
Foundations and TrendsR© in
Technology, Information and Operations Management
Vol. 4, Nos. 3–4 (2010) 187–347
c© 2011 S. Androutsellis-Theotokis, D. Spinellis,
M. Kechagia and G. Gousios
DOI: 10.1561/0200000026

Open Source Software:
A Survey from 10,000 Feet

By Stephanos Androutsellis-Theotokis,
Diomidis Spinellis, Maria Kechagia

and Georgios Gousios

Contents

1 Introduction 189

1.1 Open Source Software and Other Types
of Software Distribution 191

1.2 Research, Related Disciplines, and Publications 193
1.3 Organization of this Paper 195

2 History and Evolution 197

2.1 The Early Years 197
2.2 Unbundling of Software from Hardware 200
2.3 The Early Years of Unix 201
2.4 Workstations, Networking, and the Hacker Culture 202
2.5 Notable Events in OSS History 202
2.6 OSS Meets Proprietary Software 205
2.7 OSS Becomes Mainstream 205
2.8 Mainstream OSS Applications 208

3 Projects 209

3.1 Open Source vs. Proprietary Software Projects 210

3.2 Project Success 212
3.3 Representative Examples 216

4 Communities 218

4.1 Actors 218
4.2 Leadership 222
4.3 Governance Processes 224
4.4 Coordination Challenges and Mechanisms 228
4.5 Evolution 231

5 Production Process 234

5.1 Modular Development Methodology 235
5.2 Requirements Definition 238
5.3 Incorporation of New Features 239
5.4 Code Integration 239
5.5 Release Management 241
5.6 Technical Infrastructure and Collaboration Facilities 244
5.7 Assessing Open Source Software Projects 247
5.8 Concerns 248

6 Licensing 250

6.1 Concepts and Definitions 251
6.2 Open Source Software Movements 253
6.3 License Types 254
6.4 License Selection 259
6.5 Concerns and Risks 261

7 Business Models 264

7.1 Strategic Advantages and Impact of Moving to oss 265
7.2 Prerequisites, Deciding Factors and Concerns 268
7.3 The Open Source Software Ecosystem 270
7.4 Main Business Models 272

8 Adoption and Reuse 277

8.1 Adoption vs. Reuse 277
8.2 Criteria for Reuse 279
8.3 Adoption Drivers 280
8.4 Concerns 284
8.5 Software Reuse Process 287

9 Motivation 290

9.1 Motivational Aspects for Individuals 293
9.2 Motivational Aspects for Businesses 297

10 Impact and Outlook 300

10.1 Impact on the Software Industry 300
10.2 Impact on Society 302
10.3 Tackling Global Challenges 307
10.4 Concerns, Research, and Outlook 308

Acknowledgments 316

A Representative Applications 317

A.1 Systems Applications 317
A.2 Dekstop 321
A.3 Entertainment 322
A.4 Graphics 323
A.5 Education 324
A.6 Scientific and Engineering 324
A.7 Publishing 325
A.8 Software Development 325
A.9 Content Management Systems 329
A.10 Business Applications 329

References 331

Foundations and TrendsR© in
Technology, Information and Operations Management
Vol. 4, Nos. 3–4 (2010) 187–347
c© 2011 S. Androutsellis-Theotokis, D. Spinellis,
M. Kechagia and G. Gousios
DOI: 10.1561/0200000026

Open Source Software:
A Survey from 10,000 Feet

Stephanos Androutsellis-Theotokis1,
Diomidis Spinellis2, Maria Kechagia3

and Georgios Gousios4

1 Department of Management Science and Technology, Athens University of
Economics and Business, Patision 76, Athens, GR-104 34, Greece,
stheotok@aueb.gr

2 Department of Management Science and Technology, Athens University of
Economics and Business, Patision 76, Athens, GR-104 34, Greece,
dds@aueb.gr

3 Department of Management Science and Technology, Athens University of
Economics and Business, Patision 76, Athens, GR-104 34, Greece,
mkehagia@dmst.aueb.gr

4 Department of Management Science and Technology, Athens University of
Economics and Business, Patision 76, Athens, GR-104 34, Greece,
gousiosg@aueb.gr

Abstract

Open source software (oss), the origins of which can be traced back to
the 1950s, is software distributed with a license that allows access to its
source code, free redistribution, the creation of derived works, and unre-
stricted use. oss applications cover most areas of consumer and business
software and their study touches many disciplines, including computer
science, information systems, economics, psychology, and law. Behind

a successful oss project lies a community of actors, ranging from core
developers to passive users, held together by a flexible governance struc-
ture and membership, leadership and contribution policies that align
their interests. The motivation behind individuals participating in oss
projects can be, among others, social, ideological, hedonistic, or signal-
ing, while companies gain from their access to high-quality, innovative
projects and an increase in their reputation and visibility. Nowadays
many business models rely on oss as a product through the provision of
associated services, or in coexistence with proprietary software, hard-
ware, services, or licensing. The numerous oss licenses mainly differ on
how they treat derived software: some contain provisions that maintain
its availability in open source form while others allow more flexibility.
Through its widespread adoption, oss is affecting the software indus-
try, science, engineering, research, teaching, the developing countries,
and the society at large through its ability to democratize technology
and innovation.

1
Introduction

Open Source Software (oss) is software distributed with a license allow-
ing access to its source code, free redistribution, the creation of derived
works, and unrestricted use. The history of open source software can be
traced back to the 1950s share user group, the academic distribution
of Unix, and the gnu project.

Open source applications cover most areas of consumer and business
software. Prominent application areas include systems infrastructures
like operating systems and databases, software development, personal
productivity, desktop, entertainment, graphics, publishing, education,
scientific, engineering, content management, and business software.

The organization of open source development projects often differs
from proprietary ones in terms of their organizational structure, mem-
bership, leadership, contribution policies and quality control. Lean,
distributed, and often informal operations make it easy to start or
participate in an oss project, but also isolate projects from market
pressures allowing many to languish or fizzle.

Behind a successful oss project lies its community. Its actors range
from core developers to passive users. Although a community’s gover-
nance structure is typically flexible, many processes and mechanisms

189

190 Introduction

align the interests of the community’s members. Initiative, teamwork,
communication, and cooperation are generally more important than in
business software development.

The key defining element of oss is its license, which must sat-
isfy a list of important requirements. There are numerous open source
licenses, and they mainly differ in how they treat derived software: some
contain provisions that maintain its availability in open source form,
while others allow more flexibility. Selecting an appropriate license for
a new open source project is important, as is studying an open source
project’s license before incorporating it into a proprietary system.

Nowadays many business models rely on oss, either as a product or
through the provision of associated services. Revenue can be obtained
from the complementarity of a proprietary product with an open source
one, support and training, subscriptions, and advertising. The strategic
dimensions behind a move to oss include not only opportunities related
to marketing and innovation, but also risks associated with a loss of
profits and the lowering of competition barriers. On a tactical level an
open source-based business model can lower development costs, enable
end-user customization, but will also demand new organizational struc-
tures, a higher short-term investment, and the continuous nurturing of
an open source ecosystem.

oss can be reused as a (low cost) product, as an adaptable com-
ponent, or as code and other elements that are morphed into another
system. Increasingly, open source systems form complete stacks used
as infrastructure for other applications. In specific categories, such as
web applications, the adoption level of oss is near or even higher than
that of proprietary offerings. The impacts and effects from open source
adoption affect an organization’s bottom line, its management, the soft-
ware’s quality, and the software development process.

An often asked question regards the motivation behind individual
and organizational participation in open source projects. The incen-
tives for individuals can be social, political, ideological, hedonistic, as
well as the allure of a flexible, stress-free, and bleeding edge technolog-
ical environment. Companies seem to gain from their participation as
well, through privileged access to a high-quality product and its devel-
opment process, as well as exposure to user-driven innovation, higher

1.1 Open Source Software and Other Types of Software Distribution 191

reputation and visibility, human capital improvement, and improved
employee morale.

The emergence of oss is fueling the economy as a whole through
its widespread adoption as a cheap alternative to pricey proprietary
products and as a driver behind many successful e-business ventures.
Open source is also directly affecting specific sectors: the software devel-
opment industry through competition and new business opportuni-
ties; hardware development through lower cost and barriers of entry,
consumer-led innovation and policy enforcement difficulties; academia
through valuable opportunities for research and student involvement in
real-world applications, as well as the availability of software tools and
the provision of pioneering new courses.

The future of oss appears to be as exciting as its past. It can lead
to new design, production, marketing, and business models, as well as
ways to develop large complex software systems in an organic manner.
Challenges lie ahead, and problems still need to be overcome, so the
potential for future research on oss is large. For instance, the compari-
son between open source and proprietary products and processes is still
an area lacking solid empirical evidence. More important however is the
ability of open source development models to democratize technology
and innovation.

1.1 Open Source Software and Other Types
of Software Distribution

Up to the late 1980s most packaged software was almost exclusively
sold and distributed as a complete and finished product (a so called
“precompiled binary”), which was installed on a user’s computer and
then ran [24].

With the evolution of software development, computers and the
internet, new models and types of software distribution appeared.
These differed in aspects such as the degree of openness of the soft-
ware product (i.e., how much information about the inner workings of
it is exposed to the user), the possibility for the end user to modify it
or use parts of it in other, derivative software works, and the cost and
licensing model.

192 Introduction

According to the classification put forward by the Free Software
Foundation (fsf) [76] and elaborated by Perens in reference [181], the
main types of packaged software distributions used are the following:

Proprietary or commercial software is typically distributed in
binary form only, with the source code closed, i.e., not available to the
public. Payment is required and the terms of use are very restrictive,
not allowing modification or redistribution.

Public domain software lies at the other end of the spectrum. The
authors of this type of software give up all copyright, the source code
is freely available for modification or redistribution, and no fees are
required. In fact it is even allowed to obtain public domain software
and re-distribute it under other, non-open licensing schemes, or even
remove the author’s name and treat it as one’s own work.

Freeware and shareware products do not require upfront payment
and can generally also be duplicated, as is the case with public domain
software, however modifications are typically not allowed as the source
code is not distributed with the product.

The difference between Freeware and Shareware is that with Share-
ware only limited usage of the product is allowed without payment,
either for a fixed evaluation period, or with reduced functionality.
Shareware is generally regarded as more of a marketing concept than
a licensing option.

Open source software is the distribution and licensing approach
that is the topic of this survey. The main characteristics of oss are
outlined within the Open Source Definition1 and can be summarized
as follows:

• Free distribution: No licensing fees are charged for this type
of software.

1 http://www.opensource.org/docs/osd. Note: All internet urls in this survey, including
in the references section, were last accessed in March ’10.

1.2 Research, Related Disciplines, and Publications 193

• Source code availability: The source code is distributed
together with the product.

• Modifications and derivative works: The users of the software
can modify the source code to create derivate software prod-
ucts, or reuse (parts of) the source code in other products.
However, this may be subject to specific restrictions dictated
by the oss license used.

• No discrimination: Either against persons, groups or fields of
endeavor.

• Licensing: oss products are copyrighted, and distributed
with a particular license that outlines the terms of their use.
There are various oss licensing options, which differ in their
degree of permissiveness and other aspects.

One of the most important aspects of an oss license is whether
any derivative work that is based on the source code of this particular
software product can be distributed under different licensing schemes
(either oss or proprietary), or whether it is only allowed to be dis-
tributed under the same license as the original product.

The oss licenses enforcing the latter condition are known as restric-
tive, or “copyleft” licenses, and their goal is to ensure that the source
code will remain available to the public. The different types of oss
licenses are discussed in more detail in Section 6 and summarized in
Table 6.1.

oss development is based on the formation of large, open and dis-
tributed communities of developers who are guided by a common belief
in the freedom of software and information, and who follow collabora-
tive practices such as sharing information, helping others, and studying
and peer-reviewing each other’s work. Such developers are motivated
by their own interest in the project and the urge to learn from it, and
they are rewarded by the acknowledgement of their contributions, the
resulting reputation they gain, and the success of the project itself.

1.2 Research, Related Disciplines, and Publications

The study of oss is inherently multidisciplinary, encompassing various
research and scientific disciplines [78]. In the following list, as well as in

194 Introduction

Table 1.1, we provide indicative examples of research efforts spanning
two or more research fields, including oss:

• Computer and information system sciences study the techni-
cal aspects of oss development [163, 200, 201].

• Management and organizational sciences deal with the man-
agement, organizational and governance aspects of oss
project [127, 164].

• Social science addresses areas related to the communities
formed around oss efforts, their motivation, behavior, and
evolution [48, 176, 229].

• Psychology delves into issues relevant to the individual par-
ticipants in oss projects, what drives and motivates them,
and how they are rewarded [16, 69, 138, 254].

• Economics studies the business models that oss projects are
based on, the involvement of corporations in oss efforts,
as well as the ecosystems and collaborations built around
them [19, 146, 110].

• Law focuses on the various legal, licensing and copyright
issues around oss distribution [148, 149, 203].

• A multitude of other scientific fields (such as medicine, biol-
ogy, and engineering) benefit by using oss products, and by
applying oss ideas and methods in their domain [10, 28].

Interest in oss spans many professional areas and domains,
including software development, business, research, and government.
In Section 10, we discuss in more detail the impact of oss in all these
domains of our society and global economy. We feel that this survey
provides not only an overview of the field, but also considerable prac-
tical information for those wishing to get involved in oss as developers
or project members, by adopting oss in their products, or by gaining
insight from the oss practices, ideas, and experience.

Within this survey there are numerous references to works from
many different scientific domains and disciplines. We highlight some
in Table 1.1, which itemizes some of the most informative relevant
works, grouped by subject. We separate empirical studies, surveys and

1.3 Organization of this Paper 195

Table 1.1. A collection of informative publications on different aspects of Open Source
Software.

Empirical studies Surveys/Overviews Specific topics

Project
communities

[46, 53, 109, 127, 128,
133, 170, 229]

[21, 70, 205]

Motivations [22, 75, 101, 102, 137,
138, 238]

[11, 21, 190, 257]

Success factors [21, 36]
Software

development
[163, 179, 200, 218] [67, 68, 201]

Innovation and
future

[71, 75, 238] [232, 235, 240]

Adoption and
reuse

[98] [222] [216]

Business models [204] [247] [21, 72, 205]
Licenses [140, 146, 148]
Generic [56] [51, 54, 83, 94, 129,

187, 245]

overviews, and articles focusing on specific subjects. We also recom-
mend:

• the collected works in [54, 68],
• the 2004 theme issue of IEEE Software [216], the 2004 issue of

Research Policy [239], the 2006 issue of Management Science
[240], the 2010 special issue of the Journal of the Association
for Information Systems [42], and

• the proceedings of the International Conference on oss, and
the floss icse Workshop.

1.3 Organization of this Paper

In this survey we aim to cover most aspects of oss, including technical,
social, organizational, economic, and legal, as well as provide an outlook
to the future of oss by identifying current shortcomings and research
directions.

In particular, Section 2 overviews the history and evolution of oss,
from the first free software development efforts to the latest oss busi-
ness and financial models.

196 Introduction

Section 3 deals with the organization of oss efforts into projects,
their comparison with proprietary software development efforts, and
particular characteristics and potential indicators for project success.

In Section 4, we examine in more detail the characteristics of the
communities that are formed around oss projects, the different actors
and participants, the leadership and governance mechanisms that are
employed, and their evolution.

Section 5 focuses on the more technical aspects of oss, and in par-
ticular the software development practices and processes. It presents
the main characteristics of oss software development and how it differs
from other domains.

Section 6 on the other hand analyses the legal and licensing perspec-
tive, which is crucial as it characterizes the permissiveness and often
the impact of each oss effort. We briefly outline the main oss move-
ments, the different licensing options and we provide some guidance
into selecting the most appropriate licensing scheme depending on an
oss project’s characteristics.

In Section 7, we focus on the economic and financial nature of oss
projects, and what business models can be adopted to extract busi-
ness value from an oss effort. We discuss the business ecosystems that
are formed around successful oss efforts, and the various roles that
companies and organizations can play within them.

Section 8 then focuses on the important issue of adoption and reuse
of oss software into other products and domains. It examines the cri-
teria for an oss product to be a good candidate for reuse, the process
of adopting and reusing oss code, and benefits but also the potential
risks and concerns that accompany this practice.

In Section 9, we discuss the motivational aspects for engaging in an
oss effort, both for individuals and for businesses and organizations.

We conclude in Section 10 with an overview of the impact that
the oss process and ideology has had on the software business and our
society, closing with a discussion of the current research directions, and
where they may lead the future of oss.

2
History and Evolution

The concept of open or free software is old. Its roots lie in the 1960s
and 1970s, when early computers were used in universities for research,
and software programs were freely circulated among scientists. Build-
ing upon each other’s software and giving back the modifications was
considered a normal communal practice and became a feature of what
was known as “hacker culture” hacker being a term used in communi-
ties of programmers to characterize skilled and passionate programmers
(although later it also acquired a negative significance by the public).
Raymond [185] and Bretthauer [24] provide excellent historical pre-
spectives of the early days of the hacking movement.

In the following paragraphs we briefly trace the evolution of oss
through the main systems, events, applications, and movements that
shaped it. Figure 2.1 outlines this information, while Figure 2.2 offers a
more diagramatic view of the transformations of the oss landscape as
one event, movement or initiative led to another, reaching the current
state of the oss domain.

2.1 The Early Years

The beginning of oss is associated with the appearance of the first
large computer systems. As programmers invented programming tools,

197

198 History and Evolution

SHARE and USE

FSF/GNU/GPL

MIT/PDP1

IBM/701 DEC/PDP8
DEC/PDP11

MIT/CTSS
MULTICS

ARPANET
UNIX

BSD

Berkeley obtains UNIX
BSD

2BSD
3BSD 4.3

NetBSD
FreeBSD

OpenBSD4.2

BASIC SUN

X-window system

GNU

Emacs

FSF

GPLv1

GPLv2
GNU/Linux

GNU Hurd

Cygnus
Linux

RedHat

OSI
OSI Founded

Mozilla

MySQLab

Apache

TeX
Perl
PostgreSQL

PHP
Gimp OpenOffice

KDE
GnomeSendMail

Eclipse

Early systems OSS Applications

Events & Milestones

Major movements

20001950 1960 1970 1980 1990 2010

HomeBrew

Firefox

Lions' MIT
Athena

ACM Collected Algorithms

DECUS

USENIX / STUG

JAVA
IBM PC

GPLv3

Kermit
R-project

gcc Postgres

SourceForge

First entry in collection

DECUS Founded

USENIX founded

IBM s/w-h/w
debundling

AT&T
Unix V7

netlib
Netcape OSS

Solaris
Open-

630 entries 900 entries

Minix

Fig. 2.1 The history and evolution of oss. Main systems, applications, events and move-
ments.

techniques, and applications to render them productive and useful, they
freely shared them among themselves, often contributing to each other’s
efforts.

Although the first commercial computer put on the market that
required programming was ibm’s 701 in 1952 [245], it was mit’s acquir-
ing of the first pdp-1 in 1961 that gave rise to the hacker culture
that is still recognizable today. This was the heart of mit’s Artifi-
cial Intelligence Laboratory. Later came dec’s pdp-8 in 1965, followed
by the innovative pdp-11 in 1970, which was much more affordable
and had good enough performance both for universities and corporate
research [198].

These early computer systems established the need for multiuser
support, and the solution proposed by mit in the early 1960s was the
Compatible Time-Sharing System (ctss). This was followed by a joint
endeavor between mit at&t’s Bell Labs and General Electric in 1964

2.1 The Early Years 199

50s 60s 70s 80s 90s 00s 10s

- First large computers
- All software freely
 distributed among
 scientists

- Commercial
 interest in S/W
- IBM unboundles S/W
- S/W turns toward
 closed distribution
- AT&T closes UNIX
- S/W becomes
 explicitly OSS

Stallman,
GNU,FSF

Berkeley,
BSD Unix

TeX

GNU/ Linux

NetBSD

RedHat

X11

Perl

Emacs

GCC

PHP

Mozilla

KDE

mySQL

OpenOffice
Apache

FirefoxPostgres

Gimp

- Increased interest in OSS,
- New economic models
- Hybrid licensing
- Open sourcing products

Netscape

Tanenbaum,
Minix

USE

ACM Calgo
DECUS

SHARE

ARPANET

- Global OSS community
- Hacker culture
- S/W development intensifies

OpenSolaris

OSS
distributors

First community
organisations

Sendmail

Emergence of
proparietary

software firms

MIT AI Lab

applications

operatin
g systems

O
pe

n
so

ur
ce

so
ft

w
ar

e
P

ro
pr

ie
ta

ry
so

ft
w

ar
e

OpenBSD

FreeBSD

Minix

Suse

Debian

Mandrake
...

: Dual license

...

Torvalds,
Linux

OSI/OSD

Perens,
Raymond

Fig. 2.2 A diagramatic view of the evolution and transformation of the oss domain.

to build the Multics system, which was expected to be released with
its source code openly available to the public. The project ran into
problems, but this led two Bell Labs researchers, Ken Thompson and
Dennis Ritchie, to work on a new type of operating system (which later
became Unix), whose brief history and basic operating principles are
described in a seminal paper [188].

From the very beginning the communities of users that revolved
around the development and use of open software felt the need to
organize themselves, often in ways resembling current oss project com-
munities.

Some of the first such instances were the share user group of ibm
and the Univac Scientific Exchange (use) in the 1950s and 1960s, which
were ran by volunteers to facilitate the distribution of software [64].
Similarly decus, founded in 1961 as a society for users of Digital
Equipment Corporation’s computers, promoted the open exchange of
user-developed software; initially through listings and later through
magnetic media [55].

200 History and Evolution

The acm Collected Algorithms,1 initiated in 1960, archives software
associated with papers published in the Transactions on Mathemati-
cal Software, as well as other acm journals. It is a family of publi-
cations including a collection of around 600 software algorithms that
were freely distributed for noncommercial use.2 It is one of the first
organized instances of public distribution of software source code and
algorithms.

Sharing software and building on each other’s work was still the
only way known to the software community.

2.2 Unbundling of Software from Hardware

Up to the 1970s software was commonly distributed for free by hard-
ware manufacturers, who were “bundling” it with their hardware as
one product and including the cost of the software with the hardware.
However, as software evolved and became more complex, so did the
cost of developing it. An emerging software production industry was
competing with this trend, seeking to sell their software independently.

A series of antitrust suits filed against ibm in 1969 resulted in
a change in ibm’s pricing policies and the offering of computer pro-
grams for a charge [195], thus paving the way for proprietary software
development. Software then started being sold, often under restrictive
licenses.

Six years later Bill Gates, having created a basic interpreter for
the Altair 8800 microcomputer, found himself fighting to establish a
presence on what would later become the home and personal computer
software market. In an open letter to hobbyists [82], Gates argued that
the notion of sharing software without paying for it was hurting soft-
ware developers, and that royalty payments were critical for the devel-
opment of high-quality software.

Both events, by restricting the availability of software, sowed the
seeds of the oss movement.

1 http://calgo.acm.org
2 http://www.acm.org/publications/policies/softwarecrnotice

2.3 The Early Years of Unix 201

2.3 The Early Years of Unix

Ritchie and Thompson published the key ideas underlying the Unix
operating system in 1974 [188]. Coincidentally, a 1956 “consent degree’
prohibited at&t, the legal entity behind Unix, from engaging in any
business other than the furnishing of common carrier communications
services. As a result, Unix was supplied royalty-free and without any
formal support [198, pp. 56–60]. The combination of Unix and the
C programming language developed by Ritchie proved very popular,
and spread very quickly to a large number of university and research
computer labs (the “Hackerdom,” as dubbed by Raymond [185]).

With the source code in their possession, users including program-
mers, students, and researchers were able to use Unix as a tool for
learning, enhance it to cover their particular needs, and extend it to
support their specific hardware. With no formal support from at&t
users were forced to collaborate and share ideas, information, programs,
and bug fixes [198, p. 65].

A related movement sprang out of Kernighan and Plauger’s work
to popularize Unix’s programming tools by publishing a book with
readable and concise implementations of some key utilities [122]. The
tools’ source code was made available in executable form by the book’s
publisher [122, contents page]. Programmers in universities and com-
puter vendors collaborated to enhance those tools and port them to
various architectures, and in 1978 they formally grouped together as
the Software Tools User Group [198, pp. 78–90].

In 1976 John Lions, an Australian computer scientist, published
the complete source code of the 6th Edition Unix kernel together with
a commentary of it [150]. It is considered an excellent description of
the high-quality Unix kernel code, and for years it was the only public
documentation available.

Although the first versions of Unix were freely distributed, as at&t
realized its value as a commercial product it decided to distribute Ver-
sion 7 in 1979 with a license that restricted access to the system’s source
code [198, p. 151]. A side-effect of this was that Unix could no longer
be used in university courses for teaching (and similarly the Lions book
was no longer allowed to circulate). This was the main reason Andrew

202 History and Evolution

Tanenbaum later decided to develop the Minix operating system, as
discussed in Section 2.5.

2.4 Workstations, Networking, and the Hacker Culture

The late 1970s and 1980s saw the flourishing of two key drivers of oss
development, namely computer networking [184] and personal work-
stations (see Ceruzzi’s account of the influence of both technologies
on hacker culture development in reference [29]). Both allowed the
exchange and distribution of information as well as software between
programmers at a new, global scale, boosting worldwide collaboration
and productivity. Programmers and hackers from many parts of the
United States and the world became connected, forming a networked
group with its own culture, discussions, norms of behaviour, slang, and
eventually beliefs and ethics.

Two notable oss distribution efforts that were made possible by
networking advances are

• the Usenet newsgroups net.sources (1982)3 and mod.sources
(moderated — 1984),4 which were later renamed into the
comp.sources hierarchy, and

• the email-based netlib repository of software serving the
numerical and scientific computing communities [57].

2.5 Notable Events in OSS History

The increasing trend toward proprietary software further fuelled the
emerging oss movement, whose advocates felt the need for free, open
source operating systems and applications to be available to the public,
leading to several core development efforts.

The Berkeley Software Distribution The University of California
at Berkeley and Bell Labs collaborated to help Unix flourish between
1974 and 1977. This gave rise to the Berkeley Software Distribution,

3 http://groups.google.com/group/net.sources/msg/d2bbe4e01cfd64c6
4 http://groups.google.com/group/mod.sources/msg/39c786363ae144c9

2.5 Notable Events in OSS History 203

or bsd, a version of Unix with improved features, tools, and utili-
ties [144]. The bsd was shared with many research centers worldwide
with the provision that they first obtain a source license from at&t,
thus encouraging them to view and contribute to the source code.

A second, more advanced version of the bsd was ready in 1978,
while the use of an advanced version of Unix on the new 32-bit vax
machine at Berkeley led to the 3bsd distribution in 1979 [158].

It was realized at that point that as the research community con-
tinuously modified the Unix system, an organization was required to
manage and coordinate the new releases. This role was undertaken by
Berkeley, as a result of its involvement thus far [158].

darpa also decided to unify its activities at the operating system
level, and chose Unix as the standard to use. The new 4bsd distribution
thus came up in 1980 with a per-institution licensing arrangement,
followed by a series of major releases, such as 4.3bsd the first release to
include a full tcp/ip stack, as well as the more recent Netbsd, Freebsd,
and Openbsd.

During the 1980s, Berkeley and at&t released their respective new
Unix versions, which gradually became harder to tell apart.

The GNU Project, the Free Software Foundation and the GPL
When the computer systems used at mit’s AI lab were replaced with
new hardware that ran a proprietary operating system, the oss pro-
grammer community that had formed around it gradually collapsed.
Richard Stallman, a member of the lab, started looking for an alterna-
tive that could make the oss community possible again, and this led
him to the concept of free software, and in particular to the decision
to create a new, Unix-compatible operating system that he called gnu
(Stalman’s article collection [83] contains many details on the early
history of gnu). In 1985 he released the gnu Emacs editor, which he
distributed for free over the network, or packaged on tape for $150.
The gnu system included code from other projects that were also free
software, such as the gnu Compiler Suite (gcc).

To support the gnu effort, Stallman initiated the fsf in 1985, to
promote “the freedom to share and change software.” He famously
explained that “when I speak of free software, I’m referring to freedom,

204 History and Evolution

not price. So think of free speech, not free beer” [83, Section 1]. Most
of the income of the fsf came from the sales of copies of free soft-
ware and other related services, and secondarily from donations. Emacs
and other free software, as well as manuals, were sold on tape, and
later on other media. Part of this income was used to hire developers
to work on basic gnu projects, such as the shell and the C library
[83, Section 18].

One of Stallman’s and the fsf’s concerns was that their work could
be taken and used in proprietary packages. To protect from this, the
concept of copyleft was developed as a mid-way in between public and
proprietary software. This concept was the basis for the gnu General
Public License, released in 1989 [24] (see Section 6.3.1).

The combination of gnu with the Linux kernel developed by Linus
Torvalds (see below) in 1991, led to a complete gnu operating system
[83, p. 28].

Minix In 1987 Andrew Tanenbaum of the Vrije University of
Amsterdam released Minix, an open source operating system based
on a microkernel architecture which he created mostly for educational
purposes [224]. Its source code was made available to universities for
study and research. The design of the Linux operating system is consid-
ered to have been influenced by the Minix design principles, although
Linux is not a microkernel per se.

First OSS applications Of the oss applications that were devel-
oped around that time, some are still in widespread use today, notably
the X-Window System, and TEX.

The X-Window System, developed at mit but including contribu-
tions from numerous other sites, is the longest living foundation for
developing graphical user interfaces. It is argued that its success was
in great part due to the developers’ willingness to open its source code
and distribute it for free over the network with a very permissive license
[185, Section 4].

The TEX [125] typesetting system was written by Donald Knuth in
1978, and rewritten from scratch and published in 1982. It is considered
as one of the most sophisticated typesetting systems. The TEX Users

2.6 OSS Meets Proprietary Software 205

Group (tug)5 was founded in 1980 as an organization for users of
TEX and people interested in typography and font design.

2.6 OSS Meets Proprietary Software

The oss and proprietary software worlds and cultures often met,
affected each other’s course, and sometimes clashed. ibm’s un-bundling
of software from hardware and at&t’s closing of the Unix source were
two such examples.

In 1975 the Homebrew Computer Club was formed by computer
hobbyists and enthusiasts. The rule of the club was that anyone could
take a copy of software out, as long as they brought back two copies in
the next meeting [115].

At that time, Bill Gates together with partner Paul Allen had
written a version of the basic computer language that became very
popular and was being wildly copied from one user to the other. Prac-
tices like this led Gates to write an “open letter to hobbyists,” in which
he addressed the issue of intellectual property rights and innovation.

This was one of the first cases of confrontation between two different
cultures, which carried on for decades and is still ongoing.

Several years later, oss started influencing proprietary systems. Var-
ious software vendors added the X-Window System to their proprietary
offerings, and released the end product under a nondisclosure agree-
ment. Paradoxically, soon most of the users of X-Windows were not
running the free mit version, but the proprietary versions that came
from these software vendors [83]. oss however was already establishing
itself at an increasing pace.

2.7 OSS Becomes Mainstream

The Emergence of OSS Vendors As oss became a mainstream
phenomenon new companies were formed to benefit from this trend,
and many of the existing proprietary software firms started looking
toward the oss movement, adopting it and often learning from it.

5 http://www.tug.org/

206 History and Evolution

oss software vendors and distributors appeared, oss licensing was
adapted to allow for hybrid solutions based on new financial and busi-
ness models, new categories of services revolving around oss were
offered, and proprietary firms started opening (at least partly) their
products’ source code.

Founded in 1989, Cygnus Solutions was the biggest vendor of oss at
the time. It offered technical support services, with the gnupro Devel-
opers Kit being one of its primary products [225].

At the same time, a multitide of oss software infrastructures and
applications appeared and gained widespread reputation.

Linux and OSS Distributors Linux is a free Unix-like kernel devel-
oped under the lead of Linus Torvalds in 1991. One difference between
the Linux project and other concurrent efforts was that since its incep-
tion, it was based on a large community of developers whose work was
coordinated only through the internet. Frequent, almost weekly releases
ensured that plenty of feedback was received within days from hundreds
of users, and this was the main quality control mechanism for selecting
which code changes to keep and which to reject [185, 227].

By 1993 Linux was stable enough to compete with many commercial
Unix releases, and hosted more software applications. It was distributed
commercially on cd-rom with enormous success, and it was one of the
focal points of hacking activity on the internet.

The Linux kernel is often bundled with other software, such as the
shell and associated utility programs developed under the gnu effort,
a graphical environment based on the X-Window System with the
kde or gnome desktops running on top, as well as various applica-
tion and server programs, such as the Firefox browser and the Apache
web server, respectively.

By 19946 various Linux distributions were available at small cost,
including SuSE, Debian, and RedHat. Notably RedHat Software bun-
dled together hundreds of oss software packages licensed into a
so-called Linux distribution for retail sale [255].

6 A comprehensive history of Linux distributions is provided by Wikipedia:http://en.
wikipedia.org/wiki/Linux_distribution

2.7 OSS Becomes Mainstream 207

Licensing Issues and The Open Source Initiative In July 1997,
Bruce Perens, the leader of the Debian gnu/Linux Distribution project,
addressed the problem of many different licenses for software that
claimed to be “free” by proposing the Debian Social Contract and
the Debian Free Software Guidelines (described by their author in ref-
erence [181]). Based on these, together with Eric Raymond who had
studied and published work on the free software phenomenon and cul-
ture, they formed the Open Source Initiative (osi).7 Their goal was
to establish a practical approach to software licensing and to promote
commercial use of oss [207].

The osi developed the Open Source Definition (osd) set of guide-
lines for oss licenses that guarantees several freedoms for software
users. The term Open Source Software, instead of Free Software, was
proposed in order to assuage the reservations of business users. The
term was met with resistance by the Free Software Foundation [83,
Section 14], on grounds of not appropriately protecting the user’s
freedom.

The Open-Sourcing of Mozilla In 1998, Netscape announced that
it would release the source code of the current version of its Naviga-
tor web browser under the name Mozilla. A licensing team wrote the
software license and Mozilla.org was formed to coordinate the entire
project. A group of Open Source community leaders (including Linus
Torvalds and Eric Raymond) met with the Netscape legal team to
discuss the existing licenses. The result was to craft a new license,
the Netscape Public License (or npl) in an attempt to protect oss
developers and at the same time promote development by commercial
enterprises [100].

The first draft was published for comment by the public on the
internet, and the feedback received led to the design of a new version
of the npl, as well as the similar Mozilla Public License (mpl).

Mozilla.org set up an organization, accumulated funds and resources
and started functioning.

7 http://www.opensource.org/

208 History and Evolution

The Mozilla Firefox browser came about in 2004, multiply licensed
under the gpl, lgpl (a version of gpl, see Section 6.3.2) and the mpl
at the developer’s choice [51].

Sendmail and Dual Licensing Sendmail is a major, successful
open source application (it carries most of the world’s email traffic)
that was licensed under a dual license, i.e., both open and commercial.

The project started in 1981 at Berkeley by Eric Allman (author
of the arpanet delivermail application that was part of the bsd) as
an open development project for a Unix-based mail transfer system.
The open source version is licensed under an osi-approved bsd-like
license [251]. However the company Sendmail Inc. was eventually estab-
lished in 1998 by Allman to develop and sell an enhanced, commercial
version of the software that includes, among other features, a gui for
facilitating installation and configuration.

So two versions of fundamentally the same software were distributed
under an open source and a proprietary license. This example was
later followed by other software vendors, such as Trolltech and Mysql
ab that commercialized their products, the Qt widget library and the
Mysql database respectively, under a dual licensing scheme, enabling
them to be very successful in both the commercial and the oss applica-
tion ecosystem. (An account of the reasons that may lead dual-licensed
software to success is provided in reference [230].)

2.8 Mainstream OSS Applications

A number of operating systems and a multitude of oss applications
emerged over the last three decades, including systems applications and
infrastructure software, desktop applications, software for publishing,
graphics and entertainment, scientific and business applications, and
of course a whole range of tools for software development including
compilers, interpreters, editors, ides, and version control systems. In
terms of user base many oss systems occupy the first or second place
in their respective category.

Some of the most notable and successful such applications are out-
lined in the Appendix of this monograph.

3
Projects

This section introduces what is commonly referred to as an open source
project. This loose term encompasses a collective effort whose goal
is the production and support of software products. An open source
project generally consists of the following:

• A community of developers, users and other actors, based
upon an organizational and governance structure, driven by
specific goals, and unified by shared values and cultural char-
acteristics.

• Various software production processes for the manage-
ment, development, release and maintenance of the software
products.

• Technologies, infrastructures, platforms, and tools utilized in
the software production.

• A licensing model that abides by the general oss guidelines,
while at the same time ensuring the viability and success of
the project.

We discuss many of the above aspects of oss projects (as well
as others) in other sections of this survey. In this section we focus
on open source as a development methodology, and on cross-cutting

209

210 Projects

characteristics and concerns that distinguish open source projects from
proprietary endeavors and affect their success.

3.1 Open Source vs. Proprietary Software Projects

Several key distinguishing factors highlight the differences between oss
and proprietary software projects. We compare the two from the fol-
lowing perspectives.

Community Issues relevant to the communities formed around the
projects, the different actors, motivation and membership, and decision
making processes.

Software Production How code changes are managed, the testing
processes followed, the release management approaches, and the tech-
nical environment and infrastructure.

Business Issues relevant to licensing, business models and decisions,
and how adoption and reuse of the project artifacts is encouraged.

Tables 3.1, 3.2, and 3.3 summarize some significant differentiating
factors under the above three categories. These are discussed in more
detail in the relevant sections of this survey. Note that in these tables we
try to present the average picture, as it is reported in the literature, but

Table 3.1. Differences usually encountered between oss and proprietary software
projects. Part a: Communities.

oss projects Proprietary projects

Membership Substantial voluntary participation Paid staff
Large number Limited number
Open to all, voluntary Closed (company)
Virtual boundaries, fluid Bound by contracts
Independent community Belongs to company

Decision making Core developers or project leader Company/organization
No formal structure, voting consensus Strict and rigid structure
Meritocratically distributed Centralized control

Motivation Intrinsic and extrinsic, social/political Monetary rewards/career

Actors Usually skilled and motivated Company employees
Devote part of their time to project Main occupation, full time
Developers and users No users employed

3.1 Open Source vs. Proprietary Software Projects 211

Table 3.2. Differences usually encountered between oss and proprietary software projects.
Part b: Software production.

oss projects Proprietary projects

Environment Decentralized and geographically
distributed

Mostly centralized in one or few
locations

Rare face-to-face communication,
asynchronous means

Regular face-to-face
communication and meetings

Scarce project plans or schedules Project planning, scheduling
Non-assigned jobs and tasks,

voluntary participation and
selection

Work assignmed and coordinated
by project leaders

Massively parallel development Smaller sized teams
No explicit system-level design Rigorous design processes
No list of deliverables Strict development guidelines
Process and code open to all Closed communication
Tasks selected based on

developers’ expertise and
interestes

Developers trained and assigned
specific tasks

Change
management

Implementation and patch
submission before final review

Documentation-level changes and
review before implementation

Testing
processes

Informal Formal, reporting

Peer reviewing By testers, QA engineers
Community and user

participation
Within company/organization

Strong community involvement
after release

Mostly completed before release
(or during beta-testing)

Release
management

Frequent releases of minor
improvements, no fixed dates

Infrequent major releases on fixed
dates

Minimal promotion and
marketing

Promotion and marketing

Scarce documentation and
community-based technical
support

Documentation and formal
technical support

clearly there are exceptions and this comparison is not representative
of every single oss project.

oss and proprietary software are the two extremes of a spectrum of
potential approaches. As a result, a variety of hybrid models emerged
that encompass elements from both. The goal of these models is to
capitalize on the strong points that each perspective has to offer.

Typically, proprietary and commercial software projects are char-
acterized by strong emphasis on the user requirements elicitation
and design phases, rigorous documentation, strict scheduling and

212 Projects

Table 3.3. Differences usually encountered between oss and proprietary software projects.
Part c: Business.

oss projects Proprietary projects

Licensing Some version of copyleft licensing Proprietary license, copyright
No cost of acquiring software Software sold at a cost

Business models Value-added packaging Product, service or hybrid,
Services and Support Licensing, royalties, maintenance
Loss-Leader
Widget Frosting
Accessorizing
Dual Licensing

Adoption/Reuse Permitted at all levels, based on
specific license

Incorporation and support of
reused element’s production
processes

assessment processes, high level technical support to the client base,
and of course business mechanisms that facilitate adequate profitability.

oss on the other hand is mostly characterized by open processes,
fluid and self-organizing communities based on widespread commu-
nication, a development culture stemming from collaboration, self-
assignment of tasks and peer-reviewing, participation of the user base
in the project, and frequent releases to reflect the outcomes of different
development tasks carried out by independent groups of developers.

3.2 Project Success

We briefly discuss project success from the following three perspectives.

• What prerequisites should a project fulfill in order to have a
good chance of being successful.

• How to ensure the sustainability of a project that has reached
a certain level of success.

• What indicators can be used to distinguish a successful
project from other, less successful ones.

3.2.1 Important Prerequisites for Success

There are certain preconditions that should be taken into account at
the first steps of an oss project’s organization, and are key to its

3.2 Project Success 213

success. We briefly discuss the main ones that have been identified
in the literature.

Project Starting Points Whether the project is initially conceived
in the mind of one person, or among a group of developers, it starts
off as an idea within a topic of interest. The strength and originality of
this idea, together with any initial hints as to how it may evolve into a
software artifact are key to the entire endeavor [41, 78]. Whereas with
proprietary software the market pressures are likely to make projects
based on mediocre ideas quickly cease to exist, with oss such projects
could be allowed to languish for a long period of time.

The audience that the project will be targeted toward should also
be clear from the beginning. End users, software vendors integrating
a component, system administrators, or other developers are possible
users. The project should identify valid and important needs and pro-
vide effective solutions for them [39, 41], otherwise it may not attract
real interest.

Finally, though secondary with respect to other decisions, the natu-
ral language of the project may play an important role in the exposure
it will have and the user base it will reach [41, 148]. English of course
is the language that appeals to the largest audience.

Community Organization The decision making processes, hierar-
chical structure and leadership model for the project community should
be decided upon in a way that reflects the mentality of the project cre-
ators. A meritocratic culture should also be inspired and enforced to
the extent possible [79].

Technical Issues An appropriate choice of technical environment
and infrastructure (operating system, internet connectivity, tools,
etc.) [148] as well as programming languages [41] is important for
an efficient software development process. With oss additional issues
may include hosting providers for the project repository (such as
SourceForge1 and GitHub2). Moreover, the choice of external project

1 http://sourceforge.net/
2 http://github.com

214 Projects

dependencies has been shown to affect the success of a project under
development [95].

Open Source Perspective The choice of licensing scheme [21, 39,
79, 148] and the definition of an effective and reasonable business
model [79] are both issues that should be tackled from the beginning
of the project. For example a license or business model that does not
reflect the aims of the project community in terms of freedom or plans
to use the project outcomes may lead to internal conflicts, forking (see
Section 4.3.4), or even demise of the project after considerable effort
has been invested.

3.2.2 Factors in Project Sustainability

Ensuring the sustainability of a project after it has started, and making
sure that it will not stagnate or loose its momentum requires further
attention. We briefly examine the evolution and sustainability of both
the software system, and the project community.

Software System Sustainability As the software evolves to achieve
the identified goals and cover its specifications, its documentation and
testing material has to be constantly developed and adjusted as well
[175, 187]. Over time, software maintainability will become an increas-
ingly more complex problem. This phenomenon, defined as “software
aging” [178], has been shown to equally affect oss and proprietary soft-
ware in [131, 200, 256]). Consequently, a clear definition and visibility
of the entire software architecture (a task that is often beyond the scope
of individual developers) will greatly aid the maintenance tasks. This
is a particularly sensitive matter for oss projects, which are based on
a largely distributed developer base, and have also been criticized for
poor documentation quality (see also Section 10.4).

Re-engineering parts of the software may be required as well [200],
although due to the distributed development nature of oss projects this
needs to be carefully coordinated. Operational support of the resulting
product (including tasks such as configuration management) will also
aid in making the system maintainable in the long term.

3.2 Project Success 215

Community Sustainability The sustainability of the project com-
munity also needs particular attention. Initially, it is important for the
project’s success to build a good first impression for the product or ser-
vice offering. (For example, Choi et al. show that first impression plays
a critical role in attracting more developers [32].) Afterwards, it is cru-
cial to keep a high level of developer and user satisfaction [36], which
can be achieved through continuously evolving and taking advantage
of the developers’ skills and competencies [41] and carefully balancing
and matching the project development tasks with the skills and areas of
interest of the developers. In oss efforts these skills and competencies
may be the main motivating factors for the developer’s contributions,
as well as an effective safeguard against the possibility of forking.

The relationships between project members also need to be carefully
managed and coordinated, and care has to be taken in maintaining a
widely accepted leadership model,3 while at the same time providing
adequate recognition of the achievements and efforts of all community
members.

3.2.3 Success Indicators

In identifying projects that stand out as particularly successful, the
following indicators could be used (a more comprehensive study is pre-
sented in reference [143]).

Development Stage A project that has progressed into more
advanced development stages (e.g., from alpha to beta and then to
stable [36], or in a SourceForge development stage of 4 or higher [168])
is more likely to be a healthy project, backed by an active community
of developers.

Popularity A frequently downloaded project (e.g., one with a down-
load ranking of 85% or higher [168]) is likely to be a successful one [206].

Activity and Visibility Frequent and visible development [206] or
bug fixing activities are indicators of a healthy and successful project.

3 See Section 4.2 for more on the role of leadership in oss projects.

216 Projects

The availability of defect logs, and the average time elapsing between
bugs being reported and fixed are very strong such indicators [168].
A project with accumulating bug reports that are not acted upon is
likely one that is no longer actively supported.

Tools and Software Environment The software tools that are
made available by the project (e.g., for automated unit testing), the
portability of its code across different platforms, its compatibility with
other programs, or significant efforts to internationalize and localize the
project’s user interfaces and documentation, may also be indicators of
a robust project.

3.3 Representative Examples

We have already introduced various oss applications and projects, and
in the rest of this survey we will examine the characteristics of many of
them in more detail. Examples of successful and popular projects that
have helped shape the oss domain include the Apache4 web server, the
OpenOffice5 productivity suite, the Mozilla6 web browser, the Mysql7

relational database system, the Eclipse8 development platform, Linux,9

the gnu tool suite,10 and various bsd11 operating systems.
All of these projects share various common defining characteristics.

• They are supported by large, active communities of
developers.

• They abide by strict guidelines concerning their software
development and governance processes.

• They have set up foundations to manage the projects.
• They are partly financially supported through sponsorships

and donations.

4 http://www.apache.org
5 http://www.openoffice.org
6 http://www.mozilla.org
7 http://www.mysql.com
8 http://www.eclipse.org
9 http://www.linux.org
10 http://www.gnu.org
11 http://www.freebsd.org,http://www.netbsd.org,http://www.openbsd.org

3.3 Representative Examples 217

• They include working groups responsible for the promotion of
the project, and the translation of the software into different
languages.

• They organize conferences and workshops to promote the
project results and advances.

• Many contributions come from paid developers.

More details about the above, as well as other projects can be found
in the relevant sections of this survey, as well as in their online web sites.

4
Communities

Around any successful oss project an extensive community of people
is formed. This dynamic group features members at different roles,
capacities, degrees of involvement, and responsibilities. In this section,
we examine the structure, elements, and characteristics of oss project
communities.

4.1 Actors

Several studies have investigated the community structures [155, 229,
253] and ad-hoc team formation properties [40, 99, 173] that emerge in
oss projects as a result of the distributed collective processes required
when developing software. A notable community structure that emerges
in most such studies is the so-called onion model: the project develop-
ment team is organized in concentric circles, where the most inner circle
includes developers that have a managerial and leadership role while
outer circles have gradually less control on the project. For instance,
in reference [37] the authors study project success through a survey
of SourceForge projects based on the number of developers, project

218

4.1 Actors 219

Development,

maintenance &

documentation

Bug reporting

Code reading

User support

Financials,

prom
otion,

m
arketing,

business devel

Owner
Core developers

Active developersBug reporters

Bug fixers

Active users

Code readersAffiliated organisations

Actors

Coo
rd

ina
tio

n,

de
cis

ion
m

ak
ing

,

m
em

be
rs

hip
&

re
lea

se
 m

an
.

Reviewing,

testing

& bug fixing

Coremembers

Activemembers

 Peripheral
members

Responsi-
bilities

OSS
project

Fig. 4.1 The main actors of oss project communities grouped as core, active, and peripheral
members, and their main roles and responsibilities. Additionally passive users, who can
contribute to the projects’ motivation through download and use, complement the entire
projects community.

activity, bug fixing, and the number of downloads. Promotion strategies
permit community members to transcend community roles [58, 114].

A more detailed view of project organization in concentric circles
is provided in Figure 4.1. The figure analyzes the typical structure
of an oss project community, highlighting the main actors, how they
are grouped in membership categories and what responsibilities they
undertake. Note that although this subdivision of responsibilities and
roles may give the impression of a strict hierarchical organization, the
oss community does not usually perceive it as such, but rather as a
natural extension of the division of labor [18].

The size of the core/active parts of these project communities can
vary significantly, from many projects consisting of a single person to
relatively large projects involving several hundreds of active members,
while the number of core members is typically considerably smaller than
the number of peripheral members. Empirical evidence can be found in
studies of large oss projects, like Apache, Linux, Mozilla, and Gnome,
based on data retreived from online repositories [128, 129, 162, 163].

The various actor categories are outlined below, while Section 5
includes more details regarding many of their functions in the software
production process.

220 Communities

4.1.1 Core Members

Often oss projects are inspired and initiated by one person, the project
owner, as opposed to an already formed community [11, 187]. In these
cases, even if a number of core developers join the effort, the owner
keeps setting the vision and often maintains most of the roles and
responsibilities for the project, including, apart from the obvious tech-
nical development tasks, making decisions regarding the direction the
project will take, managing the releases and the licensing schemes to
be adopted, and any business models required to ensure the project
viability [18, 21, 129, 145, 174].

In oss projects that consist of more than a very small number
of members, however, the main strategic decisions about the overall
project direction are the responsibility of a subgroup of active and fre-
quently contributing members, often referred to as the core developers
[11, 18, 80, 170, 192, 254], who are generally responsible for a large
part of the project outcome [80, 126, 162, 163]. This “inner circle” of
programmers [128] varies in size, and may also vary in time (e.g., for
gnome the size was at a certain point in time around 50 developers, for
Apache around 15 at a different time [128], and for Freebsd 9 [117]).

Core developers typically have voting rights and code commit priv-
ileges [18, 21, 162, 163]. Apart from their valuable technical contri-
butions to the code, they are also responsible for setting up and/or
participating in committees with more specific responsibilities, most
notably the release management committee. This committee is respon-
sible for deciding what will be included in future releases of the project.
Decisions are made through a voting process (although in various cases
instead of a committee there may in fact be only one person)[73].

Some of the core developers who are responsible for handling specific
modules or code areas (see Section 5.1) and their related commits are
also known as maintainers [38, 53, 73, 117].

4.1.2 Active Members

The active members of an oss project consist of active developers and
bug fixers [18, 73, 80, 170, 254].

4.1 Actors 221

Active developers are programmers who regularly contribute bug
fixes and code for new features, as well as relevant documentation [11,
18, 170, 254]. They need to have a good understanding of large parts of
the source code and the project architecture [170, 254]. As a result they
often constitute the most important development force, along with core
members.

Bug fixers fix bugs reported by bug reporters (or sometimes bugs
they come across themselves), and therefore need to have some under-
standing of parts of the source code of the project [11, 170, 254]. Often
bug fixers do not have commit privileges, but they submit a patch to
an active developer.

4.1.3 Peripheral Members

Peripheral members have a more sporadic participation in the project,
yet they constitute the majority in oss project communities [80, 170,
254]. These members share a common interest in the project and iden-
tify with it, and are in touch through the different communication chan-
nels used, thus both benefiting from and contributing to knowledge
exchange and build-up. Reference [258] contains an extensive literature
review as well as some relevant empirical findings.

As oss project communities tend to be of a particularly dynamic
nature, peripheral members who maintain active involvement and con-
sistently offer valued contributions may be granted greater systems
access and more central project roles by the project’s core members.
For a more detailed discussion of the these role transformations see also
[58, 114, 170, 254].

The following are the main categories of peripheral members.

Peripheral developers contribute to the code from time to time,
usually with some localized bug fixes or minor new functionalities, as
evidenced by a number of case studies [170, 254].

Bug and problem reporters identify and report bugs or other
issues [11, 18, 80, 170, 254].

222 Communities

Code readers are involved users of the project software with an
interest in the source code, which they study and sometimes also review
and comment on [254].

Active users are users of the project software who typically partici-
pate in the relevant fora, offer support to other users [11], and may also
occasionally act as bug reporters or participate in requirements elicita-
tion and testing. For a discussion of these activities see also [137].

Affiliated organizations or businesses offer various kinds of sup-
port, such as financial, business development, and promotion [11, 66].

4.1.4 Passive Users

Although they cannot be considered members of the project community
in the strict sense, the passive users of the resulting software system
have an involved attitude toward the project, and may offer their cri-
tique and comments [11, 66, 170, 254].

4.2 Leadership

The oss project community is organized around and led by a gover-
nance and leadership structure.

4.2.1 Leadership Models

Despite the broad nature of oss projects, clearly defined and well-
structured governance models are often found in their communities
[154, 174], and can be roughly distinguished in two broad categories:
monarchical and federal [73, 129, 154]. [154] in particular describes a
case study that was performed with focus on the motivation for and
coordination of software development work in oss projects, and was
based on literature reviews, interviews with oss developers, and other
research findings.

In monarchical (or “star-shaped” [156]) leadership models the ini-
tial project inspirer (and owner) maintains a central role, and the entire
project is based on his/her decisions and visions [73, 129, 154]. A vari-
ation of the monarchical model is the hierarchical model [35]. In larger

4.2 Leadership 223

projects, such as the Linux kernel, to facilitate fast work turnover, the
project leader transfers portions of its authority to a selected group
of core team members; in such cases, the leadership model effectively
resembles that of a military organization.1 Well-known examples of this
include Linus Torvalds of the Linux project [52] (sometimes humorously
described as a “benevolent dictator”) and Larry Wall of Perl [154].

In federal leadership models, the responsibilities are more
“democratically” distributed among the core members of the project.

Examples include the Freebsd [117], the Apache Group [154], the
Debian’s Core which consists of the Debian Project Leader and a
periphery of maintainers [156, 197], and Mozilla’s Core Team which
consisted of Netscape Employees [154].

A project’s leadership model evolves as the project matures or when
new requirements emerge [174]. Moreover, the project’s source code
structure has a measurable effect on the potential of a developer to
become the project’s leader [90].

4.2.2 Skills

The project leadership naturally arises through a meritocratic process,
based on factors such as technical proficiency, knowledge, dedication
to the project goals, as well as the number and importance of the
contributions made [21]. In the monarchical model, only leaders that
are perceived as outstanding manage to generate significant project
communities. As a result, trust and respect are reflected in the forma-
tion of the leadership team. In practical terms, both reputation and
peer review processes are utilized [53, 70, 128, 205], whereby the role
of developers includes reviewing the participation and code contribu-
tions of other developers (their peers) [156]. For more details see ref-
erence [156], which discusses the relationship between institutions and
the projects’ sustainability and evolution both from a theoretical per-
spective, and empirically based on the Debian project.

Based on the above observations, and as evidenced by many oss
projects, important prerequisites for a developer to become a core mem-
ber of the project include a perception of fairness and trustworthiness,

1 In fact, Linus Torvalds refers to his trusted team of patch integrators as lieutenants

224 Communities

dedication without ego-based or political bias [145], and active partici-
pation and long-term contributions to the project. Paola Giuri and her
colleagues through an empirical study of the roles, skill profiles and activ-
ities of individuals registered with oss projects in SourceForge.net found
that a good balance between technical and social/leadership skills is
important [90].Nevertheless, purely technical skills and talent are in some
cases given more weight [53, 73, 145, 205]. Good communication and
social skills are also important and allow for “leadership without coer-
cion” [103], clear communication of theproject’s vision andgoals, attract-
ing new members to the project and securing funding and support [73].

4.2.3 Structure

Ultimately, the organizational structure of oss projects stems from
the combination of (or conflict between) a flat, anarchistic and free
nature [187] that is inherent to the project (as there is no enforcing
institution, developers are geographically distributed, and do not often
meet face to face), and a clear, layered, hierarchical leadership model
that the project community agrees on and tries to impose.

The organizational boundaries themselves are usually open to every-
one, in contrast to traditional organisations, and membership is fluid.
This allows new contributors to enter, and constantly innovative ideas
and perspectives to be introduced to the project [145, 163, 170, 205],
forming what are described as “horizontal innovation networks” [234].

Finally, whatever governance structure ends up being defined and
followed, it is likely to change with time and need as a result of project
evolution and the actions of individuals [205] (see also Section 4.5).

4.3 Governance Processes

Some of the main governance processes of oss project communities
include management of membership, allocation of tasks, and decision
making.

4.3.1 Membership Acceptance

Membership in oss projects is generally open to all. However the man-
agement of acceptance into and level of participation within the various

4.3 Governance Processes 225

technical or governance groups, as well as in the core team, is handled
either by the core members of the project (e.g., the Core Team in the
Apache project [70, 154, 163, 205]) or by a designated group (e.g., in the
Linux project [154]). These groups have total authority over admitting
members based on their contributions and on an assessment of their
skills, usually through a voting or consensus procedure (this process
can take as long as 6 months in the Apache project). In more extreme
cases members can be demoted or expelled if they are judged to have
misbehaved.

A model that is closer to proprietary software development was
followed in the case of the Mozilla project, as many of the contribut-
ing members were paid by the project for their work, and the project
authority and control was largely maintained by the Mozilla organiza-
tion [163].

In another example, a “joining script” is followed by candidates to
the Freenet project, whereby a set of significant contributions have to
be made, such as offering technical advice or developing high-quality
code, in order to be accepted as a developer [238].

4.3.2 Membership Promotion

Projects that maintain community membership processes or require-
ments, usually prescribe promotion or demotion rules for development
team members [35, 56, 114]. Such rules may require from project
members to actively contribute to the source code repository during
regular intervals [56], to introduce significant (based on the commu-
nity’s judgement) work [58], and finally to be a long-lasting outstanding
member of the community [35] in order to join the project’s governance
board.

4.3.3 Labor Division

Labor division refers to the allocation of different tasks to developers.
Due to the open and voluntary nature of the projects and communi-
ties, this process is based on trying to balance various often conflicting
considerations.

226 Communities

The developer’s preferences are taken into account and, to the
extent possible, respected [21, 163, 170, 187]. Developers can always
choose what to work on in open source, but the project may not
accept contributions that are not solicited/desired. The skills and area
of expertize of the developers are important, and the goal is to cou-
ple them with the open tasks requiring work [21]. However in some
cases a more loose approach is followed, where developers can pretty-
much choose what they will work on, and are not strictly assigned
tasks [170, 205], sometimes leading to a “problem of choice.” This is
discussed in reference [46], which presents a stochastic simulation of
the allocation of resources.

The notion of code ownership [163], whereby one developer is mostly
responsible for a module or section of the project, and other developers
make secondary contributions to it, is usually strong. This is usually not
a pre-determined role, but emerges as a result of particular expertise
or recognition in a particular area, whereas in other cases it is actually
enforced through the task allocation process.

Stefan Koch and Georg Schneider, through data retrieved from
the Gnome project’s cvs repository, found that a small number of
developers usually work on the same file [128], which is considered an
indication of a high degree of labor division. The “stigmergic” the-
ory [53], inspired by self-organization theories, further examines this
by arguing that the community reacts to “stigmas,” or signs in the
code base (such as the existence of a specific code tree), and that the
hierarchical nature of the project architecture is a means of revealing
a related hierarchy of preferences among developers. Finally an asso-
ciation often exists between the degree of collaboration and the code
complexity [53].

The process followed to achieve the desired division of labor and
allocation of tasks starts with the pending jobs being communicated to
the core team and the rest of the community, usually in mailing lists, or
through bug and issue repositories. For example, in the Mozilla project
the Bugzilla bug tracking system is used by developers to seek help for
issues they are having with their code. The selection of tasks is based on
personal interests, skills and capabilities, and the allocation of tasks to
volunteers follows the considerations described above. It is not possible

4.3 Governance Processes 227

to force developers to work on a task if they do not want to. In case a
certain task finds no developers willing to or capable of working on it,
the task may be set aside temporarily, at the risk of the entire project
being jeopardized if it is crucial [21].

This form of labor division is not as inefficient as it may sound.
Allocating development resources according to the developers’ interest
ensures that only features for which there is genuine interest get imple-
mented, while elements lacking community support languish and die.
This is commonly expressed in oss projects through phrases such as
“put your code where your mouth is” or “shut up and code.” A more
detailed discussion of the motivation driving the developer contribution
can be found in Section 9. Furthermore, when there are no developers
willing to work on an essential feature, this often indicates that the
feature’s code base is in a bad shape. A common outcome in such a
situation is a developer stepping in for a complete rewrite, which ben-
efits the whole project’s code quality. Thus a dynamic process helps to
ensure that an oss project’s essential code parts are in a state where
developers can actively maintain them.

4.3.4 Technical Decision Making

The most important decisions related to the project code are made by
the core developer team. Such decisions may include code development
orientation, what to include in future releases, architectural issues, how
to handle critical bugs, etc.

Such decisions are taken through a process of voting and consen-
sus [90, 163]. Usually any developer can vote or express an opinion (for
example through the project mailing lists), but only the votes cast by
the core group are considered binding [70, 205]. This may lead to dis-
agreements, for example if the “owner” of a particular part of the code
does not agree with decisions made by the core team.

In these cases the owners may try to exert pressure to the core
team to adopt their opinion [156], but if this fails they may in some
cases decide to abandon the project, or even start a different project
adopting their own approach. This is called “forking,” and it is one of
the risks faced by oss projects [129] (see also Section 4.4.1).

228 Communities

4.4 Coordination Challenges and Mechanisms

oss project coordination is subject to a variety of challenges, due to
the large and variable nature of their communities.

4.4.1 Co-operation Challenges

oss project development and coordination is faced with the following
main challenges.

Geographically Distributed Development Due to the wide, vari-
able and decentralized nature of the development community, face-to-
face interaction is rare [21, 163, 197, 205], the multicultural profile of
the team may introduce communication difficulties, and language, cus-
toms, even different time zones make coordinated development even
harder. The communication distances have been found to lead to lower
development performance and overall delays [108], though there is also
conflicting evidence. In particular, see the empirical study of the effect
the global nature of the Freebsd project has on productivity, quality,
and cooperation [212].

Modularized Code Production Decentralization, and the fact
that voluntary developers usually cannot devote large amounts of time
to the project [205], result in development tasks being highly modu-
larized [145], and requiring even more careful coordination to avoid
“stepping on each other’s toes” [21]. The notion of “code ownership”
helps in this respect, but introduces other risks (see below).

Heterogeneity in Opinions and Aims, and Risk of Forking
Conflicts, differences in opinions and arguments are more frequent than
in traditional projects, due to the difficulties in coordination and com-
munication [156]. These may lead to forking, as discussed above, which
may be initiated by code owners who feel they should have decision
making power and believe that the project is not going in the direction
they want [156]. A notorious example of a forked project is the 386bsd
operating system, which forked into Freebsd and Netbsd. Later on
Openbsd was forked from Netbsd, and DragonFlybsd was forked from

4.4 Coordination Challenges and Mechanisms 229

Freebsd. All systems but 386bsd are actively maintained, have a loyal
user base, and regularly exchange technical advice and code.

Free-Riding A common problem is that of community members not
contributing anything to the project, while benefiting from the contri-
butions of others [62, 130], e.g., through code, solutions to problems,
algorithms, design features, etc. that they can use for their own benefit.
Note that this is an issue with project developers and not passive users,
who are always welcome and beneficial to a project’s community.

Handling Code Complexity The complexity of the development
process itself puts considerable pressure on the developers and may
lead them to coding solutions, approaches or styles that are not rec-
ommended and may render the code base hard to debug or maintain
[156, 197].

A further challenge is related to two activities that have been termed
exploration (the extension of existing technologies or the development
of new features) and exploitation (the use of already developed knowl-
edge without changing its nature) [197]. For example, in the Debian
project core developers are mostly responsible for exploratory activities,
whereas peripheral developers mostly focus on exploitation of existing
code. Although the two are not necessarily mutually exclusive, finding
the right balance between them is often a difficult task.

4.4.2 Cooperation Tools and Mechanisms

The lack of a project plan or deliverables schedule [163, 205] means that
the remedies to the above issues are mostly based on either synchronous
or asynchronous communication and cooperation avenues. The most
frequent mechanisms are the following (see also Section 5.6).

• Free-form discussions based on email, or irc channels
• Structured discussions based on discussion forums, bug track-

ing systems,
• Mailing lists
• Newsgroups (usenet)
• Chat rooms for direct communications
• Wikis

230 Communities

4.4.3 Conflict Resolution

oss project communities are generally characterized by common, per-
vasive “cultural” characteristics [154, 187, 205, 221] (the “hacker” or
“geek” culture) that unify the group of technically oriented and pas-
sionate people through a set of common beliefs (e.g., in the freedom of
software and the choice of work), values (e.g., community and cooper-
ative work) and norms (e.g., open disclosure and acceptance of outside
critique) [62]. However pitfalls still exist, and conflicts or arguments
often need to be addressed and dealt with. These are usually the result
of issues with compliance (e.g., behaviour, fairness to other, respect
for property rights, and discipline), reciprocity (e.g., with respect to
code reviews and help) or social pressure (e.g., hostile emails, shun-
ning, spam, etc.) [70, 154, 162, 204, 205]. Conflicts are thus dealt with
through the following approaches.

Rules and Institutions Generally accepted rules, guidelines, and
protocols are often employed [21, 130, 156, 205] that encompass the
common notions of validity, describe responsibilities, rules, processes
such as voting, communication, code submission, notification of new
issues, and licensing issues. Examples include the Debian Social Con-
tract2 and Free Software Guidelines [156].

Monitoring and Reputation Some projects include procedures to
share information about the actions of developers [130], such as the vol-
ume of contributed code, members that are inactive over a long period
of time, or code changes that resulted in a build failure. Reputation
mechanisms may be used to reward good work and correct behav-
ior [154, 205], and maintain or attract developers, while peer review
and supervision, as well as parallel debugging [128], are also widely
employed [205].

Hierarchy and Authority Authority, at all levels, plays a role in
the avoidance and resolution of conflicts either through applying gover-
nance procedures, or through regulation and control [130, 156]. Quorum

2 http://www.debian.org/social_contract

4.5 Evolution 231

voting systems can be set up (e.g., in Apache) [163, 205], while the
administration hierarchy and code ownership structure also impose con-
trol over the intensity of controversies, as they are based on trust and
experience and are therefore usually respected [156].

When required, sanctions or different forms of punishment, usually
to do with their participation in (or expulsion from) different groups,
may be applied to shape the developers’ behavior [130].

4.5 Evolution

There are conflicting theories regarding the adequate size of the
project’s development community. There are those who believe that
“given enough eyeballs, all bugs are shallow” [187], whereas others
caution us of the risk of “too many cooks in the kitchen” [160]. And
although it is generally believed that an increased number of developers
does not lead to a proportional increase in productivity, studies such as
Koch’s [126], which analyses both small and large, successful and failed
projects and their programmers using version-control data, have shown
that the attraction of a larger number of participants in oss projects
is generally beneficial.

In any event, the project’s sustainability depends on the evolution
of its community [47, 128]. We thus briefly overview the processes and
requirements for membership augmentation and retention.

4.5.1 Membership Augmentation

Many oss projects have a specific marketing and promotion
agenda [172], which usually involves publicizing the projects’ attrac-
tive features and the benefits it may bring to new members. These
may include job opportunities and knowledge acquisition [36, 167], and
specialization in particular areas of development work [221].

New members are also likely to be more attracted to projects
that are healthy and successful. Indicators of this may be frequent
releases [103], good project management and communication avenues
[221], and a strong development community (good programmers attract
good programmers [17]).

232 Communities

Important attractive factors also include open access to mailing
lists and involvement in the project for new members [36] as well as a
pleasant environment and a culture of providing support and mentoring
to new members [5, 137, 167, 221].

4.5.2 Membership Retention

Equally important to the augmentation of the community with new
members is the retention of the current ones. This favors projects
that maintain an atmosphere of fun and motivation [5, 172] (see also
Section 9), and place emphasis on trust, quality of communication
between members [221], a sense of membership and identity [167, 221]
and a categorization of roles that relates recognition of the members’
contribution [167].

Fairness and reciprocity are also important and affect the willing-
ness of volunteers to contribute [204]. These can be enhanced through
reputation [36, 221] as well as reward and penalty [205] mechanisms.

The community must be kept balanced in terms of the required
participation in different roles, in order to be kept sustainable [162, 170].

Finally members should be allowed to engage in relationships with
outside entities such as customers or vendors, and not be given the
impression that they are “locked” inside the project and not free to
leave the community if they wish to [205].

4.5.3 Technical Requirements

There are also a series of more technical requirements that favor the
evolution of an oss project community. The interaction between devel-
opers, and especially new ones, should be facilitated through the use
of shared repositories with clearly defined access rights [167], as well as
the use of content meta-data marking to make it easier to search [1].
The code should be constantly maintained so that it is fresh, sanitized,
and well documented for new developers to extend [1, 103]. And finally,
within a variable and distributed development community a more mod-
ular codebase and architecture is easier to work with than a monolithic
one [6]. In this last monograph the authors devise a model to show

4.5 Evolution 233

that the architecture of a codebase affects developers’ incentives to
work within the framework of the open source development process,
and thus argue that it can have a major impact on the sustainability
and value of such processes.

5
Production Process

The software production process within an oss project depends on the
project’s organization, governance, community structure, and goals. As
has already been stated, not all oss projects are the same, and therefore
they don’t all adopt the same software production processes. However,
if we focus on established, successful projects with communities of con-
siderable sizes, we can identify some common distinguishing character-
istics and traits. These are the focus of this section.

The open and collaborative nature of oss project communities,
with public contributions, freely distributed documentation, and wide
participation in technical and managerial decisions, offers signifi-
cant opportunities for learning and skills development (known as the
“technology spillover” effect [18]), as well as practices such as massively
parallel debugging [93], whereby developers utilize and peer-review each
other’s code.1

1 Practices such as this have been found to result in improved code quality [129, 157, 231],
although this view has been repeatedly questioned in empirical studies [49, 77, 152, 179,
200, 214].

234

5.1 Modular Development Methodology 235

Various phases of the oss software development cycle also exhibit
specific characteristics. The requirements definition and elicitation
phase can invole both end users (who are closely related to the project
community) and project developers, often resulting in more direct
understanding of user needs and requirements, or problems that need
to be addressed. The incorporation of new features and the integration
of newly developed code follows specific multi-stage procedures includ-
ing prototyping, voting, reviews, and testing within specially set up
developer groups. Finally the management of releases, including tim-
ing, procedures, packaging and distribution, which usually includes the
project source code, is also undertaken by developer entities collabo-
rating at different roles and responsibilities.

The oss development process is also characterized by increased
modularity, which is key in producing a clear and understandable design
and allows autonomous, contained, and independent contributions by
separate groups of developers. As the community participates in prod-
uct development decisions, technological considerations and innovation
are taken into account and incorporated in the end product. Often
technologically superior alternatives are chosen, even if they are not
economically the most favorable solutions. A risky experiment with a
new promising, or even controversial, technology is at most one branch
away from the main project trunk.

Table 5.1 summarizes some key differences between software pro-
duction within an oss project and a proprietary software development
firm. These are expanded upon in the following paragraphs.

5.1 Modular Development Methodology

Empirical studies, such as the one on the design structure of Mozilla and
Linux by Alan MacCormack et al. [152], have shown that a fundamen-
tal characteristic of many oss projects and development methodologies
is the decomposition of the system design into separate modules. Mod-
ularity characterizes a system whose parts can be designed and imple-
mented independently, but will work together to support the whole [6].
The compatibility of the different modules is ensured by a set of hor-
izontal architectural design rules. There is a trend for more modular

236 Production Process

Table 5.1. The main difference between the software production process followed within
an oss project and a proprietary software firm.

Open Source Software Proprietary Software

Developer community organization
Individuals or large, open, variable

community
Company employees
Hierarchical organization

Widespread ad hoc collaboration Corporate culture
Enthousiastic, motivated, hacker culture Potential conflicts, friction
No conflicts of interest End-user involvement low (but rising)
End-user involvement high

Governance and project management
Informal management structure Strict hierarchical management
Decisions taken through code

contributions, voting, discussions,
disagreements

Decisions taken by management

Responsibilities and tasks allocated
through fluid, informal procedures

Responsibilities and tasks strictly assigned
by management

Possibilities for tasks without developers,
forking, duplicate efforts

Organized control of resource allocation
and effort management

Software development procedures
Innovation and technological considerations

more than financial ones affect decisions
Decisions mostly economically driven

Massively parallel debugging and peer
reviewing processes

More isolated efforts, source code not
shared

Design modularity and loose coupling are
critical

Design modularity more optional

Requirements arising from project
community and associated users

Requirements arising primarily from the
market and formal studies

Documentation sometimes not formally
developed, sometimes of lesser quality

More rigorous documentation enforced by
company standards

Usability issues not always addressed, user
interfaces sometimes poor

Considerable emphasis on usability and
user interfaces

Technical infrastructure
Needs infrastructure for collaboration,

communication, distributed development
Distributed development infrastructure not

always critical
Internet-based repositories used Code and documentation held within

company limits

Project evaluation and monitoring
Project status assessment involves project

and community health, evolution,
contributions, code quality, and resolved
issues

Project status assessment based on lists of
tasks, functionalities to be implemented,
open bug reports, and expended effort

Software release and distribution
Frequent releases, loose release planning,

feedback from community seeked
Rigorous release plan, infrequent releases

Web-based and community-based
distribution channels

Software directed to market through
standard sales channels

5.1 Modular Development Methodology 237

design in proprietary software products as well, and it can be argued
that to some degree this is the result of learnings taken from the oss
domain.

Various degrees of modularity and coupling between components
are possible, with monolithic designs at one end of the spectrum, and
loosely coupled ones at the other.

The core architecture of many large oss projects can generally be
described as a platform that supports modules that are essential to
the system, and a set of distinct modules on top of it. For example, in
the Linux operating system the kernel is part of the platform, and the
device drivers are independent modules [6, 93].

At the time of writing, version 2.6 of the Linux kernel included
almost 2,500 loadable kernel modules, supporting device drivers, file
systems, sound hardware, networking, cryptography, processor archi-
tectures, compression, and security. Indeed, one of the key success
factor of Linux is considered to be the efficient modularity of its
design [226]. At one extreme end the Eclipse integrated development
environment consists entirely of plug-in modules [81].

Apart from the general advantages of a modular design, the follow-
ing features make it particularly important for oss projects.

• The design is clear, distinct and understandable [152].
• There is loose coupling between different modules and devel-

opment tasks, which allows work on a given module to be car-
ried out without affecting other modules in the design [152].
This offers more autonomy and requires less interaction
between contributors (as shown at least in the case of the
gnome development [84]). As dependencies are minimized,
development can take place at a global scale, around the
clock [212] with minimal effects on product quality (as shown
in the case of the Windows Vista development cycle [15]).

• It attracts more voluntary contributions (as opposed to
monolithic codebases [6, 152]). Individual code contributions
can be small and contained, while still allowing their sum to
be very valuable [116, 183]

• It promotes synergies and cooperation opportunities [18].

238 Production Process

• Experimentations and exploratory implementation attempts
can be accommodated more safely, and changes and improve-
ments can be performed without jeopardising the overall
system [6].

5.2 Requirements Definition

The first step in the software production process consists of the require-
ments elicitation, analysis and definition (the requirements usually stem
both from the developers’ interests and the users’ needs), analysis and
definition. In order for oss projects to be sustainable and successful,
requirements of two types should be considered [84, 201].

Technical requirements are the typical requirements that the
design and implementation of any software project is based on, and
include the desired functional and nonfunctional characteristics and
features of the resulting product. The project leaders will usually out-
line these in a vision statement, and they may be subsequently enriched
with post-hoc features during the development and evolution of the
project, as a result of interaction with users and testers, or based on
the input received by the project community.

Environment requirements do not refer to the actual technical
artifact, but to the nature of the project and the community surround-
ing it. For an oss project to be able to retain the interest of its develop-
ment community, it must provide constant motivation and incentives
for participation through vehicles such as research interest, challenging
technical problem-solving aspects, and involvement in new technolo-
gies that may allow new career opportunities (see also Section 9). It
is doubtful that projects lacking such characteristics will be able to
maintain the required momentum and retain their developer base.

The participants in the requirements elicitation phase of the project
are mostly developers and documenters, but may include other periph-
eral members and volunteers, investors and other stakeholders who have
an interest in the project, potential customers or prospective end-users,
scientists, etc. [72, 84, 189, 201, 231].

5.3 Incorporation of New Features 239

In general the requirements elicitation in oss projects requires less
interaction with external end users, as they are mostly understood
within the project community [72]. Indeed often the developers intend
to be users of the system themselves, and have specific needs and
requirements that need to be addressed. Moreover, requirements in oss
projects are usually not formally documented [202]; it is very common
for requirements to be lurking in email documents, todo lists in the
project’s repository or bug reports and feature requests in the project’s
issue tracking databases [163].

The sources of information from which the specifications will stem
usually include technical reports and system documentation, mailing
lists, newsgroups and discussion forums, as well as accounts of devel-
oper’s own needs and perspectives [201].

5.3 Incorporation of New Features

The incorporation of new features into the project usually follows a pro-
cedure that may involve creating a short description or even a proof-of-
concept prototype, voting to select among different candidate features,
gathering specific requirements and finally designing and implementing
them (see also [4, 84, 201]).

The initial requirements emerge through interactions between the
project developers, users and other members, while the feature selection
and prioritization process is mostly a responsibility of the core team and
the code maintainers. Final validation is achieved through the actual
implementation of the new features.

5.4 Code Integration

The procedure typically followed for integrating new pieces of code in
the repository is outlined below (see also discussions in [51, 56, 72, 84,
117, 162, 163]).

Code Reading and Familiarization The developer first studies
the existing relevant code in the project repository.

Development and Testing The developer carries out the required
code modifications, and runs tests to verify their implementation. This

240 Production Process

is done in the developer’s private workspace. Submitting untested
changes that disrupt the project’s build (compilation process) or even
the software’s operation is strongly avoided (and particularly frowned
upon [73]).

Systematic testing is usually not formally prescribed in most oss
projects, with the exception of some very large and complex ones
[56, 220].

Patch Submission If the developer does not have commit privileges,
the code changes are submitted to a core developer or maintainer for
review and eventual integration to the project’s code base. This is often
done through email or through some distributed version control system
(see also Section 5.6).

Review and Pre-Commit Testing The core developer or main-
tainer reviews the code changes and performs further testing before
committing the changes to the code repository. Even developers with
commit privileges may publish or submit their code for third party
review if they are performing a tricky or critical change, or if they are
working on unfamiliar code. Some projects, such as Freebsd, formally
assign a mentor to new members of the developer team, and make it
the mentor’s responsibility to sign-off the new developer’s code [56].
Others, such as Linux, employ a multi-level governance hierarchy [35]
for gradually reviewing patch submissions.

Code Commitment The (core) developer commits the changed
code to the project’s version control system repository. This often
triggers various ancillary actions that promote collaboration and code
stability [59], such as running automated tests or code quality checks,
automatic emailing of the change on a mailing list, updating informa-
tion in the project’s issue database (based on information that asso-
ciates the commit to an identified issue [246]), and informing users who
had registered their interest on the given issue about the change.

Once the patch is accepted into the core repository, it will be ready
for inclusion in the next release.

Figure 5.1 schematically illustrates the above procedure.

5.5 Release Management 241

developer

mentor

peer
reviewers

core developer/
maintainer

Project
code

repository

1. checkout

2. develop

3. peer review

4. submit

5. commit

Fig. 5.1 Illustration of the typical procedure followed for the integration of newly developed
code in an oss project.

5.5 Release Management

The release of new versions of the project software, including new fea-
tures, functionality or bug fixes, are crucial moments of the project
life-cycle. Various elements of the release management process can also
be found in the development of proprietary projects. Our description
in this section serves mainly to document the adoption of commonly
accepted best practices by oss projects. An important differentiating
factor between the release management of oss and proprietary projects,
is that the source code (and often even the binary executable form) of
an oss project is typically available as a snapshot of its current state.

Therefore, release management in oss is often simply the strength-
ening of various attributes like reliability targets, extent of permitted
changes, documentation, and public relations. Specifically, many oss
projects don’t base their release on targets for a predefined feature set
or target date. Instead, they often aim at generating a stable release
by closing all pending critical bugs, prohibiting disruptive changes,
documenting the improvements over the previous version, and announc-
ing the new version’s availability.

242 Production Process

5.5.1 Time for Release

A new release usually takes place under the following conditions (see
also [51, 73]).

• A sufficiently important number of bugs has been repaired.
• A significant number of new features has been added to the

project.
• Important documentation updates are available for the users.
• Certain promotional or political reasons dictate it (e.g., to

present a new feature at some event, or to attract funding or
commercial interest).

• A fixed release schedule has been previously agreed on.

5.5.2 Responsibilities

The responsibility for the release is usually shared between two enti-
ties: The project core team, or code owner, and an appointed release
manager [51, 56, 73, 84].

The core team is responsible for deciding the release time and has
the final say on what features will be included in the release. They
will then proceed to appoint a release manager, i.e., a project member
that will be responsible for the planning and coordination of the release.
Usually the selection of release manager is based on previous experience
with the project as well as appropriate technical and communication
skills.

5.5.3 Release Procedure

The procedure followed during a release, under the supervision and
coordination of the release manager, consists of the following phases:

Release Stabilization This usually consists of three main steps (see
also [7, 56, 65, 73, 117, 220]).

(1) All new code patches that are relevant to the release are
merged into the code stream to be released.

(2) The code stream is “frozen,” meaning that no new features
can be added to it. Different degrees of freezing can be

5.5 Release Management 243

applied, for example a soft freeze will allow minor changes,
whereas a hard freeze will not allow any changes except
critical bug fixes that need to be included.

(3) A final review approval is given for the release go-ahead.

Packaging and Format The material to be released can be pack-
aged in different formats, that may include single self-contained
archives, compressed source code, binary packages, or patch files
(addressed to users of the previous versions of the software). The nec-
essary files with installation instructions, copyright and licensing infor-
mation, along with a list of changes addressed by the current release
are also included in the package. A link to the release location on the
version control system server can also be supplied.

Naming The naming and numbering of the release is important as
it conveys information about its contents and its relation to previous
releases, development streams, etc. This is particularly relevant in the
modularized and parallel development environment of oss projects,
as it allows organizing and keeping track of changes in a hierarchical
manner (and doing this in accordance with the project’s version control
system) [73].

Based on their degree of maturity, releases are commonly catego-
rized as pre-alpha (not feature complete), alpha (for testing purposes),
beta (further testing before release), and release-candidate (ready to
release unless fatal bugs emerge).

The stage of development is further characterized as stable (assumes
that there are no significant undocumented problems) or unstable
(includes enhancements that have not undergone thorough testing,
or more changes are expected). In contrast to proprietary software
projects, many users of oss systems decide to run software from the
unstable (development) branch, in order to be the first to use new fea-
tures and bleeding edge technologies, and also to assist debugging and
testing a project they want to help.

The numbering of the releases also follows widely agreed-on
mechanisms, to declare the main development trunk that the release

244 Production Process

originates from and the relevant branches and sub-branches, as well as
the development stage.

Pre-Release Testing A final pre-release testing phase takes place
within the project community, and may involve selected end-users and
volunteers. This goes beyond the basic functionality and includes all
new features and installation scripts. Based on the development stage
and the feedback received from this testing phase, the release manager
will then decide whether to make the release available to the public.

Distribution The new release is most commonly distributed from
the project’s main distribution server as well as possibly secondary
servers (mirrors). Alternatively it can be distributed through peer-to-
peer file sharing networks, or even among end-users who forward it to
each other [1].

5.6 Technical Infrastructure and Collaboration Facilities

Due to their wide geographic distribution, the large number of devel-
opers and other active members involved, and their constant evolution
and enhancement with new features and functionalities, oss projects
depend crucially on the right technical infrastructure to support col-
laboration and development tasks.

We briefly overview the software tools and systems that are most
frequently utilized.

5.6.1 Version Control Systems

A version control system (vcs) is crucial for keeping track of the evo-
lution of the project code and documentation in the decentralized oss
project environment. Such systems may be centralized or decentralized.
Two commonly used centralized (and oss) vcs systems are cvs2 and
Subversion.3 Their cross-platform clients can concurrently access and
modify the project files providing features particularly appealing to

2 http://www.nongnu.org/cvs/
3 http://subversion.apache.org/

5.6 Technical Infrastructure and Collaboration Facilities 245

oss, such as support for peer reviews and conflict resolution, multiple
development branches, data mining, automated notifications, etc.

Decentralized vcss (such as BitKeeper,4 Git,5 Mercurial,6 Bazaar,7

etc.), use local repositories on the client systems. These offer better
scalability, and more direct member interaction. Centralized vcs’s
offer more controllable security and privacy, accessibility to history,
and better repository management capabilities [177], however several
projects are moving to distributed vcs solutions [161].

See [7, 73, 161, 209] for more on the use of vcss in oss projects.

5.6.2 Issue Tracking Systems

Issue tracking systems allow the project members to report bugs,
request enhancements and new features, and keep track of pending jobs.
Responsibilities for different issues or bugs can be explicitly assigned
to specific project members. All of these issues are accessible to the rel-
evant members, and can also be automatically communicated through
mailing lists. A complete history of the handling and status updates,
including comment exchanges in the form of discussions, are also sup-
ported for each issue and maintained by the system. Some systems
even allow project members and users to “vote” for fixing a particular
bug or implementing a feature. This allows the prioritization of issues
according to the view of the project’s users.

The current status of issues can be determined at any time, and lists
of pending issues (usually prioritized according to their status, urgency
or impact to the project) can be produced and distributed within the
project community.

Bugzilla8 is probably the most widely used such system (also in pro-
prietary development environments). Other systems include gnats,9

and Trac.10

4 http://www.bitkeeper.com/
5 http://git-scm.com/
6 http://mercurial.selenic.com/
7 http://bazaar.canonical.com/
8 http://www.bugzilla.org/
9 http://www.gnu.org/software/gnats/index.html
10 http://trac.edgewall.org/

246 Production Process

5.6.3 Support for Technical Discussions and
Communications

The considerable amount of remote communication and collaboration
that takes place among oss project members is usually based on three
types of systems and infrastructures.

Synchronous communication applications, such as instant mes-
saging and irc, allow real-time discussions and instant responses to
questions, thus boosting the turnaround time for problem resolution,
while at the same time helping establish more informal relationships
between the project members.

Asynchronous communication is usually based on mailing lists,
Usenet groups, discussion forums, and blogs. These allow a more struc-
tured form of communication, which also leaves behind a history trail
that can be searched in the future. Such methods can be used either for
technical or nontechnical issues, as well as for the broadcast and dis-
cussion of ideas and opinions, or the creation of an informal repository
of information related to the project.

Web-based dissemination platforms such as wikis and the
project’s web site usually include varying amounts of user documen-
tation, technical data, and organizational information.

5.6.4 Repositories and Hosting Facilities

Often oss projects are hosted on web-based repositories that can be
either of a generic nature (such as SourceForge11 and GitHub12) or the-
matic (such as Java.net,13 cpan,14 and ctan15). These provide various
facilities such as file storage, documentation authoring and presenta-
tion, mailing list hosting, on-line forums, source code browsing clients,
a build farm of diverse operating systems and processor architectures,

11 http://sourceforge.net/
12 http://www.github.com
13 http://java.net/
14 http://www.cpan.org/
15 http://www.ctan.org/

5.7 Assessing Open Source Software Projects 247

version control systems, an issue tracking database, and downloading
support [34, 51, 73, 191].

Hosting oss projects in such widely known sites offers the projects
considerable visibility and promotion. On the other hand, projects
hosted on independent web sites have a more distinct presence and
are more autonomous.

5.7 Assessing Open Source Software Projects

As with any software development effort, but even more so for oss
projects due to their distributed nature, it is important to be able
to assess their status and health from the technical and software pro-
duction perspective. Various software engineering criteria, metrics and
tools can be used to evaluate the project, the artifact, as well as the
development process.

Project status and health The quality of the project can be exam-
ined at an abstract level, e.g., by considering issues such as its testa-
bility, simplicity, readability, and self-descriptiveness [210, 218].

Additionally, software engineering methods have been used in
empirical oss studies concerning community issues such as project
structure, governance, coordination and cooperation (see for example
[58, 84, 97, 113, 126, 128, 152, 160, 183, 193, 220, 246]).

Project evolution From a dynamic point-of-view, the types and fre-
quency of contributions made to the project can provide an indication
of how active the project is. These can be tracked through the project
vcs and issue tracking systems, or alternatively by directly compar-
ing source code versions [113, 118, 183]. Similarly, the changes in the
project architecture can provide an indication of the project’s evolu-
tion [92].

Design and architecture Various metrics based on the design
structure [152], including its object-oriented nature [97, 139] can give
a measure of the quality of the project design and architecture. A wide

248 Production Process

range of known software engineering metrics16 have been used in vari-
ous oss studies (see also [92, 113, 162, 163, 218]).

Software One can also focus on the software artifact itself, and exam-
ine the adequacy of its functionality, reliability, usability, efficiency,
maintainability and portability, based on the project specifications, to
reveal exemplary or poor coding practices [210, 215]. Specific character-
istics of low-quality software can also be used as signs of a project that
may end up in trouble (see [210] for various such cases). A variety of
tools for software quality assessment are available for both researchers
and developers.

Open source projects additionally constitute ideal cases for perform-
ing studies and analyses as above, as they provide researchers with a
plethora of public data through version control and issue tracking sys-
tems, mailing lists, documentation, and the code itself. This data can
be analyzed and mined by using or constructing appropriate software
tools and platforms [56, 92, 97, 113, 199, 215, 218].

5.8 Concerns

Concerns have also been expressed regarding the oss software produc-
tion process.

The informal organization and management of the oss development
process may result in problems such as an inability to achieve the nec-
essary match between resources (mostly developers) and tasks [46]. If
the development process is not carefully directed, it may lead to either
developer redundancy and duplicate efforts, or incomplete efforts and
unimplemented tasks. Additionally, extensive reuse of code by large
numbers of developers requires very careful coordination, and may
make large-scale changes very painful in terms of synchronization with
the source.

The loose planning and scheduling approach of oss [93] may also
cause difficulties. The frequent release schedule [73, 103, 117] may

16 Such as Chidamber and Kemerer’s metrics for object-oriented systems, McCabe’s cyclo-
matic complexity, and Halstead’s Volume [119], to mention but a few.

5.8 Concerns 249

motivate users and improve code tracking, however it may also lead
to unstable code, and it is not necessarily consistent with the develop-
ment of complex and demanding new features [117].

oss is also considered to suffer from poor documentation [23], and
in some cases a lack of tools for tasks such as requirements manage-
ment, project management, metrics and estimation of project health,
scheduling, and suite design [46].

Finally, the oss community structure and organization may also
entail some risks. The danger of forking [16, 60] due to differences in
the priorities or perspectives of core team members or incompatibilities
between participating developers can lead to code base splitting and
unmaintained code, while developers may also be tempted to keep parts
of their work proprietary rather than contribute to the public project
in a so-called “war of attrition” [17].

6
Licensing

Open source software can be freely used, modified or distributed, pro-
vided certain restrictions are observed regarding its copyright and
the protection of its status as oss. These rights and restrictions
are expressed through the software’s license, i.e., a contract between
the software owner(s) (the licensors) and its prospective users (the
licensees) [51]. oss licenses come in different flavors, but in general they
make available the software source code and they permit the creation
of derivative works as well as the nonexclusive commercial exploitation
of both the original and the derivatives [140].

The licensor of the oss software (typically the owner or author)
may be a single developer, a group of developers, or an organization,
and holds the copyright to the software [196]. By assessing and com-
bining factors such as the motivations behind their work, the project’s
characteristics, its intended audience and its likely success, the licensor
decides whether to make their work available under an open source
license, and if so what type of license to employ [148].

The licensee, on the other hand, is either an end user of the oss, or
someone who has embedded it in their product or application, which
is then further distributed or licensed [196].

250

6.1 Concepts and Definitions 251

6.1 Concepts and Definitions

Before discussing the different types of oss licenses, we briefly introduce
the background concepts delineating the degrees of freedom available
while distributing the product of any intellectual activity, including
software.

6.1.1 Intellectual Property, Copyrights and Patents

The term intellectual property is used to encompass a wide range of
areas of law, including copyrights, patents, and even trademarks [83].
These are all means used to encourage private investment in research,
technology and innovation, by ensuring that innovators will be able to
get individual returns for their work.

Copyright is a form of legal protection that can be applied to a
wide range of intellectual works, including software. Often copyrighted
software allows no access to the source code, and is distributed with
a licence agreement that severely restricts the copying, modification
or further distribution of the covered software. However the software’s
authors may also choose to publish the source code by placing it under
a software license that conveys the rights of the parties accessing the
source [236].

Patents are written descriptions of inventions, used as property
claims covering the core ideas and their use [83], so that only the inven-
tors can extract economic returns from them. Patents constitute per-
missions on the use of an idea, granted to the authors for a limited
amount of time [149]. Applying for a patent is a process that may take
years, and involves a substantial financial investment [51, 83, 101, 236].

Since software code can be easily copied and reproduced, many com-
panies argue for its strong patent and copyright protection. However,
others express considerable concerns about the use of such protection,
claiming that the software community and society in general benefit less
from this restrictive approach, relative to keeping the knowledge that
the innovators have created free and available to all [101]. In particu-
lar, the Free Software Foundation, a nonprofit advocacy group, states
that the use of patents will severely undermine the free software move-
ment [26, 51]. The concern of the fsf and other members of the oss

252 Licensing

community is that most oss projects lack the financial and institutional
resources required to investigate patented prior art that may cover their
work, and to defend themselves against patent litigations, which are
notoriously costly [26]. Furthermore, there are significant differences
between different countries in patent law, especially for software [51],
which poses an additional difficulty for the typical global oss project.
In general, excessive patent protection has been criticized throughout
many scientific and technological fields, as it can impede the develop-
ment of scientific research and render access to crucial resources (such
as medicins) more difficult or costly [10].

6.1.2 Public Domain

In contrast to patented software, collaborative models that allow many
members to freely and actively participate in a project or development
effort has been referred to as free revealing [187]. oss projects are char-
acteristic examples of this. Control of knowledge, innovation, or in this
case source code is thus relinquished, and so they become public domain
goods [236].

By labelling software as Public Domain the owner declares that
there is no copyright protection and no distribution or licensing restric-
tions. Anyone is free to copy, modify, distribute or sell the software,
without any permission being required [26, 51, 141]. Even if parts of
a public domain software product are incorporated into a copyrighted
work, then that copy of the material will be covered by the copyright,
but the original work is still in the public domain, free and available
to all [73].

There is a major misconception equating oss with public domain
software [181]. oss is not public domain software. It is copyrighted and
distributed under a license — just a license that gives the users more
rights than they are typically used to.

6.1.3 Open Source and Copyleft

Open source lies in between allowing a software work to fall completely
in the public domain (thus relinquishing any notion of ownership), and
protecting it under copyright or patent law. All open source software

6.2 Open Source Software Movements 253

licenses share two characteristics: They waive the right to earn license
fees from distributing the software, and they incorporate the condition
that the source code will be made available to licensees.

Copyleft (a play on the word copyright) is a form of open source
licensing that grants the right to reproduce, adapt or distribute soft-
ware. However, it imposes the restriction that any derivative work will
be released under the same license. In this way the software and the
freedoms applied to it become inseparable [83].

Copyleft licenses are therefore a subset of oss licenses, further dis-
tinguished according to how restrictive they are, and often labelled as
strong-copyleft or weak-copyleft.

6.2 Open Source Software Movements

Two main movements and organizations that promote oss and certify
licenses as open source or free software are the Free Software Founda-
tion (fsf) and the Open Source Initiative (osi).

The fsf was founded in 1984 by Richard Stallman of the gnu
project, and introduced the gnu General Public License (gpl), as well
as the term copyleft. The fsf advocates that “free software is a matter
of users’ freedom to run, copy, distribute, study, change and improve
the software.” Indeed the main goal of the fsf is to keep software free
by allowing others to build on one’s code, and return their changes to
the community [83, 141].

The term Open Source was coined in 1997 by Eric Raymond and
Bruce Perens, who also wrote the Open Source Definition,1 consisting of
ten criteria for determining whether a license is open source or not [181].
The osi was subsequently formed in 1998 as Netscape decided to release
their web browser’s source code to the public. This decision created
concern among the developers’ community as their creative work would
circulate freely, and it was not yet clear what the term free meant. In an
attempt to explain the concept, Stallman famously said they should
“think of ‘free’ as in ‘free speech’, not as in ‘free beer”’ [83, Section 1].

1 http://www.opensource.org/docs/osd

254 Licensing

Table 6.1. A categorization of oss license types, their main properties, and some charac-
teristic examples.

Z
er

o
co

st

D
is

tr
ib

ut
io

n
al

lo
w

ed

N
o

us
ag

e
re

st
ri

ct
io

ns

So
ur

ce
 c

od
e

av
ai

la
bl

e

So
ur

ce
 c

od
e

m
od

if
ic

at
io

ns

D
er

iv
at

iv
e

w
or

k
ca

n
be

 p
ro

pr
ie

ta
ry

L
in

ki
ng

 w
ith

pr
op

ri
et

ar
y

w
or

k

OSS license examples

Freeware

Public domain

O
SS

Proprietary

R
ig

ht
s

re
se

rv
ed

Non-copyleft
(permissive)

Weak copyleft

Copyleft
(restrictive)

BSD mod
MIT/X11
Apache v2
AL v2

MPL (additional restrictions**)
NPL (use of code in Netscape)
SISL (minor details)
SPL (like MPL)
IBM CPL (choice of law)
EPL (patent lawsuit language)

G P L

R
ig

ht
s

ab
an

do
ne

d

 * Except under special licensing conditions - ** Provision in v1.1 to allow alternative license choice

C
an

 b
e

re
lic

en
se

d
by

 a
ny

on
e

GPL
compatible

BSD orig (advertising)
AL V1(pattent termination)

L-GPL

Not GPL
compatible
(reason)

Yes Yes Yes Yes Yes Yes

YesYesYesYesYesYes

Yes Yes Yes Yes Yes Yes

Yes Yes

Yes

No No No

No

No

NoNo

No

No No No

No *

No *

No

No

Yes Yes Yes Yes Yes

N/A

N/A

N/A

N/A

Yes Yes Yes

Based on material from [26, 181, 207, 203, 249]. Original source: [121] — c©2010 ieee.

6.3 License Types

Table 6.1 summarizes the main oss licence categories, their relationship
to other software license types, their main features and some represen-
tative examples that will be discussed in more detail.

6.3.1 The GPL and Copyleft Licenses

The gnu2 Public License (gpl) was created in the mid 1980s by
Richard Stallman and its terms provided much of the foundation for free
software development. A key feature of this license, which contributed
to its widespread adoption, is the license’s “viral” nature, as it enforces
the source code of any derivative work from a gpl-licensed software to
also be released under the gpl. As a result, developers working on gpl
projects are assured that their code will never be used in proprietary
software [94]. This is the essence of the notion of copyleft.

Furthermore, while the license allows the creation of derivative
works, it does not allow the creation of derivative licenses from the gpl

2gnu is a recursive acronym, standing for “gnu’s Not Unix!”

6.3 License Types 255

[140, 181]. The only stipulation on pricing is that anyone requesting the
source code may be charged for the physical cost of the copy [94].

Large swaths of OSS to date have been distributed under the
gpl [72]. Examples include the Linux operating system kernel, the
gnu Emacs Editor and C Compiler, among many others. According
to a 2005 study 68% and 69% of all projects hosted by Freshmeat.net
and SourceForge.net, respectively (two prominent online oss reposito-
ries) were licensed under the gpl [26].

gplv3, released in 2007, also inlcuded patent protection clauses.
Until then, patent protection was only implicitly provided by the gpl.
These new clauses were aimed at explicitly protecting oss developers
from the risk of being sued by companies distributing code under the
gpl for patent infringements.

6.3.2 The Lesser-gpl and Other Weak Copyleft Licenses

The gnu Lesser General Public License (lgpl), 3 also known
as the Library gpl, is a derivative of the gpl proposed by the fsf,
intended for use mainly with software libraries. Its main differentiator
from the gpl is that an unmodified lgpl licensed program or library
can be incorporated within a proprietary program, or more generally
one that is not licensed under the lgpl.

For example, if a library licensed under the gpl is incorporated
into a proprietary program, and the two are distributed together, this
would be a violation of the gpl as the distributed program and the
library would be considered a derivative work subject to the limitations
imposed by the gpl [140]. The goal of the lgpl is to overcome this
obstacle.

This gives rise to the notion of weak copyleft, i.e., a less restrictive
approach to licensing oss. Weak copyleft permits the use of the covered
code within larger works covered by other licenses. It therefore estab-
lishes a middle ground between the gpl license that does not allow this
combination of licenses, and the more permissive noncopyleft licenses
that freely permit this (see Section 6.3.3).

3 http://www.gnu.org/copyleft/lesser.html

256 Licensing

The fsf has developed the lgpl as a strategy to defend the ground
of free software libraries against incursion by libraries licensed under
less restrictive terms, such as the Apache license. By allowing their
distribution with proprietary software, these libraries increase their
chance of becoming widely adopted, and thereby furthering the fsf’s
goals. However, the fsf encourages the use of the more restrictive gpl
license in cases where a library offers a unique advantage not found in
competing libraries licensed with less restrictive licenses.4

The npl/mpl Licenses, proposed by Netscape in 1998, also share
the weak copyleft approach. Netscape’s intention was to allow its source
code to be used in larger, proprietary derivative work, but at the same
time ensure that any modifications to their code would be contributed
back to them and the rest of the community [94]. To that end, Netscape
proposed a beta version of the Netscape Public License (npl) for public
comment and, based on feedback received, they refined it into a second
license, the Mozilla Public License (mpl5) [94, 140].

Similar to the lgpl, the mpl allows the creation of larger, derivative
work, including proprietary code that is not required to be published
in source code form. Still, any changes to the original source code must
be made available to the community [94]. Some particularities of the
mpl license are discussed in Section 6.5.

The Artistic License The Artistic License (al) was created by
Larry Wall in 1991 for Perl, as he felt that the terms of the gpl (under
which Perl was released until then) were too restrictive. The goal of the
al was to allow Perl to be used in commercial packages [94].

Its name is due to the intention to allow the initial developer to
maintain “artistic” control over the licensed software and derivative
works created from it [140]. Specifically, it allows the programmer to do
anything they want as long as the changes are published and described
in the source code, or all executables are renamed and the differences
are documented, thus allowing the original author to maintain artistic
control [94].

4 http://www.gnu.org/licenses/why-not-lgpl.html
5 http://www.mozilla.org/mpl

6.3 License Types 257

The al is very similar to the gpl, but being a weak copyleft
license it doesn’t require distributing derivative works under the same
terms [251].

Other Weak Copyleft Licenses Various other licenses have been
proposed that embrace the weak copyleft approach, including the Sun
Industry Standards Source License (sissl),6 the Sun Public License
(spl),7 the ibm Common Public License (cpl),8 and its derivative
Eclipse Public License (epl).9

6.3.3 The BSD and Other no Copyleft Licenses

The BSD license was originally used for the release of significant
portions of a Unix-related code by the University of California. Since
then, a fair amount of OSS is distributed under this license. It allows
covering derivative works under different terms or licenses, as long as
the necessary credit is given to the original work.

Being one of the main no-copyleft licenses, it imposes no require-
ments on developers working with source code released under a bsd
license. In contrast to weak copyright licenses, there are no incentives
or requirements to contribute the modifications back to the commu-
nity [94]. Originally it included a clause requiring that all acknowledg-
ments of previous contributors’ work be retained, however this clause
was objected to and dropped in 1999.

Finally the bsd license also includes a no-endorsement clause saying
that the names of the originators and contributors cannot be used to
endorse products derived from the source code [94].

The Apache License is a derivative of the bsd license used by the
Apache Software Foundation.10 A rewriting of this gave rise to ver-
sion 2.0 in 2004. It is very similar to the bsd and mit/X11 licenses.
It makes clear however, that the licensing of derivative works under
other licenses is permitted so long as the terms of the Apache License

6 http://www.opensource.org/licenses/sisslpl.php
7 http://java.sun.com/spl.html
8 http://www.ibm.com/developerworks/library/os-cpl.html
9 http://www.eclipse.org/legal/epl-v10.html
10 http://www.apache.org/licenses/

258 Licensing

v2.0, are complied with (this is implied but not specifically spelled out
in the mit and bsd Licenses).

The Apache License furthermore helps in the distinction between
open source and closed source software development. Licensees are free
to take their derivative work and license it under a different license. If,
however they choose to label their addition to the work as a Contri-
bution, then they are effectively agreeing to license it under the same
terms that are applicable to the original work [140].

The MIT/X11 License is another no-copyleft license, which actu-
ally predates the bsd (it was written in 1987 for the X Window System
source code). The two licenses are very similar with the main difference
being that the mit/X11 does not include the no-endorsement clause.

6.3.4 Other Software Licenses

Licenses for Documentation Similar to oss, licenses have also
been created for technical documentation and publishing [140].

A typical example is the gnu Free Documentation License (fdl),11

used for manuals, textbooks or other documents. It grants to everyone
the freedom to copy and redistribute the material, with or without
modifications, either commercially or noncommercially [83]. Another
similar license is the Open Publication License (opl).12

Creative Commons The Creative Commons Corporation13 is a not-
for-profit organization founded in 2001 and currently based at Stanford
University Law School. It offers ways for authors to license their work
openly [10]. It expands the open source model beyond software, to liter-
ature and the arts, and offers a variety of Creative Commons Licenses
through which the authors effectively surrender most rights on their
work.

These licenses are essentially a contractual undertaking between the
creator and Creative Commons. Copyright is granted to the Creative

11 http://www.gnu.org/copyleft/fdl.html
12 http://www.opencontent.org/openpub/
13 http://creativecommons.org/

6.4 License Selection 259

Commons for 14 years and is renewable for one additional 14-year
period [140].

Non-OSS Licenses In contrast to all oss licenses discussed previ-
ously, the main characteristic of licenses that do not fall under the Open
Source Definition is that there is no distinction between the distribution
of original and derivative work [140].

The Sun Community Source License (scsl)14 is such an example
developed by Sun, that tries to incorporate some of the benefits of oss
in proprietary products. A difference between this and oss licenses is
that Sun imposes a compatibility requirement, whereby any modifica-
tions to the licensed work must undergo a compliance certification by
the licensor [140]. Furthermore, commercial use of code licensed under
the scsl may require royalty payment.

Another example, the Microsoft Shared Source Initiative15 was cre-
ated in 2001 when Microsoft provided limited access to some of its
source code. It was critiqued for lacking the transparency and simplic-
ity of open source licenses [140].

6.4 License Selection

Various considerations will affect the decision over what license to apply
to an oss project or program (reference [63] contains a concise guide).

First of all, it is generally advised to go with one of the existing
and empirically tried licenses, rather than draft a new one [73, 94].
Using a well-known and trusted license will give the users confidence
and clarity regarding what uses of the software are allowed. On the
contrary an obscure, overly complicated and rarely used license will
probably create confusion and ambiguity. Additionally, constructing a
license from scratch requires a lot of experience and knowledge of legal
matters, so it is not generally advised.

Furthermore, in various cases the choice of license may be limited by
pre-existing software used in the project, and its own licensing scheme.
For example, if pre-existing bsd-licensed software is used, the project

14 http://java.sun.com/j2se/1.5.0/scsl_5.0-license.txt
15 http://www.microsoft.com/resources/sharedsource/default.mspx

260 Licensing

team has the freedom to select any license, provided they respect
any requirements regarding notifications and disclaimers. But if gpl-
licensed software is used, then the only option would be to use the gpl
for the resulting project as well.

Provided there is freedom of choice, the most important factor is
the permissiveness of the license, i.e., to what extent it allows deriva-
tive work to be licensed under other schemes [140]. Other factors may
include the following (see also the overview in reference [203]).

Topic and Audience It is argued that software aimed at devel-
opers, system administrators, or more generally technically proficient
audiences, as well as projects on topics that target sophisticated peers,
are more likely to be licensed under permissive licenses. The reasons
include the strong community appeal of such software, as well as the
fact that developers involved in these projects are often motivated by
career enhancement opportunities, and will therefore be favorable to
licenses that allow them to demonstrate their skills to a wide range of
audiences, including users of commercial software.

Dependencies on Existing Work Compile time dependencies on
existing projects may dictate the type of license a project will use.
Projects having compile time (source code) dependencies on gpl soft-
ware (for example, a driver in the Linux kernel) must adopt the license
of the pre-existing software as they comprise derivative work. (Alspaugh
et al. [3] provide a metamodel derived proof of this.) This requirement
is mitigated if the existing software is a runtime dependency (i.e., the
dependency may be loaded dynamically while the main program is
running), in which case the derivative work clause may not apply.

Environment and Operating System Projects based on commer-
cial platforms and operating systems are likely to employ more restric-
tive licenses.

Industrial Involvement If companies have a significant involve-
ment in the project, then they are likely to be reluctant to adopt a
strong copyleft license.

6.5 Concerns and Risks 261

Commercialization Goals If the option of including the project’s
software in some commercial project is considered, then a nongpl
license that will permit this will be required.

Protection from Copying If a project feels that it needs to protect
its code from other groups that may copy it and utilize it in their own
products, then a license that would prevent this, or at least require that
they return to the community their changes, would be preferable.

Attitude The degree of restrictiveness of the license may also depend
on whether the developers and project communities believe in the right
to redistribute one’s work under licenses of their choice or in the goals
of the free software movement.

Motivation Various studies [33, 69, 203] analyze theoretically and
empirically how the developers’ possible intrinsic and extrinsic motiva-
tions (e.g., the problem solving challenge, recognition by peers, mon-
etary incentives, and future employment) may affect their choice of
license for their software.

It is generally found that more permissively licensed projects attract
more highly skilled programmers who may want to maintain intellectual
rights for their work, or simply for ego gratification, and stimulate more
contributions. More restrictive licensed projects, on the other hand,
ensure access to everyone’s contributions and are favoured by commu-
nities with less free-riding [63]. For a broader discussion of motivation
see Section 9.

6.5 Concerns and Risks

Various concerns have been voiced regarding the adoption of various
oss licensing schemes.

One such concern is that the use of licenses that allow the combi-
nation of open source and proprietary software effectively undermines
the concepts that the oss movement advocates [129]. Furthermore, it
allows a competitor of a non copyleft licensed project to take the source
code and build a proprietary, non open source product [63]. An example

262 Licensing

of this is Apple basing its Mac OS X on parts of the Freebsd operating
system.

Combining oss released under different licenses also requires atten-
tion to compatibility issues [153, 251]. As a general rule, oss released
under diverse licenses can be combined to yield an outcome under a
license at least as restrictive as the original ones. However there are
exceptions to this rule, and the particularities of each license need to
be carefully taken into account. For example, software under the mpl
license (see Section 6.3.2) cannot be redistributed under licenses that
imposes restrictions not present in mpl. As a result, mpl software is,
in principle, incompatible with gpl. However even in this case, a pro-
vision exists in the mpl license that allows a program or parts of it
to offer a choice of another license as well,16 thus partially overcoming
this restriction.

Unlike proprietary software, projects under oss licenses are, in vari-
ous degrees, also unprotected from forking danger [140]. The gpl license
hinders the danger of forking a proprietary project by enforcing that the
derivative work will remain under the gpl. But under other licenses,
and mainly non copyleft ones (such as bsd and Apache), the commu-
nity is unprotected from developers forking off and continuing with
non-oss development. Often the community relies on the reputation of
the developers for avoiding this, as well as on other measures discussed
in Section 4.2.

Commercial software development firms may feel that there is a risk
involved in incorporating oss code in their products, due to the lack of
clarity in some definitions [25, 26]. As discussed previously, some oss
licenses only allow the reuse of software if the derived work is also under
the same license (most notably gpl). But the definition of derived work
may not be clear enough to dictate how the original oss software could
be used.

For example, it has been suggested by some that if a gpl-licensed
program has a runtime dependency to a proprietary library (or
vice-versa), the result would not need to be licensed under the gpl,
as the two programs retain distinct existences. However the fsf does

16 http://www.gnu.org/licenses/license-list.html#GPLIncompatibleLicenses

6.5 Concerns and Risks 263

not accept this position, and has argued that in such cases the lgpl
should be used instead [26].

Possible strategies around this may include clearly separating, at
the architectural level, the pieces of the resulting software product that
rely on oss code from other parts, and license the former as oss and
the latter as proprietary [103, 196]. But in any event, the use of legal
advice would be recommended [25], or alternatively “packaging com-
panies” can be employed to serve as intermediaries between the oss
community and the proprietary software house to undertake various
technical responsibilities, as well as legal, licensing and intellectual-
property rights issues [196]. Alternatively, permission may be explic-
itly requested from the oss project owners to include part of the code
within a proprietary product [103].

7
Business Models

An organization’s decision to move into the oss domain must be based
not only on technological and social considerations, but also on an
evaluation of the business perspective and impact of such a decision.

The oss business model, and in particular the revenue logic behind
developing and distributing oss, is not one of the most obvious to
perceive. However, as various business model analysis frameworks indi-
cate [166], the revenue logic is just one part of the entire picture. Prod-
uct and business strategy, including the types of services offered, the
development of core competences and competitive advantages, the com-
pany’s market approach, the creation of value chain positions, or the
exploitation of specific customer communities, are just as important.
A move into oss can therefore be considered as a strategic maneuver
rather than just the formation of a new revenue stream [186].

In this section we first focus on the diverse types of strategic advan-
tages that adopting oss can offer, and the impact these may have at the
business level. We then discuss what prerequisites are necessary to make
such a move successfully, and some of the concerns that should be taken
into account and weighed. We describe specific elements and character-
istics of different oss business models, and the ecosystems of companies,
organizations and other players that are formed around them.

264

7.1 Strategic Advantages and Impact of Moving to oss 265

7.1 Strategic Advantages and Impact of Moving to oss

The adoption of oss practices can offer various strategic advantages,
and it can impact a company or organization’s business model in vari-
ous ways.

The move from selling commercial software to distributing oss may
be performed partially, or in steps. Possible strategies include offering
source code with a closed license that has an expiration date [186], or
converting previous versions of a product to oss while selling the latest
version as closed source [94].

As Joel West found in three case studies [247], the software can be
offered as a partly open solution, thus providing value to the customers
but making it difficult to be directly exploited by competitors. One
way of achieving this is by using a restrictive license. Alternatively
only certain parts of the software product can be offered as oss, while
retaining full control of the most critical layers (an example of this is
Apple’s Mac OS X operating system).

The degree and way in which a software vendor may decide to open
source their offering may depend on its placement within the mar-
ket and with respect to other products. Wijnen-Meijer and Batenburg
found through literature reviews, interviews and surveys that a prod-
uct with a large market share leading an ecosystem of complementary
products, or a product with distinct technical capabilities, is less likely
to be open-sourced [250].

Table 7.1 summarizes the business and strategic advantages of mov-
ing into oss, which are discussed in more detail below. We group these
into three categories: Advantages resulting from the user base and
community that is formed around oss products; advantages resulting
from the special market and competition placement offered by oss;
and advantages more directly related to production costs and revenue
streams.

7.1.1 User Base and Community

There are cases where large user communities can be quickly built
by converting to oss, often with minimal sales and marketing
expenses [243]. Existing markets can be broken into or reshaped

266 Business Models

Table 7.1. Summary of business and strategic advantages of moving into oss.

User base Market placement Revenue stream
and community and competition and financials

User base development
Information about market
Innovation dissemination
Productivity increase
Access to customer needs
External developers use
Access to new skills and

practices

Approach restricted
markets

Increase reputation
Attack competitors
Preempt development of

closed standards
Embrace underdog

mentality
Escape from vendor lock-in

Enable new services
Increase demand for

complementary services
Reduce development costs
Lower break-even points
Introduce new revenue

streams

[77, 186], and significant market shares can be acquired. An exam-
ple is the Netscape company, which opened the source code of the
Netscape browser to increase its user base with respect to its competitor
products.

Through oss development, information is collected dynamically
about products, services, customer needs and ultimately the market
itself [20, 77]. Joachim Henkel, based on large-scale surveys and inter-
views, also found that oss development also creates opportunities for
setting industry standards and enabling compatibility with other prod-
ucts or systems [107].

At the same time, it also offers a powerful means of disseminating
innovation and research results throughout the community [77, 250].
Making the source code of a product available is expected to lead to
greater innovation, provided that a critical mass of developers will find
interest in it and will be attracted to it [135].

Development productivity can be significantly increased by leverag-
ing the talent and expertise found within the oss community, as dis-
cussed through the oss product and process transformation framework
proposed in [72].

The close interaction of the oss development process with the user
and customer base often allows the customer needs to be taken into
account in the design and customization processes [20]. This gives a
competitive edge with respect to the proprietary software development
approach.

7.1 Strategic Advantages and Impact of Moving to oss 267

Finally a move into oss allows small companies that employ a mini-
mal number of developers to benefit from a large pool of external devel-
opers and their technical skills and expertise, to participate in practices
such as peer reviewing that result in better software products, and to
be exposed to innovation that they could not otherwise afford to create
internally [20, 106, 230].

7.1.2 Market Placement and Competition

oss can be an effective way of approaching restricted or limited
communities where traditional market strategies do not work [77]. Cus-
tomizations and adaptations to the particular needs of these niche
markets offer additional revenue streams.

Furthermore, the oss approach can be used to attack competitors
by offering similar products at substantially lower cost (or completely
free). A typical example of this is the OpenOffice suite1 [77]. Joel West,
in his three case studies we mentioned earlier in this section, found that
this practice can also preempt the development of closed proprietary
standards by rivals [247].

Often oss products compete with non-oss products offering similar
functionalities and solutions. The non-oss products have the advantage
of more resources, advertising and public relations, but an “underdog
mentality,” as well as help from the developer community can help the
oss product to a considerable degree [135].

Finally customers also appreciate the fact that with oss they are
not subject to “vendor lock-in.” This was found to positively affect user
and customer loyalty both in the literature and through surveys and
interviews [250].

7.1.3 Revenue Stream and Financials

When open-sourcing a proprietary software product, there are indirect
effects that include an increased demand for other products and ser-
vices that complement or support the main offering. This can lead
to an improvement of a company’s profitability, market placement

1 http://www.oracle.com/us/products/applications/open-office/index.html

268 Business Models

and reputation due to better quality, support, and customization
possibilities [250].

The ratio between fixed and total development costs is reduced, low-
ering break-even points for new ventures and reducing overall risk [20].
The overall development cost is also decreased [12, 22, 60, 134, 192,
235, 250] through the distributed processes that involve external devel-
opment support (see also Section 5).

7.2 Prerequisites, Deciding Factors and Concerns

The move from closed to oss distribution requires careful consideration.
Diverse software products, companies, or markets require correspond-
ing approaches, and it may be that in some cases opening the software
code or licensing structure may not be a wise move.

For example, software products focusing on cost leadership, or with
a horizontal functional scope, are better candidates for moving to
oss than those offering added value through their sophistication or
advanced features [250]. Software with a broad, horizontal scope that
is geared toward a mass market is more likely to attract attention and
outside developers, and is thus better suited for open-sourcing [43].

The market position of a software product is also an important
factor in this decision. For example, open-sourcing a product that has
a large market share, that is at the forefront of the state-of-the-art in
terms of technical capabilities with respect to its competition, or that
has an ecosystem of other products and services depending on it, is
unlikely to lead to any gain for its vendor [250].

The decision on whether to open-source a product should also
include the following stages and considerations.

Evaluate the Market for the Target Product Consider both
commercial and other oss offerings, or combinations of the two. Deter-
mine whether there is market interest for the product to become open-
source [9].

Determine Development Community Interest Consider how
likely is it for a community of developers to form around the prod-
uct and provide their skills, expertise and development effort once it is

7.2 Prerequisites, Deciding Factors and Concerns 269

open-sourced. Forums, mailing lists and other communication channels
can offer such insight [9].

Decide what Parts of the Product to Open-Source It is possi-
ble to only open a part of the product source code, and keep the rest
proprietary. Reasons may be trade secrets or algorithms that are bet-
ter not publicized, part of the source being shared with other products,
and dependence on third party technologies with different licensing
schemes [103].

Balance Short Term Switching Costs Technical switching costs
may involve backward-compatibility of the new oss versions, or cus-
tomers being unwilling to embark in the new oss direction, and instead
switch to other products [20]. Additionally, new personnel may need to
be hired, and if there is not enough familiarity with oss practices it
may be required to outsource part of the processes such as installation,
configuration, and maintenance [230].

Consider New Processes, Infrastructure and Environment
Forming an oss project and community will change the way a company
or organization does software development. It will require specific tech-
nical infrastructure (such as distributed revision control systems and
an openy accessible issue-tracking system — see Section 5.6), processes
(see Section 5), and an appropriate environment supporting issues such
as a formation of an open, collaborative community, free information
flow, new governance models and managerial skills, labor division, and
support for a geographically distributed team [106, 107, 230, 243, 247].

Accessing the oss community, managing oss information that is
available on the internet, and dealing with licensing issues and cus-
tomers, are additional organizational routines that will need to be sup-
ported [20]. Before embarking in the oss direction it is important to
verify that these elements can be developed and supported.

Ensure the Correct Mentality is Present oss development
requires a particular mentality and culture that may not be present
within the company, and will need to be developed. There may be

270 Business Models

resistance by non-oss ideologists [107]. The culture of respect for devel-
opers’ intellectual rights, as well as the need to match their skills and
capabilities with the project requirements may be missing, as evidenced
through surveys and interviews [230, 247].

Ways to overcome these issues may include participation in other
oss projects or events, selection of licensing that is most likely to attract
a development community, or allow company employees to get involved
in other oss projects before making the switch [44, 145].

Tolerance for the inevitable free riding, as well as the understand-
ing that by opening one’s code certain advantages will be offered to
competitors will also need to be developed.

Sanitize Code Though it may seem a secondary, technical step,
making sure that the code is ready for public distribution can be a
daunting task involving rewriting or adding comments and documen-
tation, re-implementation of certain functionalities in better ways, and
removal of parts that are only intended for internal viewing [103]. This
is important, as the source code is likely to be scrutinized (even by
automated tools), and will form part of the company’s new image.

Select Appropriate Business Model As described in Section 7.4,
various business models can be adopted and the most appropriate one
may depend on a wide range of considerations.

Select Appropriate License As discussed in detail in Section 6,
there are many licensing approaches, with varying degrees of permis-
siveness as well as other characteristics.

Decide on Marketing Approach Building awareness for an oss
product can be challenging, as new channels of communication will
need to be tapped into or created, and new communities of users will
need to be approached.

7.3 The Open Source Software Ecosystem

Business models based on oss may involve many industry players coop-
erating at diverse roles to form an ecosystem. We briefly introduce the

7.3 The Open Source Software Ecosystem 271

types of companies, groups or organizations that can be involved in
such an ecosystem, and then examine the approaches through which
profitable business can be based on these cooperations.

oss developers and project communities form a diverse group
of people with a shared interest and passion in both a specific project
or product, and in the concept of making it open to the community so
that anyone can make improvements or add functionality to it. They
are organized in a community that is formed around the project, either
as independent individual developers, or within corporate boundaries.

Software distributors focus on the business of system integration,
packaging, quality assurance and services [186]. Typical examples are
the various Linux operating system distributors (notably RedHat and
SuSE). Their role in oss is important, as they package the software into
different distributions, enhance it with middleware applications, and
offer technical support and other value-added services such as training
for specific tasks. They gain revenue due to the large number of trans-
actions they are involved in, and they also gain reputation from their
participation in the oss movement.

Software producers and vendors can benefit from oss by incor-
porating oss into their product offerings. They can either use existing
source code within products they develop, or they can adopt entire oss
products and include them in their list of offerings, subject to licensing
restrictions. In any event, they lower their total production costs. Addi-
tionally, they can offer complementary services and technical support
to users of third-party oss products (similar to what distributors do).
Finally they can also choose to open the source of (part of) their own
products (e.g., Sun and Java, Netscape and Mozilla). Such a move has
been found to result in many benefits including increase in revenues
and/or reputation. Their choice of license depends on their business
development strategy.

Hardware producers and vendors can incorporate oss, such as
drivers and applications, to support their hardware (examples include
ibm and hp). They can also use oss in embedded software platforms,

272 Business Models

such as set-top boxes, broadband routers, mobile phones, and gps nav-
igators (the TiVo digital video recorder, and Android-based mobile
phones are two notable examples).

Third party service providers provide technical support, assis-
tance, and value-added services, similar to (and sometimes in compe-
tition with) projects and distributors [135].

End users of the software products are generally categorized as home
or enterprise users, the latter usually being more willing to pay for
detailed product documentation and value added services such as tech-
nical support [43].

Others business types may be involved in the oss ecosystem,
including companies producing accessories to be marketed along with
oss software products to the oss community, or other types of orga-
nizations with a belief or stake in the oss paradigm that may wish to
offer support or sponsorships.

7.4 Main Business Models

In the following paragraphs we describe the main oss-related business
models encountered within the oss ecosystem. Figure 7.1 summarizes
the types of players that are most usually involved.

7.4.1 Value-Added Packaging

A variety of value-added products and services can be bundled together
with the core oss product [94]. Typical services may include system
installation and integration, technical support, while commercial util-
ities and applications can also be packaged [44]. A typical example
company in this role is RedHat, which facilitates the complex task of
installing and configuring the diverse components of the gnu/Linux
operating system [72].

Technical support, customization and upgrade services are mostly
targeted toward enterprise customers, and may include long-term
agreements [135].

7.4 Main Business Models 273

B
us

in
es

s
m

od
el

s

OSS ecosystem players

OSS de
ve

lop
ers

 an
d p

ro
jec

ts

Sof
tw

are
 di

str
ibu

tor
s

Sof
tw

are
 pr

od
uc

ers
/ve

nd
or

s

Hard
ware

 pr
od

uc
ers

/ve
nd

or
s

3r
d-

pa
rty

 se
rv

ice
 pr

ov
ide

rs

Con
su

mers

Othe
rs

Value-added packaging

Services and support

Loss-leader model
Widget frosting

Accessorizing

Dual licensing

Brand licensing

Software franchising

Financial support

Fig. 7.1 The typical oss business models, and the oss ecosystem players that are usually
involved in each.

Software version support services may include identifying and pro-
viding the most recent, stable and safe version of a certain oss product,
as well as offering special premium or advanced versions through some
subscription mechanism [134, 135].

Finally, packaging may also be offered in terms of physical distri-
bution and delivery of the oss product, e.g., in cd-roms and printed
documentation sent over regular mail [135, 245].

7.4.2 Services and Support

Services and support forms a similar business model to value-added
packaging, but is targeted toward more independent services and
support-based solutions.

A subscription-based model can offer users the ability to manu-
ally check for software updates and new releases, access to discussion
forums for technical support, as well as access to paid consultants
and contractors to help with specific tasks [243]. Examples include the
SuSE (acquired by Novell) Linux Enterprise Desktop, and RedHat with
the JBoss application server. This model provides a predictable rev-
enue stream for the providers, and the option to engage such services

274 Business Models

only when necessary for the customers. Post-sales training and sup-
port can also be provided, along with additional documentation and
manuals [134, 154, 243].

Finally independent consulting services can be offered regarding the
strategic aspects of decisions and investments related to oss [94, 243].
Sometimes the software providers also undertake this consultant role,
benefiting from their reputation to offer these services and increase
their revenue [250].

7.4.3 Loss-Leader Model

In the so called “loss-leader” model, some software offering is dis-
tributed freely as open source, in order to attract interest and fuel
demand for some other, linked, proprietary software. This practice cre-
ates a community of developers and users around the product and
increases the vendor’s reputation [245].

The proprietary software may be an advanced version of the oss
product (e.g., the open sourced Sendmail versus the proprietary Send-
mail Pro), or it may be a set of additional related functionalities and
products (e.g., guis, toolkits, frameworks and languages offered on top
of open-source integrated development environments) [250].

7.4.4 Dual Licensing

As discussed previously, various vendors allow their customers to select
what license they want to apply to the use of their software. A free,
oss license such as gpl is usually offered for noncommercial applica-
tions, and a proprietary license for commercial ones [243]. Alternatively,
extensions of a certain oss offering may be covered by a non-oss license,
at a cost [94, 135, 243, 250].

Commercial versions of oss applications may include additional fea-
tures and capabilities. The advantages of the company and product’s
presence in the oss community are used to boost the sales of the com-
mercial versions.

Examples of dual licensed software include Qt2 and Mysql.3

2 http://qt.nokia.com
3 http://www.mysql.com

7.4 Main Business Models 275

7.4.5 Widget Frosting

Widget frosting is a term for embedding oss software into hardware
products [94, 243], such as a kernel, printer drivers, compilers, operat-
ing systems or applications [245]. This offers the hardware vendor all
the gains of oss development (large developer pool, more customer
involvement, peer review and other reliability measures and, possi-
bly, also increased customer loyalty) [186]. Software licensing costs are
also reduced [250]. Examples of this strategy include the TiVo set top
box, which runs a Linux kernel [8], and the One Laptop Per Child
Foundation’s XO laptop, which is based on the Fedora gnu/Linux
distribution [243].

7.4.6 Brand Licensing

In brand licensing, one company charges other companies for the right
to use their brand names and trademarks. The brand reputation thus
gained in creating a successful oss product is sold to other companies
that create derivative products [154]. For example, although Sun (now
Oracle) released a gpl-licensed implementation of the Java platform,
the Open Java Development Kit, in 2006, it retained control of the
Java trademark certifying implementation suites as fully compatible
with its specification. It therefore used the Java brand’s power to align
other companies implementations with the “write once, run anywhere”
strategy.

7.4.7 Accessorising

A variety of physical accessories accompany oss software, ranging from
books, manuals and documentation, to more ancillary items such as
T-shirts, mugs, and stickers (fuelled by the particular culture surround-
ing the oss development community). Companies obtain considerable
revenue from the sale of these items [94, 186, 243, 245]. A notable
example is the O’Reilly publishing company, which offers hundreds of
titles documenting oss software, and even hosts oss-themed confer-
ences, including the influential oscon Open Source Convention.

276 Business Models

7.4.8 Financial Support and Coexistence

Although this may not qualify as a business model in the strict sense,
oss projects are often supported by donations from other companies
that have adopted their products. Additionally, foundations such as the
fsf may support either oss projects or directly their programmers [77].

Corporations also directly sponsor oss projects, either in funding
or by contributing developers to work on the projects, or by releasing
previously closed code and encouraging their employees to work on it.
An example is ibm’s Eclipse software development environment, which
is still supported by ibm developers [244].

Finally, venture capital funds also exhibit considerable interest in
oss projects, especially following success stories such as Red Hat,
Netscape and others [103].

8
Adoption and Reuse

The licensing of OSS and the availability of its source code makes it a
very good reuse candidate in other software development efforts. Indeed
this is a regularly witnessed trend with the documentation of both pro-
prietary and open source software regularly containing acknowledge-
ments for a multitude of reused libraries and components. We discuss
the different types of adoption and reuse, and reasons, concerns and
criteria for effective and successful reuse.

8.1 Adoption vs. Reuse

We distinguish two levels of oss utilization within other organizations
and software development efforts: adoption and reuse.

8.1.1 Adoption

Adoption is a general term that refers to the strategic decision by a
company or organization to utilize oss software, either by introducing
oss products in its daily tasks, or by reusing (parts of) oss software
within its own products or packages.

277

278 Adoption and Reuse

In the first case it is not necessary for the organization to open, read,
and modify the code, because the organization only seeks to improve
the performance of its internal function by using open source software
instead of proprietary offerings (e.g., gnu/Linux vs. Windows, OpenOf-
fice vs. Microsoft Office, Inkscape vs. Adobe Illustrator, or Portgresql
vs. Oracle’s relational database).

In the second case, software companies reuse the code and the
artifacts of an open source software package in order to build a new
product. We refer to this with the more specific term of oss reuse.

8.1.2 Reuse

Reuse refers to a more specific case of adoption, where a piece of oss
is incorporated in a software vendor’s product, either as it is or after
modifications are made to it. So oss reuse is a more organic approach
to adoption, whereby the oss software being adopted is studied, under-
stood, and embedded in the new product. A goal of software reuse is
to reduce the amount of new software development [31, 111, 123].

The advantages and disadvantages of software adoption and
reuse must be considered before deciding whether to undertake this
task [230], as discussed in Section 8.2.

Software reuse has been examined and defined clearly within the
software engineering bibliography. In the case of open source software
it usually refers to the use of open source code within proprietary or
other open source software.

In terms of source code, the purpose of reuse can be either the
incorporation of the code in new software, or its use as a reference [228].
The size and granularity of the reused software can vary from lines of
code to functions, modules, or entire systems and applications.

We can categorize oss reuse into three types, according to the degree
to which the originating software is used, as-is, studied or modified.

Black-Box Reuse In this case the original software is used as-is, or
with very minor modifications [2, 230]. This may or may not include
source code, and it is similar to the reuse of other proprietary software.
The advantages of oss in this case include the zero purchasing and

8.2 Criteria for Reuse 279

royalty cost, the lower risk of vendor lock-in, and the ability to migrate
to other, more intrusive reuse models, should such a need arise. An
example of such reuse are the various applications distributed with
Linux-based netbooks.

Grey-Box Reuse Modifications of the code only take place at inter-
face level [2, 216], and may not involve but a small portion of the source
code. However a study and in-depth understanding of the code may be
required, which may involve a considerable investment, even for limited
modifications [230]. Continuing the previous example, some netbooks
ship with a Linux version enhanced with modules that support their
particular hardware features.

White-Box Reuse The inner workings of the reused software are
studied, and adaptations, customizations and bug fixes take place [230].
Notable examples of this reuse type are Juniper’s use of the Freebsd
kernel [151], and Google’s use of the Linux kernel [87].

8.2 Criteria for Reuse

Before deciding to reuse oss software within a proprietary software
product a careful consideration and study of the circumstances should
be carried out, with focus on the characteristics of the organization
that is considering to reuse the oss code, as well as the oss code itself.
Criteria that should be considered emerge both from theoretical and
empirical studies, and include the following.

Organizational Versatility involves experience and know-how with
oss software reuse [2, 25], existence of skilled IT personnel [50, 91],
the level of management support, formalization and strategic planning
[2, 91, 216], an ideological predisposition toward oss [2, 91] and avail-
ability of technical support [230].

Adequate Tool Support includes tools such as operating sys-
tems, databases, application servers, compilers, build managers and
integrated development environments, and version control manage-
ment systems compatible with the oss software to be adopted
(see also [2, 25, 111, 216]). Most tools used for developing oss are

280 Adoption and Reuse

themselves oss, so the main difficulty here is organizational resistance
toward their adoption.

Appropriate Development Standards Appropriate software
engineering and development standards and practices should be fol-
lowed to ensure safe and effective integration of the reused code into
an application. These may include visibility and accessibility of the
code repository, use of version control systems, peer reviews, issue
tracking, regression testing, use of various code quality metrics, train-
ing into new oss practices, and the use of oss development tools (see
also [2, 25, 216]). The aim of adopting these standards is to ensure that
modifications of the reused source code can be smoothly integrated with
the original source. Failure to back-port these changes creates a fork
between the reused code and the original source code version, which
increases the maintenance cost of merging the two brnaches over time.

Status of the oss Code to be Reused The status of the code
must be carefully assessed in terms of aspects such as

• reliability, maturity and robustness [2, 31, 230, 242],
• maintainability [20, 31],
• compatibility with the existing technology and skills [50],
• scalability [242] (to the extent that this is important),
• portability [111],
• functionality, with respect to the new product needs [111],
• security, availability and robustness [111],
• flexibility of interfaces and ability to upgrade [20, 31, 111],
• ease of installation and upgrade [2, 111, 196],
• interoperability and ability to run on other operating systems

or older hardware [91], and
• legality with respect to licensing and potential for patent

infringement [111].

8.3 Adoption Drivers

We distinguish and analyze four key drivers behind the adoption and
reuse of oss: strategic advantages, enhancement of development pro-
cess, product quality, and external factors.

8.3 Adoption Drivers 281

Table 8.1. Motivation and concerns regarding the reuse of oss within proprietary
software products.

Adoption drivers Concerns

Strategic
advantages

Reduced development cost
No proprietary lock-in
Reduced time to market
External support
Business opportunities

Switching costs
Locating the right oss
Licensing and legal

responsibilities
oss lock-in possible

Development
process

Dissatisfaction with other
products

Good oss development
practices

Community support

Non-standard processes,
knowledge barriers

Requires high expertise
Code coupling and

interconnection
Orphaned code
No time to market pressure

Product quality Functionality
maintainability
reliability
efficiency
portability

Quality variability poor
documentation

Code ownership and
accountability

Code quality assessment

External factors Successful projects
Need for transparency

Cost of experienced
personnel

Incentives for developers

These are discussed below, and also itemized in Table 8.1.

8.3.1 Strategic Advantages

The strategic advantages behind software adoption and reuse emerge
from various empirical studies including interviews, field studies and
surveys, as well as theoretical approaches and literature reviews, and
include the following.

Reduced Development Cost and No Licensing Fees oss is a
cheaper solution in terms of direct acquisition, upgrades and main-
tenance costs, and is a substitute for the development of new soft-
ware [2, 28, 50, 153, 164, 196, 230, 242].

Avoidance of Proprietary Lock-In As the source code is avail-
able, there is no risk of being locked into proprietary standards or
specific software or hardware platforms, and dependence on particular
software vendors is minimized [20, 28, 230, 242].

282 Adoption and Reuse

Reduced Time to Market Reusing software components signifi-
cantly reduces the overall development time [28, 98, 169]. This has also
been empirically verified in [2].

Availability of External Support Support can come in diverse
forms and at various levels, through the oss project community or
through support contracts for advanced versions of oss products [230]
(e.g., enterprise Linux distributions).

New Business Opportunities Many companies have embraced oss
and built business models around offering value-added services based
on such software [169].

8.3.2 Development Process Enhancement

The adoption of oss affects and enhances the entire development pro-
cess in various ways.

By incorporating oss source code, as well as the valuable coding and
development practices of well-engineered oss, including bug fixing [2],
peer reviews [196, 216] and collaboration procedures [164], a mediocre
development process can be greatly improved (Reference [216] advances
this view with examples from prominent oss projects.)

Additionally, by reusing code of choice, developers can work with
code they appreciate and feel comfortable with [98]. In fact many devel-
opers that reuse oss end up becoming contributors to the original oss
project from which the reused code originated.

Furthermore, the communities formed around oss projects can
be leveraged in the process of adopting and/or reusing the project’s
outcome [25]. The knowledge and experience of the community is trans-
fered to the commercial setting within which the new product is devel-
oped. Additionally, the oss community can be attracted to the new
development effort, to participate in discussions or even in the code
development itself with its large developer base [164], thus maintaining
the product up-to-date.

Finally the community may even be targeted as potential clients of
the resulting commercial product.

8.3 Adoption Drivers 283

8.3.3 Product Quality

As oss projects often go through an extensive period of maturation
before being a target for adoption [248], the code originating from them
can be of particularly high quality, thus giving additional value to the
proprietary product. Specific characteristics of interest include the fol-
lowing.

Advanced Functionality Often, the functionality provided by
reused components is more complete than what could be achieved by a
single company’s development effort. Having access to the source code
allows additional requirements to be fulfilled [91].

Code Security The open availability of source code allows us to
examine it and ensure that there are no dangerous bugs, viruses, or
other security holes, and modify it if necessary [164, 230]. It is found
that security breaches in oss code are usually fixed very quickly [196].

The peer review process offers additional reassurance, as do the
recognized good practices usually followed in oss development [2].

Customization The ability to customize oss offers additional flexi-
bility and allows changes, experimentations and freedom of choice [164].
Code that meets specific requirements can be reused and adapted
to achieve additional customer satisfaction [2, 169, 242]. The result-
ing software can then be redistributed within the oss community
for additional cycles of testing and feedback, thus improving it at a
minimal cost and resulting in better and more trustworthy software
[98, 230, 242].

Modularity and Granularity In oss development modularity and
granularity concerns are given a high priority. As a result it is also
possible to reuse code at different levels of granularity ranging from lines
of code to classes, methods, libraries or entire system, thus increasing
the opportunities for reuse [2, 216].

8.3.4 External Factors

Additional external factors that may favor the reuse of oss in
proprietary products include the showcase of successful publicly

284 Adoption and Reuse

recognized exemplars of software development within one’s prod-
uct [91], and a need for transparency, publicity of processes, and
security.

8.4 Concerns

Various concerns are involved with the decision to adopt and/or reuse
oss within an organisation. We group these into the same four cate-
gories. (See also Table 8.1 and the survey in [222]).

8.4.1 Strategic

Adoption of oss software might incur short-term switching costs,
often requiring a substantial investment. For example using a Linux-
based operating system for the first time may involve a steep learning
curve [196] and a considerable application porting effort.

Searching, analysing and integrating an existing piece of oss code
may actually turn out to be an equivalent task as writing it from
scratch [98], so the total cost of reusing code must be carefully cal-
culated [230]. The amount of experience with oss within the organi-
zation, including both technical and organizational skills will play an
important role [20, 50].

Additionally, the software itself may incur costs, e.g., enterprise
Linux distributions that include additional services and technical sup-
port are not free, nor are external consultants that may need to be
hired [230, 241].

A category of additional hidden costs must also be anticipated,
including initial procurement and maintenance [111], customization
and integration [153], personnel retraining [20, 230], data migration
to the new system environment and file conversion [20, 230] as well as
consultants cost [169]. A careful consideration of all these costs pro-
jected over a reasonable period of time must be done to decide whether
oss reuse is actually in the best interest of the organization.

The complexity and sheer number of different oss licenses also
present complications and perceived risk factors, as discussed in
Section 6. Restrictions imposed in a license may affect the ability of the
proprietary software to be extended, internally reused, or resold [241].

8.4 Concerns 285

The organization adopting the oss is legally responsible for ensur-
ing the license requirements are met, but may not have the technical
expertise for this [105]. It is therefore exposed to the risk of the owner
of the original oss claiming for damages or, more commonly, demands
for burdensome compliance measures, such as the publication of pro-
prietary code incorporated within a gpl-licensed product.

Another legal risk is the inadverted infringement of third-party
patents or intellectual rights, which may be included in the oss code
that is reused [196]. The oss licenses generally don’t provide indem-
nity from such claims. Dual-licensed oss may help overcome some of
the above issues, but it will require purchase of a license for use in
proprietary software [230].

Finally, although an advantage of oss is that it offers protection
from proprietary vendor lock-in, it is still possible to get locked-in
with an oss software choice [230]. For example, an organization bas-
ing its product on an enterprise Linux distribution and the relevant
services, support, and updates, may have difficulty switching to a dif-
ferent solution.

8.4.2 Development Process

In terms of the actual development processes followed by the propri-
etary company or organization, oss adoption or reuse may also be
subject to various issues.

The adoption and reuse procedures are not standardized [169]. Rig-
orous processes should be followed, including conscious searches in
online oss repositories, specific training of staff members or even hir-
ing of new staff with experience in oss, and the outsourcing part of the
adoption process. These are often neglected.

It is also argued that as oss projects pay less importance to strategic
planning and organization of the overall development effort [216] some
of the important project life-cycle tasks may be downgraded or skipped.
The availability of support for the reuse and integration tasks may often
not be correctly organized and available [169].

Another issue with the reuse of oss is that modifying the source code
of important software such as operating systems or applications servers

286 Adoption and Reuse

requires particularly mature and experienced programmers [230]. If
problems come up with the integration (e.g., the coupling and inter-
connection of different pieces of reused code may have undesired and
unexpected side-effects, if not done carefully [216]) the response time
and the organization’s capacity of dealing with them may be ques-
tionable. This is supported by the work of Meng Huang et al. who
designed an assessment framework and reported on a case study based
on it [111].

Establishing a long-term relationship with the oss community
behind the code that is adopted is definitely an important factor. Even
so, as found by an exploratory empirical study in [164], managers feel
that in case issues arise there is no safe mechanism or entity to under-
take the task of resolving them. It is possible, for example, that a piece
of oss that is reused ends up being abandoned or “orphaned” by the
original project (sometimes a result of forking [169]). In this case, the
code will not be properly maintained and will not evolve, or if it does it
may not be in a direction compatible with the rest of the project [216].

Finally, a critical difference between oss and proprietary software
development, as also discussed in Section 5, is that with oss the time
to market is not an important issue. As a result, a proprietary software
release may need to be indefinitely delayed until an important upgrade
or fix is completed within the original oss project whose code is reused.

Overall, there are still knowledge barriers to the safe reuse of oss
code. These affect issues such as searching for the appropriate oss
application whose code to reuse [169], assessing the maturity of an
oss package [230], transfer of knowledge and skills for bug fixes and
modifications, the lack of ability to adapt such code for legacy systems
and others. Still, Ajila and Wu, through questionnaires, surveys and
a literature review, found that these issues are not particularly more
severe in the reuse of oss compared to software reuse in general [2].

8.4.3 Product Quality

Regarding the quality and condition of the reused product itself, there
are concerns about oss documentation [164], which may not meet the
standards of the rest of the proprietary code.

8.5 Software Reuse Process 287

Open source software quality is considered to be often of a high
standard, but there can always be exceptions. It may not be easy to
assess which is the case [216], or to verify that there are no hidden
security flaws in large code bases, thus increasing the risk of secu-
rity problems [25], and this has significantly deterred companies from
reusing software, or only do so after extensive code review processes or
if a close relationship is established with the originating oss project.

Additionally, as mentioned in Section 8.4.2, orphaned code will not
be correctly maintained, and thus will be of poorer quality [216].

Finally, the ownership of the code being reused may sometimes
be difficult to determine, especially if it is licensed under a viral
model [216], making it difficult to hold someone responsible or account-
able for it. Furthermore, even though newer scm systems do permit
authorship identification at the source code line level, most oss licenses
include limitation of developer liability clauses.

8.4.4 External Issues

Other external issues that may adversely affect the decision to reuse
oss include the fact that in some cases there is not enough funding
to get the necessary support for adapting the oss to the needs of the
proprietary product [50], as well as the need to develop incentives for
the developers to engage in such a process [98]. In some cases the reuse
of code is considered by developers to be less rewarding than writing
in new code.

8.5 Software Reuse Process

The process of reusing a piece of oss within a proprietary software
product consists of the following four stages: decision, selection, inte-
gration, and assessment.

The factors that should be considered in the decision to reuse
oss have been analyzed in the above sections. Considerable additional
insight is offered in [159], which outlines a particular case of oss devel-
opment and reuse within HP, highlighting some of the relevant concerns
and how they were dealt with and overcome.

288 Adoption and Reuse

In the selection stage the appropriate software to be reused is iden-
tified through the following steps.

(1) Collection of high-level requirements and identification of
candidate projects [111, 123]. This happens through an anal-
ysis of the functional and nonfunctional requirements for
the specific software, and a comparison with various existing
oss projects. Other types of requirements may include cost,
hardware constraints, project status, maturity and popular-
ity, programming language and operating system (see also
Section 3 for indicators of successful projects). Then deeper
surveys involving the oss project repositories and community
will yield additional details about the project quality, size,
number of developers, submission and bug fix rate [153].

(2) The high level architecture and modularity of the candidate
projects is studied, to identify in which cases the particular
parts of interest can be effectively extracted for reuse [111].

(3) More detailed and low-level specifications are then laid out,
together with specific selection criteria [111, 123, 153]. Addi-
tionally, licensing concerns and interactions should be care-
fully considered [153], and the interdependencies between
software licensed under different license types should be
taken into account (see also [121]).

(4) A final selection of the oss project, and in particular of what
parts of it will be reused eventually takes place [31, 153, 228].

In the integration and implementation stage, the following four steps
are involved.

(1) The initial criteria and requirements are adjusted, if required,
based on the characteristics of the oss to be reused.

(2) The type and scope of reuse are determined, including the
degree to which the oss code will be modified (e.g., a selec-
tion between black, grey or white-box reuse). This decision
should take into account the risks involved and the match
between the requirements and the oss specifications [123].

8.5 Software Reuse Process 289

(3) The next step consists of implementation of changes,
improvements and integration of the oss code within the
product [31, 111]. According to the type of reuse there may
be a need to study and analyse the source code, and per-
form code modifications of different extent. In the case where
legacy systems are involved, experienced consultants may be
required to perform specific code adaptations [169].

(4) Finally the resulting software product will be subject to
proper maintenance and updates, including modifications in
system functionality, keeping the relevant documentation up
to date, debugging, restructuring, and conversion [153]. An
important part of this phase involves the contribution of
any changes made to the reused oss back to its originating
project. This integration effort, apart from being the correct
ethical choice, will also reduce the effort of future mainte-
nance.

At the end of this process the product status should be assessed,
including rigorous testing of the resulting artifact, evaluation of the
entire process, its cost and potential need for extensions, and validation
of the license status [123, 153].

9
Motivation

One of the aspects of oss that attracts a lot of attention is the fact
that it is a high quality public good developed for free by qualified
volunteer developers, individuals or organizations, and evolving at a
rapid pace. This is puzzling, because based on economic theory one
would expect such privately provided public goods to be stagnant and
of inferior quality [16].

In an attempt to explain the above phenomenon, the motivation for
contributing to oss projects has been the subject of many studies from
diverse scientific domains. In this section we try to summarize their
findings and present some of the relevant literature.

According to findings by various studies, contributing to oss is a
“private-collective” activity, meaning that even though the contributed
code becomes public, elements of it remain private property of its cre-
ator [235].

Table 9.1 summarizes the categories of motivational aspects that
affect the involvement of individuals and businesses or other organiza-
tions in oss efforts, and itemizes some of the more relevant bibliography
for each aspect. These are further analyzed and discussed in the fol-
lowing sections.

290

291

T
ab

le
9.

1.
A

ca
te

go
ri

za
ti
on

of
th

e
fa

ct
or

s
m

ot
iv

at
in

g
in

di
vi

du
al

s
an

d
or

ga
ni

za
ti
on

s
to

co
nt

ri
bu

te
to

o
ss

.
T

he
re

le
va

nt
bi

bl
io

gr
ap

hy
is

al
so

in
cl

ud
ed

an
d

gr
ou

p
ed

in
w

or
ks

in
cl

ud
in

g
th

eo
re

ti
ca

l
st

ud
ie

s,
em

pi
ri

ca
l
fin

di
ng

s,
su

rv
ey

s
an

d
re

vi
ew

s
of

th
e

sc
ie

nt
ifi

c
ar

ea
,
or

ot
he

r
ge

ne
ra

l
st

ud
ie

s.

R
el

ev
an

t
bi

bl
io

gr
ap

hy

C
at

eg
or

iz
at

io
n

M
ot

iv
at

in
g

fa
ct

or
s

T
he

or
et

ic
al

E
m

pi
ri

ca
l
st

ud
ie

s
Su

rv
ey

s
O

th
er

/g
en

er
ic

M
ot

iv
at

io
n

fa
ct

or
s

fo
r

In
di

vi
du

al
s

In
tr

in
si

c
(h

ed
on

is
ti
c)

E
nj

oy
m

en
t,

am
us

em
en

t
[8

8]
[1

09
,
13

8,
17

2,
20

4]
[1

38
]

[1
6,

21
3,

22
6,

22
7]

Fu
lfi

llm
en

t,
sa

ti
sf

ac
ti
on

[2
1,

88
]

[8
9,

10
2]

[1
02

]
Se

ns
e

of
sc

ie
nt

ifi
c

di
sc

ov
er

y
an

d
cr

ea
ti
vi

ty

[2
54

]
[1

38
,
20

4,
25

4]
[1

38
]

[4
6]

C
ha

lle
ng

e
[1

38
]

[1
38

]
[2

03
]

E
xt

ri
ns

ic
R

ep
ut

at
io

n
an

d
st

at
us

[8
8]

[1
09

,
89

]
[2

13
]

Si
gn

al
lin

g
in

ce
nt

iv
es

(c
ar

ee
r,

jo
b

op
p
or

tu
ni

ti
es

)

[2
2,

14
5,

14
6,

14
7]

[2
2,

89
,
10

9,
14

1,
17

2]
[2

13
]

F
in

an
ci

al
in

ce
nt

iv
es

an
d

re
w

ar
ds

[2
2,

14
5,

14
6,

14
7]

,
[2

2,
89

,
13

8]
[1

38
]

P
ol

it
ic

al
/i

de
ol

og
ic

al
A

nt
i-
co

m
m

er
ci

al
is

m
[2

2,
66

]
[2

2,
89

]
[2

21
]

H
ac

ke
r

cu
lt
ur

e
[6

6]
[5

,
18

6,
22

1]
A

dv
an

ci
ng

th
e

fr
ee

s/
w

m
ov

em
en

t
So

ci
al

Se
ns

e
of

b
el

on
gi

ng
(c

om
m

un
it
y

id
en

ti
fic

at
io

n)

[2
2,

88
]

[2
2,

89
,
10

2,
10

9]
[1

02
]

[2
21

]

A
lt
ru

is
m

[2
2,

21
]

[1
02

]
[1

02
]

C
on

tr
ib

ut
io

n
to

pu
bl

ic
go

od
[8

8]
[1

38
]

[1
38

,
23

5]
[1

2,
21

3]

G
en

er
al

iz
ed

re
ci

pr
oc

it
y

[1
1]

[1
01

]
[1

01
]

[1
6,

18
7,

25
7]

(C
on

ti
nu

ed
)

292 Motivation

T
ab

le
9.

1.
(C

on
ti
nu

ed
)

R
el

ev
an

t
bi

bl
io

gr
ap

hy

C
at

eg
or

iz
at

io
n

M
ot

iv
at

in
g

fa
ct

or
s

T
he

or
et

ic
al

E
m

pi
ri

ca
l
st

ud
ie

s
Su

rv
ey

s
O

th
er

/g
en

er
ic

T
ec

hn
ol

og
ic

al
en

vi
ro

nm
en

t
an

d
w

or
ki

ng
st

yl
e

L
ea

rn
in

g
an

d
sk

ill
s

de
ve

lo
pm

en
t

[2
2,

66
,
25

4]
[2

2,
89

,
13

7,
25

4]

C
om

m
un

it
y

co
nt

ri
bu

ti
on

an
d

fe
ed

ba
ck

[2
2,

21
]

[2
2]

[1
87

]

B
le

ed
in

g-
ed

ge
te

ch
no

lo
gy

[2
2]

[2
2]

[2
13

]
R

ea
lis

at
io

n
of

p
er

so
na

l
id

ea
s

[2
2,

66
]

[2
2,

89
]

[7
5,

18
7,

21
3]

U
se

r-
dr

iv
en

in
no

va
ti
on

[1
46

,
14

7]
[1

01
,
13

8]
[1

01
,
13

8]
[2

32
]

In
te

gr
at

io
n

of
in

di
vi

du
al

’s
fix

es
in

m
ai

nt
ai

ne
d

co
de

M
ot

iv
at

io
n

fa
ct

or
s

fo
r

B
us

in
es

s

P
ro

ce
ss

/p
ro

du
ct

A
do

pt
io

n
of

co
de

th
at

fit
s

co
m

pa
ny

’s
bu

si
ne

ss
m

od
el

H
ig

h
qu

al
it
y

co
de

[6
6]

[1
06

,
25

0]
[1

2,
13

4,
19

2]
C

on
tr

ib
ut

io
n,

fe
ed

ba
ck

su
pp

or
t

fr
om

O
S

co
m

m
un

it
y

[2
2]

[2
2,

10
6,

25
0]

[1
34

,
19

2]

St
an

da
rd

iz
at

io
n

[2
2,

66
,
14

6,
14

7]
[2

2,
10

6,
25

0]
Fr

ag
m

en
ta

ti
on

an
d

m
od

ul
ar

it
y

te
ch

ni
qu

es
[1

06
,
25

0]
[1

2,
13

4]

O
p
en

ne
ss

U
se

r-
dr

iv
en

in
no

va
ti
on

[2
2,

14
5,

14
6,

14
7]

[2
2,

10
6,

25
0]

[2
35

]
[1

2]
H

um
an

ca
pi

ta
l

im
pr

ov
em

en
t

[2
2,

14
5,

14
7]

[2
2,

10
2,

10
6,

13
8,

25
0]

[1
38

,
10

2]
[2

0]

A
do

pt
io

n
of

O
S

m
od

el
[2

2,
14

5,
14

7]
[2

2,
25

0]
[2

35
]

C
om

p
et

it
io

n
ov

er
vi

ew
[1

45
,
14

7]
[2

50
]

R
ep

ut
at

io
n

[2
50

]
C

om
m

er
ci

al
vi

si
bi

lit
y

[1
06

]
[2

0]
E

m
pl

oy
ee

sa
ti
sf

ac
ti
on

[1
45

]
[1

07
]

[1
2]

9.1 Motivational Aspects for Individuals 293

9.1 Motivational Aspects for Individuals

In attempting to identify what motivates developers to contribute to
oss projects, most studies focus on two types of motivating factors:
intrinsic (or hedonistic, including factors such as enjoyment, challenge,
and satisfaction) and extrinsic (mostly involving economic and sig-
nalling incentives). Additional factors uncovered are of a social, political
or ideological nature (participation into a community effort, or belief
in the oss movement and what it represents) as well as what the tech-
nological environment that oss projects are surrounded by may offer
an individual.

A general hypothesis that contributes to oss projects are merely
driven by generosity and altruism is challenged by economists [145].
As found in a survey-based empirical study of motivational profiles,
although altruism does play a significant role, it is not enough to explain
the phenomenon; other motives we mentioned come into play [48]. We
discuss these below.

9.1.1 Intrinsic

By intrinsic motivations, which have been widely studied in psychology
(see [138] and the references therein), we refer to those relating to sat-
isfaction of an immediate need, or pleasure from carrying out a spe-
cific activity [22]. These rewards can involve intellectual gratification,
a sense of aesthetic pleasure [21], or satisfaction of a basic need for
competence, control or autonomy [236].

Following are some intrinsic motivational factors for contributing to
oss that have been identified in the literature.

Enjoyment and Amusement Linus Torvalds characteristically
claimed that the main motivation behind programming for the Linux
project is fun [226]. The enjoyment factor has been found to be impor-
tant by other researchers [88, 204, 213, 227]. Various empirical studies
also back this statement, referring to an “innate desire to code” [102]
and concluding that hedonistic motivations are among the strongest
ones [16, 109, 138, 172].

294 Motivation

Satisfaction and Fulfillment oss programming has been described
as an artistic process providing satisfaction and fulfillment associated
with problem solving [21].

Sense of Scientific Discovery, Creativity and Challenge Simi-
larly, various studies identify as strong incentives the sense of scientific
discovery and the inherent creativity factor, as well as the challenge of
participating in a project together with many other highly skilled and
motivated programmers [21, 46, 138, 203, 204, 254].

9.1.2 Extrinsic

By extrinsic motivations we refer to those that are satisfied indirectly,
and usually through financial or monetary compensations [22]. An
example of this indirect fulfillment would be a programmer contributing
to an oss project so as to gain visibility or better reputation within the
community, in the hope that this will lead to better job opportunities.

Following are examples of extrinsic motivational factors according
to the literature.

Reputation and Status As described in the preceding exam-
ple, programmers have various reasons to project and increase their
reputation and status within the professional community [88, 89, 109,
213]. Participation in successful, and often high-profile oss projects are
excellent media to achieve this, as they provide high visibility into the
programmer’s work, style, performance, and achievements.

Signaling Incentives Participation in an oss project may be driven
by career concerns. Developers may use this approach to signal their
availability and skills for potential job opportunities [22, 145, 146, 147,
176]. Another category of signalling incentives relates to the developer’s
ego gratification that results from peer recognition of their work, in a
way similar to the intellectual gratification that motivates members of
the scientific community [11, 14, 21, 46, 120].

Financial Incentives and Monetary Rewards There are various
ways in which participation in oss projects can lead to financial gain.

9.1 Motivational Aspects for Individuals 295

As open source technologies are widely used and taught in universities,
graduate programmers are likely to continue using them, due to their
lower costs (the so called Alumni Effect [146, 147]). Additionally, par-
ticipation in an oss project benefits from bug fixes, customizations and
extensions contributed by other members. This can offset the cost of
one’s own contributions to the project. And monetary rewards can also
be directly reaped from this activity [22, 89, 138]. Reference [136] pro-
vides an in-depth description of the way in which financial incentives
(among others) influence and motivate oss developers by incorporating
both intrinsic and extrinsic elements in an integrative theory about oss
developer motivation.

9.1.3 Political and Ideological

Participation in oss projects can also be the result of one’s political,
ideological or cultural beliefs. For example oss entails an expression
of anti-commercialism [22, 61, 66, 89, 221], while there is also a clear
cultural element shared within oss communities (the “hacker culture”)
[5, 61, 66, 185, 221]. At the same time, it can also be a statement belief
in the free software movement, and an active attempt to advance it.

9.1.4 Social

If we consider oss as a social movement, we can adopt another perspec-
tive for studying the incentives to participation in oss projects [239].
The following types of motivations can be identified.

Altruism Contribution to an oss project has a clear altruistic ele-
ment. Various studies provide evidence of this, including empirical work
contrasting the outcomes of a phone survey of various firms regarding
their motivations for participating in oss projects with an earlier study
of individual respondents [22], a study that identified the prominent
motivating factors based on classical theory as well as empirical stud-
ies [102], and a paper discussing key economic problems of oss based
on theory and a proposed simulation model [21].

296 Motivation

Sense of Belonging and Contributing to a Public Good Com-
munity identification [22, 88, 89, 102, 109, 221] is a widely accepted
motivating factor. As concluded in a Linux-based study [5], it involves
elements such as participation in a collective effort, social interac-
tions and group influences. Other factors include a consciousness of
connecting with other members, shared rituals, a sense of duty, trust
and loyalty toward the community, and contributing to a public good
[5, 185, 205, 213, 221].

Generalized Reciprocity Also referred to as “gift giving” [187], it
involves relationships forged through mutual reciprocal actions, similar
to relationships within families [257] or academic societies [11].

9.1.5 Technological Environment and Working Style

oss projects are typically characterized by the formation of highly moti-
vated and skilled communities of developers and a technologically chal-
lenging and exciting environment. This is found to be an important
motivating factor for participating and contributing to such efforts, for
various reasons.

Learning and Skills Development Achieved through interaction
with other members, examination of other developers’ code, and the
open and transparent oss development processes [22, 66, 89, 137, 254].

Community Contribution and Feedback The ability to recip-
rocally interact on a technical level with other project members
[21, 22, 187].

Working with Bleeding-Edge Technology Exposure to state-of-
the-art technologies and inventions that would otherwise be hard to
come across in such an open way, if at all [22, 213].

Realization of Personal Ideas The oss project environment allows
the implementation and realization of bigger goals and aspirations than
would otherwise be possible [22, 66, 75, 89, 187, 213].

9.2 Motivational Aspects for Businesses 297

User-Driven Innovation Direct interaction with users, and imme-
diate integration of their needs into the various development phases is
an opportunity offered by oss projects [101, 138, 147, 232] that may
be hard to get in a larger software development house where engineers
are often shielded from customers through multiple layers of support
personnel.

Integration of Individual Fixes By submitting one’s fixes and
improvements to an oss project, these become integral parts of the
maintained source code and will therefore be available in future releases,
to both the contributing individual and others [213].

9.2 Motivational Aspects for Businesses

Several of the motivations for individuals may also apply in the case
of businesses or other organizations that contribute to oss software
projects. We examine separately motivations pertaining to the software
development processes and the resulting products, and motivations rel-
evant to the open nature of oss projects.

9.2.1 Process and Product

The development carried out within proprietary software firms can be
enhanced and enriched through participation in oss projects in several
ways.

Contribution From the oss Community The feedback and sup-
port received from the oss community can be highly beneficial to the
software production process, which is typically more closed and isolated
within proprietary vendor firms [22, 45, 106, 134, 192, 250]. Specific
benefits include peer review, reduction of effort duplication, utilization
of existent modules, and access to talented developers.

Modularity The product’s design and effort allocation can be
improved by taking advantage of the extensive modularity approaches
used in oss projects. This is evidenced in numerous literature reviews,
survey studies, software provision models, case studies and related anal-
yses [12, 106, 134, 250].

298 Motivation

Code that Fits the Company’s Model A business may contribute
to an oss project in order to adopt some code that fits their business
model. The fit may concern factors such as code functionality, quality,
cost, licensing, and competition. In start-up or research intensive com-
panies, additional motivations such as lowered entry barriers and fast
product development seem to play a significant role [96]. Examples of
this include Apple1 basing their Mac OS X operating system on oss
projects such as Freebsd, gcc2 and WebKit3; TiVo4 using Linux for
their dvr; and Juniper5 basing their router software on Freebsd.

9.2.2 Openness

Additional motivation for the business and its employees stems from the
open nature of oss projects. Specific motivational factors may include.

Commercial visibility and reputation is gained by participating
in oss projects [20, 45, 106, 250]. For instance, Sun (now part of Oracle)
gained tremendous goodwill from the oss community and developers in
general by open-sourcing the Java platform and the Solaris operating
system.

Competition knowledge can be gathered through the project com-
munity or by observing other companies that participate in the same
projects [145, 147, 250].

Adoption of the oss model and ideas may significantly
improve the processes and working environment within a business
[22, 145, 147, 250].

Human capital improvement Participation in oss projects can
have a beneficial effect on the employees [12, 20, 22, 102, 106, 107,
138, 145, 147, 250]. The same motivations that were examined for the
case of individual developers will, to a certain extent, also apply here.

1 http://www.apple.com/
2 http://gcc.gnu.org/
3 http://webkit.org/
4 http://www.tivo.com/
5 http://www.juniper.net/

9.2 Motivational Aspects for Businesses 299

Employees that take initiatives will experience recognition by the other
members of the project community [107], restrictive managerial atti-
tudes will be softened and programmers will be working in a more
intellectually stimulating environment [145].

User-driven innovation The active involvement of users through-
out the various phases of the project evolution is a particularly
important advantage for software vendor firms [12, 22, 106, 145, 147,
235, 250].

10
Impact and Outlook

The impact that oss has had both on the software business, but also
on society as a whole, at a local and global scale, is undeniable. For
example science and education, developing countries, and the youth
of our societies have all been positively affected by oss directly or
indirectly.

It is interesting to examine how oss and its main characteristics
are aligned with many of the current global challenges faced in differ-
ent fields and disciplines, and how it can be applied to help provide
potential solutions.

It is also worth delving into the outlook for oss, both in terms of
what its future might hold, and in terms of identifying the research
directions that some of the main concerns currently voiced around it
might open.

10.1 Impact on the Software Industry

Various aspects of the impact of oss on the software business and
market have already been discussed in other sections of this survey.
Overall, it could be argued that oss has “broadened” the software

300

10.1 Impact on the Software Industry 301

industry by significantly reducing entry barriers for both individuals
and companies, introducing a healthier form of competition, reducing
the possibility of market monopolizing and forming globally distributed
software production communities. The free and open licensing of oss
has played a very big role in fuelling these changes [96].

The emergence of a multitude of open, widely distributed and
exciting oss projects has allowed new (as well as experienced) devel-
opers and IT practitioners to enter the world of innovative software
production, develop their skills, exchange ideas, showcase their capa-
bilities and become parts of a vibrating software industry [219]. This is
to a large extent made possible through the transparency and accessibil-
ity of almost all the information about the resulting software artifacts,
including source code, past versions, recorded issues and communica-
tions, documentation, development roadmap and tools.

At the same time oss has provided the opportunity for small firms
to enter the market with lower costs, barriers and risks, by utilizing
or building on applications, operating systems and utilities that are
founded on oss and made available through a relatively low invest-
ment [74, 245]. Such firms will in turn offer employment to IT profes-
sionals, possibly including some who originated from the development
communities that supported these same oss products.

New software development models, technologies and infrastruc-
tures for collaboration, design and modularization patterns, and con-
current development and debugging processes have emerged from
oss, and are changing the commercial software development scene
[72, 216, 244, 245]. This rapid spread of ideas from the oss world has
reached the proprietary software domain as well [219]. Software vendors
carefully follow these developments, and many opt to either embrace
similar methodologies, or keep very close ties with the oss domain, for
practical or strategic reasons.

With the appearance of many dominant oss products in most areas
of software, including applications, operating systems, infrastructural
and middleware software, which are available at a very small cost, mod-
ifiable and adaptable, a new skill for IT professionals is the ability to
monitor and search the oss repositories to identify, combine and work
with these products [219].

302 Impact and Outlook

Global competition within the software industry has also been sig-
nificantly affected by oss. One example is the introduction of a new
type of firm in the market that focuses on the packaging, distribution
and support of oss products (see also Section 7.3). oss also offers an
effective anti-monopolistic defence, and allows the software industry to
move away from a model based on proprietary software lock-in [74].

Due to its licensing characteristics and low cost, many hardware
vendors also increasingly prefer to ship their products with embedded
oss. For example various consumer electronics and telecommunications
firms increasingly use the Linux operating system or other oss in their
products [74, 96, 237].

The oss approach of full transparency and distribution of digital
archives can also help in preserving software artifacts in the future. By
covering the basic requirements of digital preservation systems [194],1

oss has the potential of preserving the current state of the art in
software engineering for future study [112]. Indeed, at the moment
researchers can dig into publicly available software archives dating as
back as mid-1980, whereas binaries from the same era are barely exe-
cutable on current computers.

Finally, we have reviewed in considerable detail in Section 7 and
summarized in Table 7.1 the entire ecosystem of different types of com-
panies that formed around oss, and the different business opportunities
and models that are emerging.

10.2 Impact on Society

In order to examine the impact of oss on society, we focus on three
important, dynamically evolving and changing sectors of global society:
the youth, science and education, and the developing countries.

10.2.1 The Youth and Teaching

In today’s modern society, free and easy access to information is of
paramount importance in the development of skills and knowledge,

1 Linus Torvalds humorously quoted on the subject:“Only wimps use tape backup: real men
just upload their important stuff on ftp, and let the rest of the world mirror it.”

10.2 Impact on Society 303

in particular for the young. oss has undeniably helped underpin the
spread of the internet with technologies such as web servers, browsers,
and messaging technologies [219]. These technologies have become a
part of the youth’s everyday lives, and allow them to search for infor-
mation, connect with others and join communities. By engaging in such
collaborative activities, cultural divides are torn down, prejudices are
abandoned, and a real global identity can be achieved [219].

The low cost and free availability of many oss educational applica-
tions also allows them to be used in schools and in teaching without
requiring large funds or resources. These provide access to many online
repositories of learning material that are openly accessible to all (one
example being mit’s Open CourseWare Initiative).2

For young people with special interest in software, or aiming to enter
the software industry, oss provides great opportunities for developers or
entrepreneurs, regardless of one’s geographic location. A track record of
one’s contributions to projects, and participation in oss communities
can become a substitute for a CV. The knowledge, information and
skills that flow inside oss project communities and can be accumulated
through participation are immense, rendering them “a complete new
kind of learning platform” [141].

The culture of oss projects, and the acceptance of new contribu-
tors to their communities further facilitate learning. The access to oss
source code makes this software particularly appropriate for teaching
in technically oriented classes. Even if students are not skilled enough
to make contributions to a project, they can learn from it by examin-
ing and studying it (reading other’s code is a strongly recommended
practice for developing programming skills [208, 211, 213]). Addition-
ally, organizational and project management models that are associated
with running oss projects can be studied through observation.

Finally, oss is the distribution mechanism and driving force behind
many innovative and successful educational initiatives. These include
the Scratch3 and EToys4 programming environments for children, the

2 http://ocw.mit.edu/
3 http://scratch.mit.edu
4 http://www.squeakland.org

304 Impact and Outlook

Processing5 platform for creative artists, and the One Laptop Per Child
initiative [132].

10.2.2 Science, Engineering, and Research

The philosophy of sharing and open cooperation is not only a key ele-
ment of oss projects and initiatives. Science, research, and engineer-
ing are areas where widespread collaboration on large and complex
projects and tasks are inherent and necessary. The open source model
of innovation can be applied in these areas as well, in fields ranging
beyond software development, such as social sciences, life sciences, and
biomedicine [240].

In fact, it is argued that the oss approach can be compared to
the way research is conducted in the scientific and academic commu-
nities [129]. In both communities strong norms apply regarding the
respect for and importance of knowledge and recognition of contri-
bution, and the need for public validation of scientific or engineer-
ing results (as in peer reviewing). Similar intellectual property regimes
apply to both worlds, and members of both communities are primarily
rewarded through the dissemination of their work, the resulting status
and prestige gains, the learning experience, and ultimately the fun of
it, rather than being motivated mainly through monetary incentives.
Finally, in both domains virtual collaboration within large distributed
teams is a fundamental element.

Another interesting observation is that work in both oss develop-
ment and science and research are financed through similar processes.
In many cases in science individual researchers will become interested
in a particular subject and conduct work that is not directly financed
through their main projects [237]. Similarly, as has been discussed, a
large percentage of oss developers are at the same time employed by
firms working on different projects.

As discussed in a literature survey of oss characteristics that pro-
mote research [237], these similarities open up opportunities for dialog
between members of the two communities. Although the fundamental

5 http://www.processing.org

10.2 Impact on Society 305

goals and questions may vary, the shared creative process and rules are
similar. Observing oss development can therefore make more apparent
the corresponding strengths or weaknesses of the scientific process, and
help improve it.

Another important impact of oss to the research and academic
community is the availability of very large repositories of data [161].
This data can be of different sorts including source code, mailing lists,
bug reports, technical communications, user feedback, and version con-
trol repositories. All this information is very valuable to researchers,
as it allows them to study technical, organizational, or behavioural
matters (e.g., millions of lines of source code, specification documents
and technical exchanges, topics of discussions, people’s influence on
the development process, decision making and coordination, conversa-
tional protocol etc.) [237]. These repositories can be searched and data
retrieved based on recent advances in data mining technologies can be
analyzed both qualitatively and quantitatively to reveal new informa-
tion useful in fields as varied as engineering, sociology, and economics,
to name but a few [252].

Finally, the use of oss in research and academia allows progress to
be made in spite of scarcity of funds, and quicker results to be produced
by using oss tools. A couple of recent examples of oss projects that
are applied to research include the moses6 oss toolkit for statistical
machine translation, the IntAct7 oss database and software suite for
modeling, storing and analyzing molecular interaction data, and the
OpenStack8 oss Cloud computing system and the r-Project9 statistical
computing platform.

10.2.3 The Developing Countries

Developing countries have a great percentage of the world’s brain
power, yet only enjoy a very small share of the world’s technological
innovation [129]. oss is considered to be a solution for bridging the
digital divide between the most advanced countries and developing

6 http://www.statmt.org/moses/
7 http://www.ebi.ac.uk/intact/main.xhtml
8 http://www.openstack.org/
9 http://www.r-project.org

306 Impact and Outlook

countries that still face massive economic, social and infrastructural
challenges. Being generally free and easily accessible, oss is attractive
for all types of users, ranging from home users and schools to busi-
nesses and governments, especially in challenged environments where
funds and resources are particularly scarce. As an added bonus many
oss offerings require fewer computing resources than their proprietary
alternatives, and can therefore run on older or cheaper hardware.

In such economies and conditions, locking institutions into propri-
etary software that charges, or may in the future start charging license
fees is not feasible. With oss it is possible to train professionals to use,
modify and maintain the software they need to perform their profes-
sional, educational or everyday tasks, due to its openness and availabil-
ity of the source code [237].

The distributed development model of oss also allows people in
developing countries to participate in and learn from such projects,
without the need to relocate to other parts of the world, as would
be typically required in order to work in a large software firm (an
effect labelled the “brain drain,” whereby educated people are forced
to abandon their home countries in search of employment and career
opportunities elsewhere in the world) [219].

For developing countries to evolve and benefit from current tech-
nological advances, a community of trained local professionals must
be formed and supported. Outsourcing opportunities offer considerable
employment currently, but this is not enough [219]. The oss approach
is well suited for empowering the software development and research
communities of developing countries.

A particularly interesting case of the application of oss to serve
the needs of developing countries is the olpc (One Laptop Per Child)
initiative [132], which based the development of the XO, a very low
cost portable computer on the choice of the Fedora Linux operating
system and the Sugar graphical user interface. The XO was developed
with the key concepts of learning, openness and collaboration in mind.
The use of the Linux/Sugar oss solutions allowed its production cost
to remain minimal, and upheld the open source ideology. Indeed this
project’s technology proved to be a potential threat to the PC industry
in emerging markets.

10.3 Tackling Global Challenges 307

10.3 Tackling Global Challenges

The oss philosophy adheres to principles that reach beyond software
development and the IT domain, and revolve around openness and
collaboration at a global level. These principles are particularly relevant
and applicable to many of today’s global challenges and problems, and
the oss approach can be part of the process of tackling these challenges
and making progress that will potentially lead to an improvement at a
global scale.

The effects of globalization are widely observed, and its impact on
education and universities is seen in numerous collaborative projects
and exchange programs. Concepts such as e-learning and collaborative
learning have attracted a lot of attention within science and educa-
tion [219].

Methods for distributed organization and division of labour at a
global scale have also been developed [129], and oss projects have a
lot to offer in this domain. Indeed, the results of research performed
on oss has been of interest to fields as varied as social sciences, eco-
nomics, anthropology and computer science [237]. The oss development
approach thus bridges interdisciplinary barriers in both the research,
engineering and organizational context.

With global scale implementations and infrastructures in fields
such as telecommunications and networking, medicine and biology,
e-government, and transportation, oss projects can provide an orga-
nization method that is based on open tools, active participation of
a large community of developers and users, transparency of processes,
innovative governance structures, better services and a fresh mental-
ity [165]. In particular, processes including coordinating the flow of
information, tracking and resolution of issues, allocation of tasks and
responsibilities, and handling the difficulties inherent in the manage-
ment of widely distributed efforts can be copied from those used in
large oss projects.

The oss model is also of particular importance as it provides an
example for how a public and openly available good, namely the infor-
mation contained within oss projects and their artifacts can give rise
to profitable commercial investments [129]. We have examined in this

308 Impact and Outlook

survey the various business models and ecosystems that surround such
oss efforts in Section 7.

The entire software market has been influenced at a global level as
a result of oss (see our discussion in Section 10.1), affecting issues of
monopoly, competition, and market placement.

oss has also been found to harness a quality-enhancing demand-
side learning approach [27], whereby through close interaction with
user communities, and more frequent development and release cycles
that allow constant testing, incentives are provided for user groups to
report problems or request new features. This approach, which relies on
opening the source code and providing the software with no licensing
costs, has been found to be more beneficial than other, conventional
cost-reducing approaches in the market. Given the global financial chal-
lenges we are faced with, the oss experience can clearly be leveraged
in other domains as well.

10.4 Concerns, Research, and Outlook

Although oss has the advantages and positive characteristics discussed
in this survey, it is by no means a panacea for all problems faced in the
software production process. First of all, not all software projects are
amenable to open-sourcing. Projects that contain intellectual property
of very high value, or projects with very case-specific code that is not
reusable, are unlikely candidates. The same is true for products based
on an arcane technology or addressing an application domain that is
unlikely to attract oss enthusiasts.

In the cases where open-sourcing is a potential approach, there is
still plenty of room for improvement.

10.4.1 Concerns

Various concerns have been voiced around the oss methodology and
philosophy, some of which have alread been already discussed in this
survey.

Usability Issues It is considered that not enough attention is paid
to usability in oss projects [104]. One potential reason is that oss

10.4 Concerns, Research, and Outlook 309

developers focus more on the functional characteristics of their code,
rather than the user interfaces and usability, and that they are often
not educated or trained to deal with usability and human-computer-
interaction matters [30].

Indeed the most successful oss projects include software used by
people with experience in IT, such as operating systems, libraries, com-
pilers and shell applications, which require less training.

Often the oss project development teams have no access to usability
experts to consult or usability labs to run experiments on, resulting
in minimalistic or unpolished user interfaces [171, 219]. Additionally,
usability design should take place from the beginning, and it is a task
that is difficult to distribute [171].

The situation seems to have improved in recent years, however,
especially as the result of high-profile user-oriented projects such as
word processors (e.g., OpenOffice) and web browsers (e.g., Firefox).
Moreover, there is also an emerging trend in oss projects, especially
those working on desktop applications, to employ usability experts in
user interface design. The current versions of both leading oss desktop
environments (gnome and kde) feature human–computer interaction
guidelines while reusable interface elements have been designed
by professional graphics artists, leading to more consistent user
experience.

Potential solutions include involving usability experts, educating
developers around usability issues, academic involvement (where con-
siderable research in usability and human–computer-interaction takes
place), and more active participation of users. The links between
users and developers should also be reinforced with better commu-
nication tools that will allow the description and tracking of usability
problems [171].

Licensing Complexity As we have discussed in Section 6.5, the
large number of oss licencing options, and the risks of combining them,
pose challenges to developers of software applications.

The need for a good understanding of the legal implications of incor-
porating oss code within proprietary applications is increasingly impor-
tant, and software practitioners are becoming aware of it and looking

310 Impact and Outlook

for methods to address this [85, 105]. Furthermore, oss supporters are
increasingly enforcing the software license’s requirements.10

The Problem of Commons There is a clear gap between the pub-
lic and open nature of oss software and the private and competitive
practices of proprietary software firms. The same distinction is found
between academic research in various fields, and the private enterprises
that secure property rights on the resulting ideas and innovations [129].

The right balance needs to be found between the openness of oss
and the protectionism of private firms. This requires reconsidering the
practices of intellectual property rights management to find the opti-
mum balance between software developers’ incentives obtained by gain-
ing exclusive rights to their work and society’s benefit through the
proliferation and wide sharing of innovations [107].

An additional topic of debate concerns whether software patents
should be allowed, and to what extent. Advocates of patenting software
argue that it is a necessary means of enforcing a property claim and
protecting an invention, so that its owner can extract an economic
return from it, and it thus promotes innovation and development [129].

On the other hand, organizations such as the Free Software Foun-
dation, have taken a strong stance and have been campaigning against
software patenting, stating that it hinders and undermines the free soft-
ware movement [26, 51]. Some of the arguments include the fact that,
contrary to copyrights, patents cover ideas and their use, and not the
details of specific implementations [83], and thus constitute an abso-
lute monopoly against using a certain idea, even if developers could
prove that they independently invented it. Additionally, the duration
of patents, which is of the order of 20 years, is very long for the soft-
ware field. They further argue that the quality and scope of patents is
sometimes inadequately evaluated, leading to trivial patents covering
obvious inventions [13]. Finally, they contend that the financial cost of
obtaining a patent, investigating prior art (even a small program can
cover hundreds of patentable ideas), or defending one’s self or orga-
nization against a patent dispute is prohibitively large [51, 83, 101].

10 See e.g., http://www.gpl-violations.org/.

10.4 Concerns, Research, and Outlook 311

In an attempt to fight software patents, the 2007 revision of fsf’s gpl
(gplv3) includes language that forces distributors of gpl code to license
their patents practiced by the code to the software’s users, thus hinder-
ing attempts of patent holders’ to collect royalties from gpled software
users [217].

Motivational Issues The motivational factors for developers con-
tributing effort to oss projects have been examined in Section 9.1.
Sometimes these factors are not strong enough, and developers can
drift out of the project communities and stop contributing [204, 240].

Interestingly the project’s licensing decisions, as well as the partici-
pation of developers in the key project decisions are strongly correlated
with the project’s success, and the link seems to involve additional moti-
vation for the developers to continue contributing to the project [203].

Forking Danger The danger of forking has been discussed in several
places in this survey. The risk is for a part of code (that could be
embedded in another application) to remain stagnant and unsupported.
This risk is not as pronounced in proprietary software, where market
pressures force the firm’s management to closely monitor and direct
the decisions of developers [240].

10.4.2 Research and Outlook

The field of oss has attracted a lot of attention, and research addresses
practically all of its aspects, including technological, social, managerial
and economic.

A taxonomy of oss research and frameworks for performing empir-
ical studies has been proposed [124, 182]. The research however is still
at an evolving stage, with some aspects receiving more attention than
others. Research methods used so far include case studies, surveys and
quantitative studies, but combination of these would yield more sub-
stantial results [223].

Although oss project data is easy to acquire and analyse, there is
not yet a lot of insight on characteristics such as quality, innovation,

312 Impact and Outlook

and evolution [223]. Additionally, the complexities of mining this data
are considerable and the dangers of misinterpretation are present [168].

We try to identify some of the more active areas of research and
evolution based on current literature, and discuss the direction in which
they may lead the future of oss.

Incentives for Contributing to oss Projects A deeper under-
standing of what motivates developers to participate and contribute to
oss projects would be useful [5, 240]. There are various open questions
that could be investigated.

What role do the project’s characteristics and various rewards play
in motivating developers? How much does the project’s quality and
(current or expected) success affect this? How does this choice weigh
with respect to contributing to a proprietary software project [60]?

What are the dynamics of the average developer’s role within an
oss project community? How does their attitude change over time,
and how does this affect the project’s sustainability?

What is the role of software firms in this equilibrium, what are their
experiences with participation in oss initiatives so far [107]? As the
participation of firms becomes more important, could there be a new
mix of incentives, combining the participation in the oss project with
the impact of this on the employee’s career within the firm [190, 240]?

Is there some correlation between the motivation to participate to
an oss project and the project’s license type? Do the economic effects of
the license choice affect the developers’ choice of project to participate
in [203]?

Licensing As we discussed in Section 6.5 the multitude of oss
licenses and their combination as oss is reused in other products poses
various challenges and risks.

The way in which this interdependence and combination of licenses
evolves needs to be analysed, and the weaknesses and limitations of the
current licenses will need to be addressed and possibly new licensing
types developed to simplify the current situation [180].

The effects of the licensing choice on the reuse of oss code in
proprietary projects also needs to be analzsed, and the specific factors

10.4 Concerns, Research, and Outlook 313

related to the license that affect the adoption and reuse of the oss
code need to be identified and studied [98]. Automatic tools that are
already considered for consistency checking between licenses of cloned
oss software [86] may need to evolve.

Reuse The reuse of oss software into other projects has become an
increasingly common activity. Still there are questions about the effi-
cacy of and requirements for successfully reusing oss software, as well
as concerns about how practical and advantageous it really is.

Research on the issue of oss software reuse could identify different
aspects of this practice such as what types of projects are more likely
candidates for reuse and what individual or organizational characteris-
tics affect this; whether the frequency of a specific component’s reuse
could be predicted based on its properties, such as functionality and
quality; what are the main motivations for reusing oss software; and
finally, what is the cost to an oss project of building reusable compo-
nents, and how this cost is distributed [98].

Community The properties of oss project communities and their
counterpart commercial software development workforces should be
studied both independently and comparatively. The goal would be to
identify how innovation is carried out in both contexts, how they can
mutually benefit from each other through joint efforts or the exchange
of results, and what the implications of this may be toward extending
the theory of private-collective innovation [98].

As more and more developers from private software firms actively
participate in oss projects, it would be important to investigate how
this affects the two, and whether a hybrid form of community may be
emerging. If so, would this be incompatible with the oss principles,
and would it hinder the oss processes? Or could it be a positive devel-
opment that may lead to more strategic partnerships, strengthened at
the community level?

As the effectiveness of software production depends on the quality
and characteristics of the underlying communities of developers, such
information would be very valuable both for the oss projects and the
firms that form relations with them [53].

314 Impact and Outlook

Business Aspects At the business level, oss and proprietary soft-
ware products are generally in competition. However we have discussed
in Section 7.4 there are also cooperation opportunities between the
two [240].

The result of these hybrid efforts (labelled as second generation
oss, or ossg2) offer important added value propositions to their cus-
tomers. However this is still an evolving model, undergoing continuous
adjustments, and new models are expected to emerge blurring the lines
between the two worlds even further [244].

The motivation for moving from proprietary to oss regimes may
also be the subject of future research [250]. The ability to evaluate the
performance and outcomes of such joint efforts, including methodolo-
gies and tools, will be very valuable [192].

The type of licensing of the oss software will clearly determine to a
large extent whether such cooperations may be feasible, and how open
their outcome must be. The implications of this on the competitive
placement of the resulting product is also an area where research could
produce valuable results [142]. Automated tools for assessing copyright
attributions and code ownership by companies engaged in oss projects
would also be of interest to the industry [192].

Finally it is argued that involvement in oss projects has many sim-
ilar characteristics with outsourcing, for example the choice of what
part of the product to develop and what activities to perform inter-
nally, and what to outsource (or open-source). It would thus be inter-
esting to compare these two practices and study their similarities and
differences [250].

Overall, the oss principles and practices represent a trend toward
democratizing innovation and creativity, by empowering users to con-
tribute and evolve through the openness of projects outcomes and
communities alike [233, 234]. The full breadth of social and economic
impact that can be achieved through their application in all the fields
we have examined remains to be seen. However, there is an important
opportunity to employ, adapt, or explore the applicability of the oss
principles in each field’s research agenda [237].

Open source software is part of a paradigm shift in the way we build
complex artefacts, divide our labor, organize sophisticated endeavours,

10.4 Concerns, Research, and Outlook 315

and handle supply-chain relationships. Although it is unlikely that oss
will become the only, or even the main, game in town, there is plenty
of evidence indicating that practitioners and researchers can benefit a
lot from its study and use.

Acknowledgments

We would like to thank Vaggelis Giannikas, Vassilis Karakoidas, and
Dimitris Mitropoulos for comments and suggestions on earlier drafts of
this work. We are especially thankful for the feedback of Panos Louri-
das, who performed this survey’s internal review. Furthermore, we are
grateful to Charles Corbett, Uday Karmakar, Thanos Papadimitriou,
and Konstantinos Psounis for their role in setting this paper in motion,
and to Zac Rolnic for nurturing it to completion. We would also like
to thank the anonymous reviewers for their insightful comments and
suggestions.

316

A
Representative Applications

Following is a collection of some notable oss applications, categorized
according to their type. The selected applications include some of the
most popular ones (in terms of downloads from the SourceForge.net
site), some of our personal favorites, as well as some that we selected
as representative examples from diverse categories. The selection is by
no means objective.

A.1 Systems Applications

A.1.1 Operating Systems

GNU/Linux is a family of free, popular Unix-like computer oper-
ating systems using the Linux kernel, running on a variety of com-
puter hardware, ranging from mobile phones, tablet computers and
video game consoles, to mainframes and supercomputers. http://www.
linux.org/

FreeBSD is a free Unix-like complete operating system descended
from Unix cleaned from the at&t code via the Berkeley Software
Distribution (bsd). Generally regarded as reliable and robust. Focuses
on performance and the x86 platform http://www.freebsd.org/

317

318 Representative Applications

NetBSD is a freely available open source version of the Unix-
derivative Berkeley Software Distribution (bsd). Still actively devel-
oped, the Netbsd project focuses on high quality design, stability,
portability and performance. http://www.netbsd.org/

OpenBSD is a 1995 fork of Netbsd, focusing on security, portability,
standardization, code correctness, and quality documentation. http:
//www.openbsd.org/

Xen is a virtual machine monitor that allows several guest operating
systems to run on the same computer. http://www.xen.org/

A.1.2 Desktop Environments

Gnome is a desktop environment for computers running Linux and
Unix-like operating systems. The Gnome project was initiated by the
Mexican programmers Miguel de Icaza and Federico Mena. It is part
of the gnu project and was released in 1999. http://www.gnome.org/

X11, also known as the X Window System, provides a graphical user
interface (gui) for networked computers. The X.Org project provides
an open source implementation of the X Window System. It is used as
the base for running Gnome and kde. http://www.x.org/wiki/

KDE is a graphical desktop environment and integrated set of cross-
platform applications designed to run on Linux, Freebsd, Windows,
Solaris and Mac OS X systems. It was initially developed by a single
person, 24 year old computer science student Matthias Ettrich at the
University of Tübingen, as an oss project and first released in 1998.
http://www.kde.org/

A.1.3 Databases

MySQL is a relational database management system. It was origi-
nally distributed as open source software only under a standard copyleft
gpl-like license. In 2001 the original developers founded the company
Mysqlab that owns the copyright to the software. A dual licensing
scheme, similar to Sendmail, was then adopted, allowing either free
gpl-like licensing for oss applications, or a non-free proprietary license

A.1 Systems Applications 319

to integrate it with proprietary products [51]. Currently owned by Ora-
cle. http://www.mysql.com/

PostgreSQL is an object-relational database management system
developed at UC Berkeley from 1986 to 1994. In 1995 a group of devel-
opers was formed around it as an open source project, giving it its new
name. It is released under the Postgresql license, which is similar to
the bsd license. http://www.postgresql.org/

HSQLDB is an embedded sql relational database engine written
in Java, including tools such as a command line sql and gui query
interface. http://hsqldb.org/

SQLite is a software library that implements an embedded, self-
contained, serverless, transactional sql database engine. http://www.
sqlite.org/

A.1.4 Web and Application Servers

Apache HTTP Server is a secure, efficient and extensible open-
source http server for modern operating systems including Unix and
Windows NT. Its development started in 1998, as a fork off the httpd,
a web server created at the National Center for Supercomputing Appli-
cations (ncsa). An online group of developers formed to support and
enhance it. Within one year it was the most popular server on the inter-
net. In March 1999 the group formed the Apache Software Foundation1

with the goal of supporting the server (at an organizational, legal and
financial level) and promoting the development of community-driven
software. http://httpd.apache.org/

Jakarta Tomcat is an open source software implementation of the
Java Servlet and JavaServer Pages technologies, developed by the
Apache Software Foundation. http://tomcat.apache.org/

JBoss is a free software, open-source Java EE-based application
server. http://www.jboss.org/

1 http://www.apache.org/

320 Representative Applications

AWStats is a free powerful and featureful tool that generates
advanced web, streaming, ftp or mail server statistics, in a graphical
form. http://awstats.sourceforge.net/

A.1.5 System Administration Tools

Wireshark is a free and open-source packet analyzer used for net-
work troubleshooting, analysis, software and communications protocol
development, and education. http://www.wireshark.org/

Nagios is a powerful IT monitoring management system that allows
organizations to identify and resolve IT infrastructure problems before
they affect critical business processes. http://www.nagios.org/

phpMyAdmin is a tool written in php intended to handle the
administration of Mysql over the Web. Currently it can create and
drop databases, create/drop/alter tables, delete/edit/add fields, exe-
cute any sql statement and manage keys on fields. http://www.

phpmyadmin.net/

A.1.6 Email

Fetchmail was a mail utility for Unix-like systems, released in the
early 1990s. The project was initiated by Eric Raymond, and used as
a model in his famous essay “The Cathedral and the Bazaar” [187] to
discuss his ideas about open source. http://www.fetchmail.info/

Sendmail is a general purpose internetwork email routing facility
(mail transfer agent) that supports many kinds of mail transfer and
delivery methods, including the Simple Mail Transfer Protocol (smtp)
used for email transport over the internet. http://www.sendmail.org/

Postfix is a fast, easy-to-administer, and secure open-source mail
transfer agent that routes and delivers electronic mail. http://www.
postfix.org/

SpamAssassin is a computer program used for e-mail spam filtering
that uses a variety of local and network tests to identify spam signa-
tures. http://spamassassin.apache.org/

A.2 Dekstop 321

A.1.7 Networking Infrastructure

BIND is a widely used dns software that provides a robust and stable
platform on top of which organizations can build distributed computing
systems with the knowledge that those systems are fully compliant with
published dns standards. https://www.isc.org/software/bind

Zenoss is an enterprise network and systems management applica-
tion http://www.zenoss.com/

A.1.8 Security

Clonezilla is a partition or disk clone tool http://www.clonezilla.
org/

putty is an ssh and telnet client, developed originally by Simon
Tatham for the Windows platform. http://www.putty.org/

TrueCrypt is a free open-source disk encryption tool for Windows,
Mac OS X, and Linux. http://truecrypt.org/

Winscp is an open source ftp/sftp client for Windows, used
for secure file transfer between computers. http://winscp.net/eng/
index.php

A.2 Dekstop
Mosaic was a famous web browser developed at the ncsa in 1993,
which played an important role in the first period of the internet. It
was released as open source and free of charge for academic or inter-
nal business use. For commercial distribution the license terms had
to be separately negotiated with the ncsa [51]. http://www.ncsa.

illinois.edu/

Firefox is a free and open source web browser descended from the
Mozilla Application Suite and managed by the Mozilla Corporation.
http://www.mozilla.org/

322 Representative Applications

Thunderbird is a free, open source, cross-platform e-mail and news
client developed by the Mozilla Foundation. http://www.mozilla.

org/

OpenOffice.org is an open-source office software suite for word pro-
cessing, spreadsheets, presentations, graphics, databases and more. It
was originally developed by the StarDivision, originally as StarOf-
fice. StarDivision was acquired by Sun Microsystems in 1999. It was
released in 2000 as open source under the lgpl/sissl license and
promoted as an alternative to Microsoft’s Office suite of applications.
http://www.openoffice.org/

Evolution is a program that provides integrated mail, addressbook
and calendaring functionality to users of the Gnome desktop. http:
//projects.gnome.org/evolution/

Pidgin (Gaim) is an easy to use and free chat client that can connect
to aim, msn, Yahoo, and more chat networks all at once. http://www.
pidgin.im/

7Zip is a file compression and archival tool supporting various for-
mats including 7z, zip, cab, and rar. http://www.7-zip.org/

KeePass Password Safe is a free, open source, light-weight and
easy-to-use password manager for Windows http://keepass.info/

A.3 Entertainment
Mumble is a low-latency, high-quality voice communication tool for
gamers. http://mumble.sourceforge.net

MediaInfo is a tool for getting technical information and tags for
multimedia files. http://mediainfo.sourceforge.net

Media Player Classic is a free audio and video media player for
Windows. http://mpc-hc.sourceforge.net/

Bittorrent is a popular open-source peer-to-peer file sharing client.
http://www.bittorrent.com

A.4 Graphics 323

VLC media player is an open source media player that can handle
DVDs, (S)VCDs, Audio CDs, web streams, TV cards, etc. http://

www.videolan.org/vlc/

Audacity is a free, open source software for recording and editing
sounds, available for Mac OS X, Windows, gnu/Linux, and other oper-
ating systems. http://audacity.sourceforge.net

A.4 Graphics
Inkscape is an Open Source vector graphics editor, with capabilities
similar to Illustrator, CorelDraw, or Xara X, using the W3C standard
Scalable Vector Graphics (svg) file format. http://www.inkscape.

org/

Ghostscript is an interpreter for the PostScript language and for
pdf documents. http://www.ghostscript.com/

Gnuplot is a portable command-line driven graphing utility for
Linux, Windows, os x, vms, and many other platforms. It is dis-
tirbuted under its own open source license (not gpl), according to
which the source code is copyrighted but freely distributed. http:

//www.gnuplot.info/

GMT is an open source collection of tools for manipulating geo-
graphic and Cartesian data sets (including filtering, trend fitting, grid-
ding, projecting, etc.) and producing Encapsulated PostScript File
(eps). http://gmt.soest.hawaii.edu/

GraphViz offers various tools for automatically rendering graphs
specified in a declarative/textual fashion. http://www.graphviz.org/

GIMP, an acronym for gnu Image Manipulation Program, is a freely
distributed program for such tasks as photo retouching, image compo-
sition and image authoring. Originally released in 1996, it is now ported
to many operating systems. http://www.gimp.org/

324 Representative Applications

iReport is a popular visual reporting tool for JasperReports (Java
reporting library) and JasperServer (reporting server) that can man-
age charts, images, and subreports. http://www.jasperforge.org/

projects/ireport

FreeMind is a free mind mapping application written in Java. It
allows the user to edit a hierarchical set of ideas around a central con-
cept. http://freemind.sourceforge.net

A.5 Education
Moodle is a Course Management System (cms): a free web appli-
cation that educators can use to create effective online learning sites.
http://moodle.org/

Tux Paint is a painting program for kids between 3 and 12 years old
http://tuxpaint.org/

EToys is a free educational tool for teaching children powerful ideas
in compelling ways through a media-rich authoring environment and
visual programming system. http://www.squeakland.org/

Scratch is an application aimed primarily at children that allows
them to explore and experiment with the concepts of computer pro-
gramming by using a simple graphical interface. http://scratch.mit.
edu/

A.6 Scientific and Engineering
R-Project R is an extensible language and environment for statis-
tical computing and graphics. It supports a wide variety of statistical
and graphical techniques. http://www.r-project.org/

GNU Octave is a high-level language, primarily intended for numer-
ical computations. It includes a command line interface for solving
linear and nonlinear problems numerically, and for performing other
numerical experiments. http://www.gnu.org/software/octave

A.7 Publishing 325

A.7 Publishing
TeX is a typesetting system designed and mostly written by Donald
Knuth with the goal to allow anybody to produce high-quality books
with the exact same results on all computers. http://www.tug.org/

Docbook is a semantic markup language for technical documenta-
tion, originally intended for writing technical documents related to
computer hardware and software. It can be used for any other sort
of documentation. http://www.docbook.org/

TCPDF is an Open Source php class for generating pdf
documents. http://www.tecnick.com/public/code/cp_dpage.php?

aiocp_dp=tcpdf

TeXnicCenter is an integrated environment for creating LaTeX doc-
uments on the Windows platform. http://www.texniccenter.org/

A.8 Software Development

A.8.1 Languages, Interpreters, Compilers

GCC, the gnu Compiler Collection includes front ends for C,
C++, Objective-C, Fortran, Java, and Ada, as well as libraries for these
languages (libstdc++, libgcj,...) and back ends for tens of processor
architectures. gcc was originally written as the compiler for the gnu
operating system. http://gcc.gnu.org/

Java Technology by Orcale (Sun) is a programming language
originally developed by James Gosling at Sun Microsystems (which is
now a subsidiary of Oracle Corporation) and released in 1995 as a core
component of Sun Microsystems’ Java platform. http://www.oracle.
com/technetwork/java

Scala is a general purpose programming language designed to express
common programming patterns in a concise, elegant, and type-safe way.
www.scala-lang.org/

Erlang is a programming language designed at the Ericsson Com-
puter Science Laboratory. http://www.erlang.org/

326 Representative Applications

Haskell is an advanced, purely functional programming language
allowing rapid development of robust, concise, correct software. http:
//www.haskell.org/

Perl is a feature-rich programming language written by Larry Wall
and released in 1986 as free software. It is distributed under the gpl or
the Artistic License. A particular advantage of Perl are the thousands
of add-on libraries available through the cpan library. http://www.
perl.org/

Python is a high-level object oriented programming language that
places emphasis on code readability, and includes a large and compre-
hensive standard library. http://www.python.org/

PHP is a widely used general-purpose scripting language released in
1995. It is especially suited for Web development and can be easily
embedded into html. http://www.php.net/

Ruby is a dynamic, open source programming language with a focus
on simplicity and productivity, and an elegant syntax that is natural
to read and easy to write. http://www.ruby-lang.org/en/

Tcl/Tk, short for Tool Command Language, is an interpreted lan-
guage with a very portable interpreter. Tcl is embeddable and exten-
sible, and has been widely used since its creation in 1988 by John
Ousterhout. It is particularly versatile for the creation of guis. http:
//www.tcl.tk/

Lua is a powerful, fast, lightweight, embeddable scripting language.
http://www.lua.org/

ScummVM is a cross-platform interpreter for several point-and-click
adventure engines. http://www.scummvm.org/

MinGW, a contraction of “Minimalist gnu for Windows,” is a port
of the gnu Compiler Collection (gcc), and gnu Binutils, for use in the
development of native Microsoft Windows applications. http://www.
mingw.org/

A.8 Software Development 327

A.8.2 Libraries

Libpng was written as a companion to the png specification, as a
way to reduce the amount of time and effort it takes to support the
png file format in application programs. http://www.libpng.org

GD is an open source code library for the dynamic creation of images
by programmers. GD creates png, jpeg and gif images, among other
formats. http://www.libgd.org

Boost C++ Libraries provide many useful free portable peer-
reviewed C++ libraries. http://www.boost.org

A.8.3 Editors

Vim is an advanced text editor that seeks to provide the power of
the de-facto Unix editor “Vi,” with a more complete feature set. http:
//www.vim.org/

GNU Emacs is an extensible, customizable text editor, part of the
gnu project http://www.gnu.org/software/emacs/

Notepad++ is a source code editor and MS Windows Notepad
replacement. http://notepad-plus.sourceforge.net

A.8.4 Version Control Systems

CVS is a version control system, used to keep track of all work and
changes in a set of files, and to allow several developers to collaborate.
http://www.nongnu.org/cvs/

Apache Subversion is a revision control system founded and spon-
sored in 2000 by CollabNet Inc. as an improvement to cvs. http:

//subversion.apache.org/

Git is a free and open source distributed version control system
designed to handle everything from small to very large projects with
speed and efficiency. http://git-scm.com/

328 Representative Applications

Mercurial is a free, distributed source control management tool. It
efficiently handles projects of any size and offers an easy and intuitive
interface. http://mercurial.selenic.com/

A.8.5 IDEs and Build Tools

Eclipse is a multi-language software development environment com-
prising an integrated development environment (ide) and an extensible
plug-in system, written mainly in Java. It was created by ibm in 2001
and released as open source. The Eclipse Foundation2 was created in
2004 to support the Eclipse community. http://www.eclipse.org/

NetBeans is an open-source project dedicated to providing software
development products (the NetBeans ide and the NetBeans Platform)
for developers, users and the businesses. http://netbeans.org/

Apache Ant is a tool for automating the software build processes,
similar to make. http://ant.apache.org/

A.8.6 Frameworks

ZK Simply Ajax and Mobile is an open-source Ajax Web applica-
tion framework, written in Java, that enables creation of rich graphical
user interfaces for Web applications with no JavaScript and little pro-
gramming knowledge. http://www.zkoss.org

Mono is a software platform designed to easily create cross platform
applications. Sponsored by Novell, Mono is an open source imple-
mentation of Microsoft’s .net Framework based on the ecma stan-
dards for C# and the Common Language Runtime. http://www.

mono-project.com/Main_Page

Qt is a cross-platform application development framework widely
used for the development of gui programs and for developing non-
gui programs such as console tools and servers. Originally developed
by Trolltech, which was acquired by Nokia in 2008. http://qt.nokia.
com/

2 http://www.eclipse.org/

A.9 Content Management Systems 329

Ruby on Rails is an open source web application framework for
the Ruby programming language, intended to be used with an Agile
development methodology. http://www.rubyonrails.org/

A.9 Content Management Systems
Drupal is a popular free and open source cms written in php, used for
websites ranging from personal blogs to larger corporate and political
sites including whitehouse.gov and data.gov.uk. http://drupal.org/

WordPress is a popular open source cms, often used as a blog pub-
lishing application powered by php and Mysql. http://wordpress.
org/

Joomla is an award-winning cms, which enables users to build Web
sites and powerful online applications, based on ease-of-use and exten-
sibility http://www.joomla.org/

Arianne RPG is a multiplayer online engine to develop turn based
and real time games providing a simple way of creating the game server
rules and clients. http://arianne.sf.net

Media Wiki is a free software wiki package written in php, originally
for use on Wikipedia, but now used by several other projects. http:
//www.mediawiki.org

A.10 Business Applications
Compiere is an open source erp and crm business solution for the
small and medium-sized Enterprises in distribution, retail, service and
manufacturing. It’s architecture is such that it avoids duplication of
information and the need for synchronization. http://www.compiere.
com/

OpenERP is a complete and feature rich erp and crm system.
Openerp has a 3 layer structure: database, server and thin client that
contains minimal business logic. The database is Postgresql, and the
server is written in Python. http://www.openerp.com

330 Representative Applications

PostBooks ERP is a free open source erp, accounting and crm
package for small to midsized businesses. Built with open source Qt
framework it runs on Linux, Mac, and Windows. Its business logic
resides in a Postgresql database. http://postbooks.sourceforge.
net

Openbravo ERP is a comprehensive and professional web-based
open source erp solution. The model for Openbravo was originally
based on the Compiere erp program. Using Openbravo, erp organi-
zations can automate and register most common business processes.
http://www.openbravo.com

webERP is an open-source web-based erp system. http://www.

weberp.org/HomePage

OrangeHRM is an Open Source Human Resource Management Sys-
tem that covers Personnel Information Management, Employee Self
Service, Leave, Time & Attendance, Benefits, and Recruitment. http:
//orangehrm.sourceforge.net

JStock is a free stock market software for 23 countries http://

jstock.sourceforge.net/

References

[1] S. Abiteboul, I. Dar, R. Pop, G. Vasile, and D. Vodislav, “EDOS distribution
system: A P2P architecture for open-source content dissemination,” in Open
Source Development, Adoption and Innovation, pp. 209–215, Springer Verlag,
2007. IFIP International Federation for Information Processing Volume 234.

[2] S. Ajila and D. Wu, “Empirical study of the effects of open source adoption on
software development economics,” Journal of Systems and Software, vol. 80,
no. 9, pp. 1517–1529, 2007.

[3] T. A. Alspaugh, W. Scacchi, and H. U. Asuncion, “Software licenses in context:
The challenge of heterogeneously-licensed systems,” Journal of the Association
for Information Systems, vol. 11, no. 11, pp. 731–754, November 2010.

[4] U. Asklund and L. Bendix, “Study of configuration management for open
source software,” IEE Proceedings — Software, vol. 149, no. 1, pp. 40–46,
February 2002.

[5] R. P. Bagozzi and U. M. Dholakia, “Open source software user communities:
A study of participation in Linux user groups,” Management Science, vol. 52,
no. 7, pp. 1099–1115, July 2006.

[6] C. Y. Baldwin and K. B. Clark, “The architecture of participation: Does code
architecture mitigate free riding in the open source development model?,”
Management Science, vol. 52, no. 7, pp. 1116–1127, July 2006.

[7] M. Bar and K. F. Fogel, Open Source Development with CVS. Scottsdale, AZ:
The Coriolis Group, 2001.

[8] J. Barton, “From server room to living room,” Queue, vol. 1, no. 5, pp. 20–32,
2003.

331

332 References

[9] B. Behlendorf, “Open source as a business strategy,” in Open Sources: Voices
from the Open Source Revolution, (C. DiBona, S. Ockman, and M. Stone,
eds.), O’Reilly, 1999.

[10] Y. Benkler, “Intellectual property: Commons-based strategies and the prob-
lems of patents,” Science, vol. 305, no. 5687, pp. 1110–1111, August 2004.

[11] M. Bergquist and J. Ljungberg, “The power of gifts: Organising social rela-
tionships in open source communities,” Information Systems Journal, vol. 11,
no. 4, pp. 305–320, 2001.

[12] J. Bessen, “Open source software: Free provision of complex public goods,”
Available at SSRN: http://ssrn.com/abstract=588763, July 2005.

[13] J. Bessen and M. Meurer, Patent Failure: How Judges, Bureaucrats, and
Lawyers Put Innovators at Risk. NJ, USA: Princeton University Press, 2008.

[14] N. Bezroukov, “Open source software development as a special type of aca-
demic research (Critique of Vulgar Raymondism),” First Monday, vol. 4,
no. 10, October 1999.

[15] C. Bird, N. Nagappan, P. Devanbu, H. Gall, and B. Murphy, “Does dis-
tributed development affect software quality? An empirical case study of Win-
dows Vista,” Communications of the ACM, vol. 52, no. 8, pp. 85–93, August
2009.

[16] J. Bitzer, W. Schrettl, and P. J. Schröder, “Intrinsic motivation in open source
software development,” Journal of Comparative Economics, vol. 35, no. 1,
pp. 160–169, May 2007.

[17] J. Bitzer and P. J. Schröder, “Bug-fixing and code-writing: The private pro-
vision of open source software,” Information Economics and Policy, vol. 17,
no. 3, pp. 389–406, July 2005.

[18] J. Bitzer and P. J. Schröder, “The impact of entry and competition by
open source software on innovation activity,” in The Economics of Open
Source Software Development, Ch. 11,, (J. Bitzer and P. J. Schröder, eds.),
pp. 219–245, Emerald Group Publishing, 2006.

[19] J. Bitzer and P. J. H. Schröder, The Economics of Open Source Software
Development. Emerald Group Publishing, 2006.

[20] A. Bonaccorsi, S. Giannangeli, and C. Rossi, “Entry strategies under compet-
ing standards: Hybrid business models in the open source software industry,”
Management Science, vol. 52, no. 7, pp. 1085–1098, July 2006.

[21] A. Bonaccorsi and C. Rossi, “Why open source software can succeed,”
Research Policy, vol. 32, no. 7, pp. 1243–1258, 2003.

[22] A. Bonaccorsi and C. Rossi, “Comparing motivations of individual program-
mers and firms to take part in the open source movement: From community
to business,” Knowledge, Technology and Policy, vol. 18, no. 4, pp. 40–64,
December 2006.

[23] I. T. Bowman, R. C. Holt, and N. V. Brewster, “Linux as a case study: Its
extracted software architecture,” in ICSE ’99: Proceedings of the 21st Inter-
national Conference on Software Engineering, pp. 555–563, New York, NY:
ACM, 1999.

[24] D. Bretthauer, “Open source software: A history,” Information Technology
and Libraries, vol. 21, no. 1, pp. 3–11, March 2002.

References 333

[25] A. W. Brown and G. Booch, “Reusing open source software and practices:
The impact of open source on commercial vendors,” in Software Reuse:
Methods, Techniques, and Tools, (C. Gacek, ed.), pp. 381–428, Springer
Berlin/Heidelberg, 2002.

[26] B. W. Carver, “Share and share alike: Understanding and enforcing open
source and free software licenses,” Berkely Technology Law Journal, vol. 20,
no. 1, pp. 443–481, 2005.

[27] R. Casadesus-Masanell and P. Ghemawat, “Dynamic mixed duopoly: A model
motivated by Linux vs. Windows,” Management Science, vol. 52, no. 7,
pp. 1072–1084, July 2006.

[28] M. Cassell, “Why governments innovate: Adoption and implementation of
open source software by four European cities,” International Public Manage-
ment Journal, vol. 11, no. 2, pp. 193–213, 2008.

[29] P. E. Ceruzzi, “A history of modern computing.” Chapter Workstations,
UNIX and the Net. MIT University Press, 2003.

[30] G. Çetin and M. Gokturk, “A measurement based framework for assessment
of usability-centricness of open source software projects,” in SITIS ’08: IEEE
International Conference on Signal Image Technology and Internet Based Sys-
tems, pp. 585–592, December 2008.

[31] W. Chen, J. Li, J. Ma, R. Conradi, J. Ji, and C. Liu, “A survey of software
development with open source components in Chinese software industry,” in
Software Process Dynamics and Agility, pp. 208–220, Springer Verlag, 2007.

[32] N. Choi, I. Chengalur-Smith, and A. Whitmore, “Managing first impressions
of new open source software projects,” IEEE Software, vol. 27, pp. 73–77,
2010.

[33] J. Colazo and Y. Fang, “Impact of license choice on open source software
development activity,” Journal of American Society of Information Science
and Technology, vol. 60, pp. 997–1011, May 2009.

[34] M. Conklin, J. Howison, and K. Crowston, “Collaboration using OSSmole: A
repository of FLOSS data and analyses,” in MSR ’05: Proceedings of the 2005
international workshop on Mining software repositories, pp. 1–5, New York,
NY, USA: ACM, 2005.

[35] T. Cornford, M. Shaikh, and C. Ciborra, “Hierarchy, laboratory and collec-
tive: Unveiling Linux as innovation, machination and constitution,” Journal
of the Association for Information Systems, vol. 11, no. 12, pp. i–v, November
2010.

[36] K. Crowston, H. Annabi, and J. Howison, “Defining open source software
project success,” in ICIS ’03: Proceedings of the 24th International Conference
on Information Systems, 2003.

[37] K. Crowston, H. Annabi, J. Howison, and C. Masango, “Towards a portfo-
lio of FLOSS project success measures,” in WOSSE ’04: Proceedings of the
4th Workshop on Open Source Software Engineering, pp. 29–33, Edinburgh,
Scotland, May 2004.

[38] K. Crowston and J. Howison, “Hierarchy and centralization in free and open
source software team communications,” Knowledge, Technology and Policy,
vol. 18, no. 4, pp. 65–85, December 2006.

334 References

[39] K. Crowston, J. Howison, and H. Annabi, “Information systems success in
free and open source software development: Theory and measures,” Software
Process: Improvement and Practice, vol. 11, no. 2, pp. 123–148, Special Issue
on Free/Open Source Software Processes, 2006.

[40] K. Crowston, Q. Li, K. Wei, U. Y. Eseryel, and J. Howison, “Self-organization
of teams for free/libre open source software development,” Information and
Software Technology, vol. 49, no. 6, pp. 564–575, 2007.

[41] K. Crowston and B. Scozzi, “Open source software projects as virtual organi-
zations: Competency rallying for software development,” IEE Proceedings —
Software, vol. 149, no. 1, pp. 3–17, February 2002.

[42] K. Crowston and M. Wade, “Introduction to JAIS special issue on empirical
research on free/libre open source software,” Journal of the Association for
Information Systems, vol. 11, no. 1, pp. i–v, November 2010.

[43] M. A. Cusumano, The Business of Software: What Every Manager, Program-
mer, and Entrepreneur Must Know to Thrive and Survive in Good Times and
Bad. New York: The Free Press, 2004.

[44] M. A. Cusumano, “Reflections on free and open software,” Communications
of the ACM, vol. 47, no. 10, pp. 25–27, October 2004.

[45] L. Dahlander, “Penguin in a new suit: A tale of how de novo entrants emerged
to harness free and open source software communities,” Industrial and Cor-
porate Change, vol. 16, no. 5, pp. 913–943, 2007.

[46] J.-M. Dalle and P. M. David, “The allocation of software development
resources in open source production mode,” SIEPR Discussion Paper No.
02-27, Stanford Institute for Economic Policy Research, Stanford University,
March 2003.

[47] S. Daniel, “Structure, cohesion, and open source software success,” in Proceed-
ings of the 1st International Conference on Open Source Systems, pp. 317–319,
July 2005.

[48] P. A. David and J. S. Shapiro, “Community-based production of open-source
software: What do we know about the developers who participate?,” Infor-
mation Economics and Policy, vol. 20, no. 4, pp. 364–398, 2008.

[49] A. N. Dedeke, “Is Linux better than Windows software?,” IEEE Software,
vol. 26, pp. 104, 103, 2009.

[50] J. Dedrick and J. West, “Why firms adopt open source platforms: A grounded
theory of innovation and standards adoption,” in MIS Quarterly Special Issue
Workshop, pp. 236–257, December 2003.

[51] F. P. Deek and J. A. M. McHugh, Open Source: Technology and Policy.
Cambridge: Cambridge University Press, 2008.

[52] B. J. Dempsey, D. Weiss, P. Jones, and J. Greenberg, “Who is an open source
software developer?,” Communications of the ACM, vol. 45, no. 2, pp. 67–72,
February 2002.

[53] M. den Besten, J.-M. Dalle, and F. Galia, “The allocation of collaborative
efforts in open-source software,” Information Economics and Policy, vol. 20,
no. 4, pp. 316–322, December 2008.

[54] C. DiBona, S. Ockman, and M. Stone, eds., Open Sources: Voices from the
Open Source Revolution. O’Reilly, 1999.

References 335

[55] Digital Equipment Computer Users Society, “Decus Program Library:
PDP-11 Catalog,” Online http://www.bitsavers.org/pdf/dec/decus/
programCatalogs/DECUS_Catalog_PDP-11_Aug78.pdf, August 1978.

[56] T. T. Dinh-Trong and J. M. Bieman, “The FreeBSD project: A replication
case study of open source development,” IEEE Transactions on Software Engi-
neering, vol. 31, no. 6, pp. 481–494, June 2005.

[57] J. J. Dongarra and E. Grosse, “Distribution of mathematical software via
electronic mail,” Communications of the ACM, vol. 30, no. 5, pp. 403–407,
1987.

[58] N. Duchneaut, “Socialization in an open source software community: A socio-
technical analysis,” Computer Supported Cooperative Work (CSCW), vol. 14,
pp. 323–368, 2005.

[59] P. Duvall, S. Matyas, and A. Glover, Continuous Integration: Improving Soft-
ware Quality and Reducing Risk. Addison-Wesley Professional, First ed., 2007.

[60] N. Economides and E. Katsamakas, “Two-sided competition of proprietary
vs. open source technology platforms and the implications for the software
industry,” Management Science, vol. 52, no. 7, pp. 1057–1071, 2006.

[61] M. Elliott and W. Scacchi, “Mobilization of software developers: The free soft-
ware movement,” Information Technology and People, vol. 21, no. 1, pp. 4–33,
2008.

[62] M. S. Elliott and W. Scacchi, “Free software development: Cooperation and
conflict in a virtual organizational culture,” in Free/Open Source Software
Development, (S. Koch, ed.), pp. 152–172, Hershey, PA: Idea Group Publish-
ing, 2004.

[63] A. Engelfriet, “Choosing an open source license,” IEEE Software, vol. 27,
no. 1, pp. 48–49, January/February 2010.

[64] N. Ensmenger, “Open source’s lessons for historians,” IEEE Annals of the
History of Computing, vol. 26, pp. 104, 102–103, 2004.

[65] J. Erenkrantz, “Release management within open source projects,” in WOSSE
’03: Proceedings of the 3rd Workshop on Open Source Software Engineering,
pp. 51–55, May 2003.

[66] J. Feller and B. Fitzgerald, “A framework analysis of the open source software
development paradigm,” in ICIS ’00: Proceedings of the 21st International
Conference on Information Systems, pp. 58–69, Atlanta, GA: Association for
Information Systems, 2000.

[67] J. Feller and B. Fitzgerald, Understanding Open Source Software Development.
Reading, MA: Addison-Wesley, 2001.

[68] J. Feller, B. Fitzgerald, S. Hissam, and K. Lakhani, eds., Perspectives on Free
and Open Source Software. Cambridge, MA: The MIT Press, 2005.

[69] C. Fershtman and N. Gandal, “Open source software: Motivation and restric-
tive licensing,” International Economics and Economic Policy, vol. 4, no. 2,
pp. 209–225, 2007.

[70] R. T. Fielding, “Shared leadership in the Apache project,” Communications
of the ACM, vol. 42, no. 4, pp. 42–43, 1999.

[71] B. Fitzgerald, “The transformation of open source software,” IEEE Transac-
tions on Software Engineering, vol. 30, no. 3, pp. 587–598, September 2004.

336 References

[72] B. Fitzgerald, “The transformation of open source software,” MIS Quarterly,
vol. 30, no. 3, pp. 587–598, September 2006.

[73] K. Fogel, Producing Open Source Software: How to Run a Successful Free
Software Project. O’Reilly Media, Inc., 2005.

[74] S. Forge, “The rain forest and the rock garden: The economic impacts of open
source software,” Info, vol. 8, no. 3, pp. 12–31, 2006.

[75] N. Franke and E. von Hippel, “Satisfying heterogenous user needs via innova-
tion toolkits: The case of Apache security software,” Research Policy, vol. 32,
no. 7, pp. 1199–1215, July 2003.

[76] Free Software Foundation, “Categories of free and nonfree software,” Online
http://www.gnu.org/philosophy/categories.html, August 1996.

[77] A. Fuggetta, “Open source software — an evaluation,” Journal of Systems
and Software, vol. 66, no. 1, pp. 77–90, 2003.

[78] C. Gacek and B. Arief, “The many meanings of open source,” IEEE Software,
vol. 21, no. 1, pp. 34–40, 2004.

[79] C. Gacek, T. Lawrie, and B. Arief, “The many meanings of open source,”
Technical Report, University of Newcastle upon Tyne, 2001.

[80] M. J. Gallivan, “Striking a balance between trust and control in a virtual orga-
nization: A content analysis of open source software case studies,” Information
Systems Journal, vol. 11, no. 4, pp. 277–304, 2001.

[81] E. Gamma and K. Beck, Contributing to Eclipse: Principles, Patterns, and
Plug-Ins. Boston, MA: Addison-Wesley, 2004.

[82] B. Gates, “An open letter to hobbyists,” Homebrew Computer Club Newsletter,
vol. 2, no. 1, p. 2, January 1976.

[83] J. Gay, ed., Free Software, Free Society: Selected Essays of Richard M. Stall-
man. Boston, MA: GNU Press, Free Software Foundation, 2002.

[84] D. M. German, “Software engineering practices in the GNOME project,” in
Perspectives on Free and Open Source Software, (J. Feller, B. Fitzgerald,
S. Hissam, and K. Lakhani, eds.), pp. 211–226, Cambridge, MA: The MIT
Press, 2005.

[85] D. M. German and A. E. Hassan, “License integration patterns: Address-
ing license mismatches in component-based development,” in ICSE ’09:
Proceedings of the 31st International Conference on Software Engineering,
pp. 188–198, IEEE Computer Society, May 2009.

[86] D. M. German, M. D. Penta, Y.-G. Gueheneuc, and G. Antoniol, “Code sib-
lings: Technical and legal implications of copying code between applications,”
in MSR ’09: Proceedings of the 6th International Workshop on Mining Soft-
ware Repositories, pp. 81–90, IEEE Computer Society Press, May 2009.

[87] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google file system,” in SOSP
’03: Proceedings of the Nineteenth ACM Symposium on Operating Systems
Principles, pp. 29–43, New York, NY: ACM, 2003.

[88] R. A. Ghosh, “FM interview with Linus Torvalds: What motivates free soft-
ware developers?,” First Monday, vol. 3, no. 3, March 1998.

[89] R. A. Ghosh, “Understanding free software developers: Findings from the
FLOSS study,” in Perspectives on Free and Open Source Software, (J. Feller,
B. Fitzgerald, S. Hissam, and K. Lakhani, eds.), pp. 23–46, Cambridge, MA:
The MIT Press, 2005.

References 337

[90] P. Giuri, F. Rullani, and S. Torrisi, “Explaining leadership in virtual teams:
The case of open source software,” Information Economics and Policy, vol. 20,
no. 4, pp. 305–315, December 2008.

[91] E. Glynn, B. Fitzgerald, and C. Exton, “Commercial adoption of open source
software: An empirical study,” in The International Symposium on Empirical
Software Engineering, November 2005.

[92] M. Godfrey and Q. Tu, “Growth, evolution, and structural change in open
source software,” in IWPSE ’01: Proceedings of the 4th International Work-
shop on Principles of Software Evolution, pp. 103–106, New York, NY: ACM,
2001.

[93] M. W. Godfrey and Q. Tu, “Evolution in open source software: A case study,”
in Conference on Software Maintenance, pp. 131–142, Piscataway, NJ, USA:
IEEE, 2000.

[94] R. Goldman and R. P. Gabriel, Innovation Happens Elsewhere: Open Source
as a Business Strategy. San Francisco: Morgan Kaufmann, Elsevier, April
2005.

[95] R. Grewal, G. Lilien, and G. Mallapragada, “Location, location, location:
How network embeddedness affects project success in open source systems,”
Management Science, vol. 52, no. 7, pp. 1043–1056, 2006.

[96] M. Gruber and J. Henkel, “New ventures based on open innovation — an
empirical analysis of start-up firms in embedded Linux,” International Journal
of Technology Management, vol. 33, no. 4, pp. 356–372, 2006.

[97] T. Gyimothy, R. Ferenc, and I. Siket, “Empirical validation of object-oriented
metrics on open source software for fault prediction,” IEEE Transactions on
Software Engineering, vol. 31, no. 10, pp. 897–910, October 2005.

[98] S. Haefliger, G. von Krogh, and S. Spaeth, “Code reuse in open source soft-
ware,” Management Science, vol. 54, no. 1, pp. 180–153, January 2008.

[99] J. Hahn, J. Moon, and C. Zhang, “Emergence of new project teams from
open source software developer networks: Impact of prior collaboration ties,”
Information Systems Research, vol. 19, no. 3, pp. 369–391, September 2008.

[100] J. Hamerly, T. Paquin, and S. Walton, “Freeing the source. The story
of Mozilla,” in Open Sources: Voices from the Open Source Revolution,
(C. DiBona, S. Ockman, and M. Stone, eds.), O’Reilly, 1999.

[101] D. Harhoff, J. Henkel, and E. von Hippel, “Profiting from voluntary infor-
mation spillovers: How users benefit by freely revealing their innovations,”
Research Policy, vol. 32, no. 10, pp. 1753–1769, December 2003.

[102] A. Hars and S. Ou, “Working for free? Motivations for participating in open
source projects,” in Proceedings of the 34th Hawaii International Conference
on System Sciences, Hawaii, June 2001.

[103] F. Hecker, “Setting up shop: The business of open-source software,” IEEE
Software, vol. 16, no. 1, pp. 45–51, January/Feburary 1999.

[104] H. Hedberg, N. Iivari, M. Rajanen, and L. Harjumaa, “Assuring quality
and usability in open soruce software development,” Emerging Trends in
FLOSS Research and Development, International Workshop on, vol. 0, p. 2,
2007.

338 References

[105] D. Hedgebeth, “Gaining competitive advantage in a knowledge-based econ-
omy through the utilization of open source software,” VINE, vol. 37, no. 3,
pp. 284–294, 2007.

[106] J. Henkel, “Selective revealing in open innovation processes: The case of
embedded Linux,” Research Policy, vol. 35, no. 7, pp. 953–969, 2006.

[107] J. Henkel, “Champions of revealing — the role of open source develop-
ers in commercial firms,” Industrial and Corporate Change, vol. 18, no. 3,
pp. 435–471, 2009.

[108] J. Herbsleb, A. Mockus, T. Finholt, and R. Grinter, “Distance, dependencies,
and delay in a global collaboration,” in CSCW ’00: Proceedings of the 2000
ACM Conference on Computer Supported Cooperative Work, pp. 319–328,
New York, NY: ACM, 2000.

[109] G. Hertel, S. Niedner, and S. Hermann, “Motivation of software developers in
open source projects: An internet-based survey of contributors to the Linux
kernel,” Research Policy, vol. 32, no. 7, pp. 1159–1177, 2003.

[110] E. V. Hippel, “Economics of product development by users: The impact of
“Sticky” local information,” Management Science, vol. 44, no. 5, pp. 629–644,
1998.

[111] M. Huang, L. Yang, and Y. Yang, “A development process for building OSS-
based applications,” in Unifying the Software Process Spectrum (2005), Lec-
ture Notes in Computer Science 3840, (B. B. M. Li and L. Osterweil, eds.),
pp. 122–135, Springer-Verlag Berlin Heidelberg, 2005.

[112] A. Hunt and D. Thomas, “Software archaeology,” Software, IEEE, vol. 19,
no. 2, pp. 20–22, March/April 2002.

[113] A. Israeli and D. G. Feitelson, “The Linux kernel as a case study in software
evolution,” Journal of Systems and Software, vol. 83, no. 3, pp. 485–501, 2010.

[114] C. Jensen and W. Scacchi, “Role migration and advancement processes in
OSSD projects: A comparative case study,” International Conference on Soft-
ware Engineering, vol. 0, pp. 364–374, 2007.

[115] M. John, What the Dormhouse Said: How the 60s Counterculture Shaped the
Personal Computer. New York, NY: Viking Adult, 2005.

[116] J. P. Johnson, “Open source software: Private provision of a public good,”
Journal of Economics and Management Strategy, vol. 11, no. 4, pp. 637–662,
December 2002.

[117] N. Jørgensen, “Putting it all in the trunk: Incremental software development
in the FreeBSD open source project,” Information Systems Journal, vol. 11,
no. 4, pp. 321–336, October 2001.

[118] H. Kagdi, M. L. Collard, and J. I. Maletic, “A survey and taxonomy of
approaches for mining software repositories in the context of software evo-
lution,” Journal of Software Maintenance and Evolution, vol. 19, no. 2,
pp. 77–131, March 2007.

[119] S. H. Kan, Metrics and Models in Software Quality Engineering. Addison-
Wesley, 2nd ed., 2003.

[120] W. Ke and P. Zhang, “The effects of extrinsic motivations and satisfaction in
open source software development,” Journal of the Association for Informa-
tion Systems, vol. 11, no. 12, pp. 784–808, December 2010.

References 339

[121] M. Kechagia, D. Spinellis, and S. Androutsellis-Theotokis, “Open source
licensing across package dependencies,” in PCI ’10: 14th Panhellenic Con-
ference on Informatics, pp. 27–32, IEEE Computer Society, September 2010.

[122] B. W. Kernighan and P. J. Plauger, Software Tools. Reading, MA: Addison-
Wesley, 1976.

[123] D. Y. Kim, J. B. Kim, and S. Y. Rhew, “Effective reuse procedure for open
source software,” in Software Engineering Research and Practice, pp. 163–167,
CSREA Press, 2006.

[124] B. Kitchenham, S. Pfleeger, L. Pickard, P. Jones, D. Hoaglin, K. E. Emam,
and J. Rosenberg, “Preliminary guidelines for empirical research in software
engineering,” IEEE Transactions on Software Engineering, vol. 28, no. 8,
pp. 721–734, August 2002.

[125] D. Knuth, The TeXbook. Reading, MA: Addison-Wesley, 1984.
[126] S. Koch, “Profiling an open source project ecology and its programmers,”

Electronic Markets, vol. 14, no. 12, pp. 77–88, June 2004.
[127] S. Koch, “Effort modeling and programmer participation in open source soft-

ware projects,” Information Economics and Policy, vol. 20, no. 4, pp. 345–355,
2008.

[128] S. Koch and G. Schneider, “Effort, co-operation and co-ordination in an open
source software project: GNOME,” Information Systems Journal, vol. 12,
no. 1, pp. 27–42, 2002.

[129] B. Kogut and A. Metiu, “Open-source software development and distributed
innovation,” Oxford Review of Economic Policy, vol. 17, no. 2, pp. 248–264,
2001.

[130] P. Kollock and M. Smith, “Managing the virtual commons: Cooperation
and conflict in computer communities,” in Computer-Mediated Communica-
tion: Linguistic, Social, and Cross-Cultural Perspectives, (S. Herring, ed.),
pp. 109–128, John Benjamins Publishing, 1996.

[131] D. Kozlov, J. Koskinen, M. Sakkinen, and J. Markkula, “Assessing maintain-
ability change over multiple software releases,” Journal of Software Mainte-
nance and Evolution: Research and Practice, vol. 20, no. 1, pp. 31–58, 2008.

[132] K. L. Kraemer, J. Dedrick, and P. Sharma, “One laptop per child: Vision vs.
reality,” Communications of the ACM, vol. 52, no. 6, pp. 66–73, 2009.

[133] S. Krishnamurthy, “Cave or community?: An empirical examination of 100
mature open source projects,” First Monday, vol. 7, no. 6, June 2002.

[134] S. Krishnamurthy, “A managerial overview of open source software,” Business
Horizons, vol. 46, no. 5, pp. 47–56, September/October 2003.

[135] S. Krishnamurthy, “An analysis of open source business models,” in Perspec-
tives on Free and Open Source Software, (J. Feller, B. Fitzgerald, S. Hissam,
and K. Lakhani, eds.), pp. 279–296, Cambridge, MA: The MIT Press, 2005.

[136] S. Krishnamurthy, “On the intrinsic and extrinsic motivation of free/libre/
open source (FLOSS) developers,” Knowledge, Technology and Policy, vol. 18,
no. 4, pp. 17–39, December 2006.

[137] K. R. Lakhani and E. von Hippel, “How open source software works: ‘Free’
user-to-user assistance,” Research Policy, vol. 32, no. 6, pp. 923–943, June
2003.

340 References

[138] K. R. Lakhani and R. G. Wolf, “Why hackers do what they do: Understanding
motivation and effort in free/open source software projects,” in Perspectives
on Free and Open Source Software, (J. Feller, B. Fitzgerald, S. Hissam, and
K. Lakhani, eds.), pp. 3–22, Cambridge, MA: The MIT Press, 2005.

[139] M. Lanza and R. Marinescu, Object-Oriented Metrics in Practice. Springer
Verlag, 2006.

[140] A. M. S. Laurent, Understanding Open Source and Free Software Licensing.
Cambridge, MA: O’Reilly, 2004.

[141] L. Lawrence, Free Culture: How Big Media Uses Technology and the Law to
Lock Down Culture and Control Creativity. New York, NY: Penguin Group
Inc., 2004.

[142] D. Lee and H. Mendelson, “Divide and conquer: Competing with free technol-
ogy under network effects,” Production and Operations Management, vol. 17,
no. 1, pp. 12–28, 2008.

[143] S.-Y. T. Lee, H.-W. Kim, and S. Gupta, “Measuring open source software
success,” Omega, vol. 37, no. 2, pp. 426–438, 2009.

[144] S. Leffler, M. McKusick, M. Karels, and J. Quarterman, The Design and Imple-
mentation of the 4.3BSD UNIX Operating System. Reading, MA: Addison-
Wesley, 1989.

[145] J. Lerner and J. Tirole, “The open source movement: Key research questions,”
European Economic Review, vol. 45, no. 4–6, pp. 819–826, May 2001.

[146] J. Lerner and J. Tirole, “Some simple economics of open source,” The Journal
of Industrial Economics, vol. 50, no. 2, pp. 197–234, June 2002.

[147] J. Lerner and J. Tirole, “Economic perspectives on open source,” in Intel-
lectual Property and Entrepreneurship, pp. 33–69, Emerald Group Publishing
Limited, 2004.

[148] J. Lerner and J. Tirole, “The scope of open source licensing,” The Journal of
Law, Economics and Organization, vol. 21, no. 1, pp. 20–56, 2005.

[149] L. Lessig, “Open code and open societies,” in Perspectives on Free and Open
Source Software, (J. Feller, B. Fitzgerald, S. Hissam, and K. Lakhani, eds.),
pp. 349–360, Cambridge, MA: The MIT Press, 2005.

[150] J. Lions, Lions’ Commentary on UNIX 6th Edition with Source Code. San
Jose, CA: Peer-to-Peer Communications, Inc., 1996.

[151] M. W. Losh, “An Overview of FreeBSD/mips,” in AsiaBSDCon 2009, March,
2009. Online http://2009.asiabsdcon.org/papers/abc2009-P4B-paper.
pdf. Current September 2010.

[152] A. MacCormack, J. Rusnak, and C. Y. Baldwin, “Exploring the structure of
complex software designs: An empirical study of open source and proprietary
code,” Management Science, vol. 52, no. 7, pp. 1015–1030, July 2006.

[153] T. R. Madanmohan and R. De’, “Open source reuse in commercial firms,”
IEEE Software, vol. 21, no. 6, pp. 62–69, November/December 2004.

[154] M. L. Markus, B. Manville, and C. E. Agres, “What makes a virtual organi-
zation work: Lessons from the open-source world,” MIT Sloan Management
Review, vol. 42, no. 1, pp. 13–26, Fall 2000.

[155] J. Martinez-Romo, G. Robles, J. M. Gonzalez-Barahona, and M. Ortuño-
Perez Open Source Development, Communities and Quality, ch. Using Social
Network Analysis Techniques to Study Collaboration between a FLOSS

References 341

Community and a Company, pp. 143–158, Vol. 275 of IFIP International
Federation for Information Processing, Springer Boston, July 2008.

[156] J. Mateos-Garcia and W. E. Steinmueller, “The institutions of open source
software: Examining the Debian community,” Information Economics and
Policy, vol. 20, no. 4, pp. 333–344, December 2008.

[157] S. McConnell, “Open-source methodology: Ready for prime time?,” IEEE
Software, vol. 16, no. 4, pp. 6–11, July/August 1999.

[158] M. K. McKusick, “Twenty years of Berkeley Unix: From AT&T-owned to
freely redistributable,” in Open Sources: Voices from the Open Source Revo-
lution, (C. DiBona, S. Ockman, and M. Stone, eds.), O’Reilly, 1999.

[159] C. Melian and M. Mahring, “Lost and gained in translation: Adoption of open
source software development at Hewlett-Packard,” in Open Source Develop-
ment, Communities and Quality, pp. 93–104, Boston, MA: Springer, 2008.

[160] A. Meneely and L. Williams, “Secure open source collaboration: An empirical
study of Linus’ law,” in CCS ’09: Proceedings of the 16th ACM Conference on
Computer and Communications Security, pp. 453–462, New York, NY: ACM,
2009.

[161] A. Mockus, “Amassing and indexing a large sample of version control systems:
Towards the census of public source code history,” in MSR ’09: Proceedings
of the 6th IEEE Intl. Working Conference on Mining Software Repositories,
(M. W. Godfrey and J. Whitehead, eds.), pp. 11–20, 2009.

[162] A. Mockus, R. Fielding, and J. Herbsleb, “A case study of open source soft-
ware development: The Apache server,” in ICSE ’00: Proceedings of the 22nd
International Conference on Software Engineering, pp. 263–272, New York,
NY: ACM, 2000.

[163] A. Mockus, R. T. Fielding, and J. D. Herbsleb, “Two case studies of open
source software development: Apache and Mozilla,” ACM Transactions on
Software Engineering and Methodology, vol. 11, no. 3, pp. 309–346, 2002.

[164] L. Morgan and P. Finnegan, “How perceptions of open source software influ-
ence adoption: An exploratory study,” in ECIS ’07: The 15th European Con-
ference on Information Systems, (W. R. Osterle H, Schelp J, ed.), pp. 973–984,
2007.

[165] B. Mukerji, V. Kumar, and U. Kumar, “The challenges of adopting open
source software in promoting E-government,” in ICEG ’06: International Con-
ference on E-Governance, pp. 22–31, 2006.

[166] N. Munga, T. Fogwill, and Q. Williams, “The adoption of open source soft-
ware in business models: A Red Hat and IBM case study,” in SAICSIT ’09:
Proceedings of the 2009 Annual Research Conference of the South African
Institute of Computer Scientists and Information Technologists, pp. 112–121,
New York, NY: ACM, 2009.

[167] E. D. Mynatt, A. Adler, M. Ito, and V. L. O’Day, “Design for network com-
munities,” in CHI ’97: The 1997 conference on human factors in computing
systems, pp. 210–217, March 1997.

[168] N. Nagappan, “Potential of open source systems as project repositories for
empirical studies working group results,” in Empirical Software Engineering
Issues. Critical Assessment and Future Directions, Lecture Notes in Computer
Science 4336, pp. 103–107, Springer Verlag, 2007.

342 References

[169] D. Nagy, A. M. Yassin, and A. Bhattacherjee, “Organizational adoption of
open source software: Barriers and remedies,” Communications of the ACM,
vol. 53, no. 3, pp. 148–151, 2010.

[170] K. Nakakoji, Y. Yamamoto, Y. Nishinaka, K. Kishida, and Y. Ye, “Evolution
patterns of open-source software systems and communities,” in IWPSE ’02:
Proceedings of the International Workshop on Principles of Software Evolu-
tion, Orlando, FL, May 2002.

[171] D. M. Nichols and M. B. Twidale, “The usability of open source software,”
First Monday, vol. 8, no. 1, January 2003.

[172] O. Nov, “What motivates Wikipedians?,” Communications of the ACM,
vol. 50, no. 11, pp. 60–64, November 2007.

[173] W. Oh and S. Jeon, “Membership herding and network stability in the open
source community: The Ising perspective,” Management science, vol. 53, no. 7,
pp. 1086–1101, July 2007.

[174] S. O’Mahony and F. Ferraro, “The emergence of governance in an open source
community,” Academy of Management Journal, vol. 50, no. 5, pp. 1079–1106,
2007.

[175] T. O’Reilly, “Lessons from open-source software development,” Communica-
tions of the ACM, vol. 42, no. 4, pp. 32–73, April 1999.

[176] W. Orman, “Giving it away for free? The nature of job-market signaling by
open-source software developers,” The BE Journal of Economic Analysis and
Policy, vol. 8, no. 1, 2008.

[177] B. O’Sullivan, “Making sense of revision-control systems,” Communications
of the ACM, vol. 52, no. 9, pp. 56–62, September 2009.

[178] D. L. Parnas, “Software aging,” in Proceedings of the 16th International Con-
ference on Software Engineering, pp. 279–287, Los Alamitos, CA, USA: IEEE
Computer Society Press, 1994.

[179] J. Paulson, G. Succi, and A. Eberlein, “An empirical study of open-source
and closed-source software products,” IEEE Transactions on Software Engi-
neering, vol. 30, no. 4, pp. 246–256, April 2004.

[180] M. D. Penta, D. M. German, Y.-G. Gueheneuc, and G. Antoniol, “An
exploratory study of the evolution of software licensing,” in ICSE ’10: Pro-
ceedings of the 32nd International Conference on Software Engineering, ACM
Press, May 2010.

[181] B. Perens, “The open source definition,” in Open Sources: Voices from the
Open Source Revolution, (C. DiBona, S. Ockman, and M. Stone, eds.),
O’Reilly, 1999.

[182] D. E. Perry, A. A. Porter, and L. G. Votta, “Empirical studies of software
engineering: A roadmap,” in ICSE ’00: Proceedings of the Conference on The
Future of Software Engineering, pp. 345–355, New York, NY, USA: ACM,
2000.

[183] R. Purushothaman and D. Perry, “Toward understanding the rhetoric of small
source code changes,” IEEE Transactions on Software Engineering, vol. 31,
no. 6, pp. 511–526, June 2005.

[184] J. S. Quarterman and J. C. Hoskins, “Notable computer networks,” Commu-
nications of the ACM, vol. 29, no. 10, pp. 932–971, October 1986.

References 343

[185] E. S. Raymond, “A brief history of hackerdom,” Online http://catb.org/

˜esr/writings/cathedral-bazaar/hacker-history/, 2000.
[186] E. S. Raymond, “The magic cauldron,” Online http://www.sfu.ca/oldlidc/

LMSSC/documents/other%20related%20documents/magic-cauldron.pdf,
2000.

[187] E. S. Raymond, The Cathedral and the Bazaar: Musings on Linux and Open
Source by an Accidental Revolutionary. Sebastopol, CA: O’ Reilly and Asso-
ciates, 2001.

[188] D. M. Ritchie and K. Thompson, “The UNIX time-sharing system,” Commu-
nications of the ACM, vol. 17, pp. 365–375, July 1974.

[189] J. E. Robbins, “Adopting open source software engineering (OSSE) practices
by adopting OSSE tools,” in Perspectives on Free and Open Source Soft-
ware, (J. Feller, B. Fitzgerald, S. Hissam, and K. Lakhani, eds.), pp. 245–264,
Cambridge, MA: The MIT Press, 2005.

[190] J. A. Roberts, I.-H. Hann, and S. A. Slaughter, “Understanding the moti-
vations, participation, and performance of open source software developers:
A longitudinal study of the Apache projects,” Management Science, vol. 52,
no. 7, pp. 984–999, July 2006.

[191] G. Robles, “Empirical software engineering research on libre software: Data
sources, methodologies and results,” PhD Thesis, Universidad Rey Juan Car-
los, Madrid, 2005.

[192] G. Robles, S. Dueñas, and J. Gonzalez-Barahona, “Corporate involvement of
libre software: Study of presence in Debian code over time,” in Open Source
Development, Adoption and Innovation, IFIP International Federation for
Information Processing, vol. 234, pp. 121–132, Springer Verlag, 2007.

[193] G. Robles, J. M. Gonzalez-Barahona, and J. J. Merelo, “Beyond source code:
The importance of other artifacts in software development (a case study),”
Journal of Systems and Software, vol. 79, no. 9, pp. 1233–1248, Selected papers
from the fourth Source Code Analysis and Manipulation (SCAM 2004) Work-
shop, 2006.

[194] D. S. H. Rosenthal, T. Robertson, T. Lipkis, V. Reich, and S. Morabito,
“Requirements for digital preservation systems: A bottom-up approach,”
D-Lib Magazine, vol. 11, no. 11, November 2005.

[195] M. Rounds, “IBM saw ‘Limited’ software industry,” Software, vol. 9, no. 4,
pp. 37–40, March 1989.

[196] M. Ruffin and C. Ebert, “Using open source software in product development:
A primer,” IEEE Software, vol. 21, no. 1, pp. 82–86, 2004.

[197] B. M. Sadowski, G. Sadowski-Rasters, and G. Duysters, “Transition of gover-
nance in a mature open software source community: Evidence from the Debian
case,” Information Economics and Policy, vol. 20, no. 4, pp. 323–332, Decem-
ber 2008.

[198] P. H. Salus, A Quarter Century of UNIX. Boston, MA: Addison-Wesley, 1994.
[199] I. Samoladas, G. Gousios, D. Spinellis, and I. Stamelos, “The SQO-OSS quality

model: Measurement based open source software evaluation,” in OSS ’08: 4th
International Conference on Open Source Systems: Open Source Development,
Communities and Quality, IFIP 20th World Computer Congress, Working

344 References

Group 2.3 on Open Source Software, (E. Damiani and G. Succi, eds.), pp. 237–
248, Boston, MA: Springer, September 2008.

[200] I. Samoladas, I. Stamelos, L. Angelis, and A. Oikonomou, “Open source soft-
ware development should strive for even greater code maintainability,” Com-
munications of the ACM, vol. 47, no. 10, pp. 83–87, 2004.

[201] W. Scacchi, “Understanding requirements for developing open source software
systems,” IEE Proceedings — Software, vol. 149, no. 1, pp. 24–39, 2002.

[202] W. Scacchi, “Free and open source development practices in the game com-
munity,” IEEE Software, vol. 21, pp. 59–66, 2004.

[203] R. Sen, C. Subramaniam, and M. L. Nelson, “Determinants of the choice of
open source software license,” Journal of Management Information Systems,
vol. 25, no. 3, pp. 207–239, 2009.

[204] S. K. Shah, “Motivation, governance, and the viability of hybrid forms in open
source software development,” Management Science, vol. 52, no. 7, pp. 1000–
1014, July 2006.

[205] S. Sharma, V. Sugumaran, and B. Rajagopalan, “A framework for creat-
ing hybrid-OSS communities,” Information Systems Journal, vol. 12, no. 1,
pp. 7–25, 2002.

[206] P. V. Singh, “The small-world effect: The influence of macro-level properties
of developer collaboration networks on open-source project success,” ACM
Transactions on Software Engineering Methodology, vol. 20, pp. 6:1–6:27,
September 2010.

[207] D. Spiller and T. Wichmann, “FLOSS final report part 3. (FLOSS) free/libre
open source software: Survey and study. Basics of open source software
markets and business models,” Technical Report IST-2000-4.1.1, Berlecon
Research, July 2002.

[208] D. Spinellis, Code Reading: The Open Source Perspective. Addison Wesley
Professional, 2003.

[209] D. Spinellis, “Version Control Systems,” IEEE Software, vol. 22, no. 5,
pp. 108–109, September/October 2005.

[210] D. Spinellis, Code Quality: The Open Source Perspective. Boston, MA:
Addison-Wesley, 2006.

[211] D. Spinellis, “Future CS course already here,” Communications of the ACM,
vol. 49, no. 8, p. 13, 2006.

[212] D. Spinellis, “Global software development in the FreeBSD project,” in Inter-
national Workshop on Global Software Development for the Practitioner,
(P. Kruchten, Y. Hsieh, E. MacGregor, D. Moitra, and W. Strigel, eds.),
pp. 73–79, ACM Press, May 2006.

[213] D. Spinellis, “Open source and professional advancement,” IEEE Software,
vol. 23, no. 5, pp. 70–71, September/October 2006.

[214] D. Spinellis, “A Tale of Four Kernels,” in ICSE ’08: Proceedings of the 30th
International Conference on Software Engineering, (W. Schäfer, M. B. Dwyer,
and V. Gruhn, eds.), pp. 381–390, New York, NY: Association for Computing
Machinery, May 2008.

[215] D. Spinellis, G. Gousios, V. Karakoidas, P. Louridas, P. J. Adams, I. Samo-
ladas, and I. Stamelos, “Evaluating the quality of open source software,” in

References 345

SQM ’08: 2nd International Workshop on Software Quality and Maintain-
ability, pp. 5–28, The Reengineering Forum, April 2008. Electronic Notes in
Theoretical Computer Science Volume 233 (March 2009).

[216] D. Spinellis and C. Szyperski, “How is open source affecting software devel-
opment?,” IEEE Software, vol. 21, no. 1, pp. 28–33, January/Febraury 2004.

[217] R. Stallman, “Why upgrade to GPLv3,” Online http://www.gnu.org/
licenses/rms-why-gplv3.html, 2007.

[218] I. Stamelos, L. Angelis, A. Oikonomou, and G. L. Bleris, “Code quality anal-
ysis in open source software development,” Information Systems Journal,
vol. 12, no. 1, pp. 43–60, 2002.

[219] K. Staring, O. Titlestad, and J. Gailis, “Educational transformation through
open source approaches,” in IRIS ’05: Proceedings of the 28th Information
Systems Research Seminar in Scandinavia, April 2005.

[220] J. Stark, “Peer reviews as a quality management technique in open-source
software development projects,” in Proceedings of the 7th International Con-
ference on Software Quality, pp. 340–350, London, UK: Springer-Verlag, 2002.

[221] K. J. Stewart and S. Gosain, “The impact of ideology on effectiveness in open
source software development teams,” MIS Quarterly, vol. 30, no. 2, pp. 291–
314, June 2006.

[222] K.-J. Stol and M. Ali Babar, “Challenges in using open source software in
product development: A review of the literature,” in International Conference
on Software Engineering, pp. 17–22, 2010.

[223] K.-J. Stol, M. A. Babar, B. Russo, and B. Fitzgerald, “The use of empirical
methods in open source software research: Facts, trends and future directions,”
in FLOSS ’09: Proceedings of the 2009 ICSE Workshop on Emerging Trends
in Free/Libre/Open Source Software Research and Development, pp. 19–24,
Washington, DC: IEEE Computer Society, 2009.

[224] A. S. Tanenbaum, Operating Systems: Design and Implementation. Englewood
Cliffs, NJ: Prentice Hall, 1987.

[225] M. Tiemann, “Future of Cygnus solutions: An entrepreneur’s account,” in
Open Sources: Voices from the Open Source Revolution, (C. DiBona, S. Ock-
man, and M. Stone, eds.), O’Reilly, 1999.

[226] L. Torvalds, “The Linux Edge,” in Open Sources: Voices from the Open Source
Revolution, (C. DiBona, S. Ockman, and M. Stone, eds.), O’Reilly, 1999.

[227] L. Torvalds and D. Diamond, Just for Fun: The Story of an Accidental Rev-
olutionary. Harper Collins, May 2001.

[228] M. Umarji, S. Sim, and C. Lopes, “Archetypal internet-scale source code
searching,” in Open Source Development, Communities and Quality: IFIP
20th World Computer Congress, Working Group 2.3 on Open Source Soft-
ware, pp. 257–263, IFIP: International Federation for Information Processing,
Springer, September 2008.

[229] S. Valverde, G. Theraulaz, J. Gautrais, V. Fourcassie, and R. Sole, “Self-
organization patterns in wasp and open source communities,” Intelligent
Systems, IEEE, vol. 21, no. 2, pp. 36–40, March-April 2006.

[230] K. Ven, J. Verelst, and H. Mannaert, “Should you adopt open source soft-
ware?,” IEEE Software, vol. 25, no. 3, pp. 54–59, 2008.

346 References

[231] P. Vixie, “Software engineering,” in Open Sources: Voices from the Open
Source Revolution, (C. DiBona, S. Ockman, and M. Stone, eds.), O’Reilly,
1999.

[232] E. von Hippel, “Innovation by user communities: Learning from open source
software,” MIT Sloan Management Review, vol. 42, no. 4, pp. 82–86, Summer
2001.

[233] E. von Hippel, “Democratizing innovation: The evolving phenomenon of user
innovation,” Journal für Betriebswirtschaft, vol. 55, no. 1, pp. 63–78, March
2005.

[234] E. von Hippel, “Horizontal innovation networks -by and for users,” Industrial
and Corporate Change, pp. 1–23, May 2007.

[235] E. von Hippel and G. von Krogh, “Open source software and the ‘Private-
Collective’ innovation model: Issues for organization science,” Organization
Science, vol. 14, no. 2, pp. 209–223, March/April 2003.

[236] E. von Hippel and G. von Krogh, “Free revealing and the private-collective
model for innovation incentives,” Research and Developement Management,
vol. 36, no. 3, pp. 295–306, June 2006.

[237] G. von Krogh and S. Spaeth, “The open source software phenomenon:
Characteristics that promote research,” The Journal of Strategic Information
Systems, vol. 16, no. 3, pp. 236–253, 2007.

[238] G. von Krogh, S. Spaeth, and K. R. Lakhani, “Community, joining, and spe-
cialization in open source software innovation: A case study,” Research Policy,
vol. 32, no. 7, pp. 1217–1241, July 2003.

[239] G. von Krogh and E. von Hippel, “Special issue on open source software
development,” Research Policy, vol. 32, no. 7, pp. 1149–1157, July 2003.

[240] G. von Krogh and E. von Hippel, “The promise of research on open source
software,” Management Science, vol. 52, no. 7, pp. 975–983, July 2006.

[241] H. Wang and C. Wang, “Open source software adoption: A status report,”
IEEE Software, vol. 18, no. 2, pp. 90–95, March/April 2001.

[242] T. Waring and P. Maddocks, “Open source software implementation in the
UK public sector: Evidence from the field and implications for the future,”
International Journal of Information Management, vol. 25, no. 5, pp. 411–428,
2005.

[243] A. I. Wasserman, “Building a business on open source software,” in Proceed-
ings of Conference on Technological Entrepreneurship, Edward Elgar, 2009.
To appear.

[244] R. T. Watson, M.-C. Boudreau, P. T. York, M. E. Greiner, and D. W. Jr.,
“The business of open source,” Communications of the ACM, vol. 51, no. 4,
pp. 41–46, April 2008.

[245] S. Weber, The Success of Open Source. Harvard University Press, October
2005.

[246] C. Weiss, R. Premraj, T. Zimmermann, and A. Zeller, “How long will it take to
fix this bug?,” in MSR ’07: Proceedings of the Fourth International Workshop
on Mining Software Repositories, Washington, DC, USA: IEEE Computer
Society, 2007.

[247] J. West, “How open is open enough? Melding proprietary and open source
platform strategies,” Research Policy, vol. 32, no. 7, pp. 1259–1285, July 2003.

References 347

[248] J. West and J. Dedrick, “Scope and timing of deployment: Moderators of
organizational adoption of the Linux server platform,” International Journal
of IT Standards and Standardization Research, vol. 4, no. 2, pp. 1–37, July
2006.

[249] D. A. Wheeler, “The free-libre/open source software (FLOSS) license
slide,” Online http://www.dwheeler.com/essays/floss-license-slide.
pdf, September 2007.

[250] M. Wijnen-Meijer and R. Batenburg, “To open source or not to open source:
That’s the strategic question,” in ECIS ’07: Proceedings of the 15th European
Conference on Information Systems, pp. 1019–1030, 2007.

[251] M.-W. Wu and Y.-D. Lin, “Open source software development: An overview,”
IEEE Computer, vol. 34, no. 6, pp. 33–38, January 2001.

[252] T. Xie, S. Thummalapenta, D. Lo, and C. Liu, “Data mining for software
engineering,” Computer, vol. 42, pp. 55–62, 2009.

[253] J. Xu, Y. Gao, S. Christley, and G. Madey, “A topological analysis of the open
souce software development community,” in Proceedings of the 38th Annual
Hawaii International Conference on System Sciences, January 2005.

[254] Y. Ye and K. Kishida, “Toward an understanding of the motivation of open
source software developers,” in ICSE ’03: Proceedings of 25th International
Conference on Software Engineering, pp. 419–429, Portland, OR, May 2003.

[255] R. Young, “Giving it away: How Red Hat software stumbled across a new
economic model and helped improve an industry,” in Open Sources: Voices
from the Open Source Revolution, (C. DiBona, S. Ockman, and M. Stone,
eds.), O’Reilly, 1999.

[256] L. Yu, S. R. Schach, K. Chen, G. Z. Heller, and J. Offutt, “Maintainability
of the kernels of open-source operating systems: A comparison of Linux with
FreeBSD, NetBSD, and OpenBSD,” Journal of Systems and Software, vol. 79,
no. 6, pp. 807–815, 2006.

[257] D. Zeitlyn, “Gift economies in the development of open source software:
Anthropological reflections,” Research Policy, vol. 32, no. 7, pp. 1287–1291,
July 2003.

[258] W. Zhang and J. Storck, “Peripheral members in online communities,” in
AMCIS ’01: Proceedings of the 7th America’s Conference on Information
Systems, Boston, Massachusetts, 2001.

