open(linkout, $command) ;
 while(<linkout>){
 if(/_DATA/){
 @dataline = split(/[H]+/) ;
 if(hex($dataline[3]) > $datalen){
 $datalen = hex($dataline[3]) ;
 }
 }
 }
 close(linkout) ;
 unlink(’/lib/’.$names[$i].’.drv’) ;
 rename($names[$i].’.exe’, ’/lib/’.$names[$i].’.drv’) ;
 }
 open(dasmfile, ’>d’.$drivername.’.asm’) ;
 print dasmfile "
 NULL SEGMENT PARA PUBLIC ’BEGDATA’
 db 8 dup(0)
 db ’C Library - (C)Copyright Microsoft Corp 1986’
 db 01fh,0,0,0
 db $datalen dup(?)
 NULL ENDS
 DGROUP GROUP NULL
 END
 " ;
 close(dasmfile) ;
 system (’masm’, ’/Mx’, ’d’.$drivername, ’;’) ;
 unlink (’/lib/d’.$drivername.’.obj’) ;
 rename (’d’.$drivername.’.obj’, ’/lib/d’.$drivername.’.obj’) ;
 unlink $asmfilename, ’d’.$asmfilename, $drivername.’.obj’ ;
 exec (’cc’, ’-Zi’, ’-c’, ’-Fo/lib/c’.$drivername, ’-AL’, $cfilename) ;
 #This will never happen. I do an exec because perl and c2 can’t coexist
 unlink $cfilename ;

 DRAFT

