
CScout: A Refactoring Browser for C

Diomidis Spinellisa

aAthens University of Economics and Business
Department of Management Science and Technology

Patision 76, GR-104 34 Athens, Greece

Abstract

Despite its maturity and popularity, the C programming language still lacks tool support for reliably performing
even simple refactoring, browsing, or analysis operations. This is primarily due to identifier scope complications
introduced by the C preprocessor. The CScout refactoring browser analyses complete program families by tagging
the original identifiers with their precise location and classifying them into equivalence classes orthogonal to the C
language’s namespace and scope extents. A web-based user interface provides programmers with an intuitive source
code analysis and navigation front-end, while an sql-based backend allows more complex source code analysis and
manipulation. CScout has been successfully applied to many medium and large proprietary and open source projects
identifying thousands of modest refactoring opportunities.

Key words: C, browser, refactoring, preprocessor

1. Introduction

C remains the language of choice for developing systems applications, such as operating systems and databases,
embedded software, and the majority of open-source projects [44, p. 16]. Despite the language’s popularity, tool
support for performing even simple refactoring, browsing, or analysis operations is currently lacking. Programmers
typically resort to using either simplistic text-based operations that fail to capture the language’s semantics, or work
on the results of the compilation and linking phase that—due to the effects of preprocessing—do not correctly reflect
the original source code. Interestingly, many of the tools in a C programmer’s arsenal were designed in the 1970s, and
fail to take advantage of the cpu speed and memory capacity of a modern workstation. In this paper we describe how
the CScout refactoring browser, running on a powerful workstation, can be used to accurately analyze, browse, and
refactor large program families written in C. The theory behind CScout’s operation is described in detail elsewhere
[45]; this paper focuses on the tool’s design, implementation, and application.

CScout can process program families consisting of multiple related projects (we define a project as a collection of
C source files that are linked together) correctly handling most of the complexity introduced by the C preprocessor.
CScout takes advantage of modern hardware (fast processors, large address spaces, and big memory capacities) to
analyze C source code beyond the level of detail and accuracy provided by current ides, compilers, and linkers.
Specifically, CScout’s analysis takes into account both the identifier scopes introduced by the C preprocessor and the
C language proper scopes and namespaces.

The objective of this paper is to provide a tour of CScout by describing the domain’s challenges, the operation of
CScout and its interfaces, the system’s design and implementation, and details of CScout’s application to a number of

Science of Computer Programming, 75(4):216–231, April 2010.
This is a machine-readable rendering of a working paper draft that led to a publication. The publication should always be cited in preference

to this draft using the reference in the previous footnote. This material is presented to ensure timely dissemination of scholarly and technical work.
Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere
to the terms and constraints invoked by each author’s copyright. In most cases, these works may not be reposted without the explicit permission of
the copyright holder.

Email addresses: dds@aueb.gr (Diomidis Spinellis)
URL: http://www.dmst.aueb.gr/dds (Diomidis Spinellis)

Preprint submitted to Elsevier October 9, 2011

large software projects. The main contributions of this paper are the illustration of the types of problems occurring in
the analysis of real-life C source code and the types of refactorings that can be achieved, the demonstration through
the application of CScout to a number of systems that accurate large-scale analysis of C code is in fact possible, and
a discussion of lessons associated with the construction of browsers and refactoring tools for languages, like C and
C++, that involve a preprocessing step.

2. Problem Statement

Many features of the C language hinder the precise analysis of programs written in it and complicate the design
of corresponding reasoning algorithms [15]. The most important culprits are unrestricted pointers, aliasing, arbitrary
type casts, non-local jumps, an underspecified build environment, and the C preprocessor. All features but the last two
ones limit our ability to reason about the runtime behavior of programs (see e.g. the article [18] and the references
therein). Significantly, the C preprocessor and a compilation environment based on loosely-coupled tools, like make
and a language-agnostic linker, also restrict programmers from performing even supposedly trivial operations such as
determining the scope of a variable, the type of an identifier, or the extent of a module.

2.1. Preprocessor Complications

In summary, preprocessor macros complicate the notion of scope and the notion of an identifier [11, 4, 45]. For
one, macros and file inclusion create their own scopes. This is for example the case when a single textual macro using
a field name that is incidentally identical between two structures that are not otherwise related is applied on variables
of those structures. In the following example, a renaming operation of the identifier len will require changing in all
three definitions, although in C the members of each data structure belong to a different namespace.

struct disk block { int len ; /∗ ... ∗/ } db;
struct mem block { int len ; /∗ ... ∗/ } mb;
#define get block len (b) ((b). len)

int s = get block len (db) + get block len (mb);

In addition, new identifiers can be formed at compile time via the preprocessor’s concatenation operator. As an
example, the following code snippet defines a variable named sysctl var sdelay, even though this name does not
appear in the source file.

#define SYSCTL(x) static int sysctl var ## x
SYSCTL(sdelay);

An additional complication comes from the use of conditionally compiled code (see also Sections 4.1 and 7). Such
code may or may not be compilable under a given compilation environment, and, often, blocks of such code may be
mutually incompatible.

2.2. Code Reuse Complications

Parnas [38] defines a program family as a set of programs that should be studied by first considering the common
properties of the set and then determining individual properties of family members (see also the work by Weiss and
Lai [61]). When analyzing C source code for browsing and refactoring purposes we are interested in program families
consisting of programs that through their build process reuse common elements of source code. This is a property of
what has been termed the build-time software architecture view [57]. We have identified three interesting instances of
source code sharing in such families.

Program configurations. Often the same source code base is used to derive a number of program configurations. As
an example, the Freebsd kernel source code is used as a basis for creating kernels for five processor architectures.
Major parts of the source code are the same among the different architectures, while the compilation is influenced by
architecture-dependent macros specifying properties such as the architecture’s native element size (32 or 64 bits) and
the “endianess” of the memory layout (the order in which an integer’s bytes are stored in memory).

2

�������������	

������������

��� 	� �
��	�

�����

���������	��� ��� ����� �
������	��

��������� ���������

Figure 1: Program family relationships in the Freebsd implementation of the Unix utilities.

Ad-hoc code reuse. In many cases elements of a source code base are reused to create various executable programs.
Although code reuse is typically realized by creating a common library (such as the Unix libraries math, dbm, termcap,
and telnet), which is linked with each program requiring the given functionality, there are cases where a simpler and
less structured approach is adopted. The example in Figure 1 illustrates some dependencies between three (supposedly
separate) Unix programs where CScout was applied: test, sh, and cp. Among them the condition evaluation utility test
and the shell sh share the source file test.c, while two source files both include the header err.h.

Version branches. When there is a supported maintenance branch among different releases of the same program,
then the same source code (with typically small differences between release-dependent versions) is reused among the
different releases.

In all three cases we described, the sharing and the differentiation of the source code does not typically happen
through mechanisms of the C language, but through extra-linguistic facilities. The most important of these are com-
piler invocation options that set macros and include file paths, symbolic links across files and directories, environment
variables affecting the build process, macros hard-coded in the compiler, and the automated copying of files as part
of the build process. Despite these complications, a viable tool should allow browsing and propagate refactoring
operations across all files in a given program family.

2.3. Problem Impact

Due to the previously described problems, programmers are currently working with methods and tools that are
neither sound nor complete. The typical textual search for an identifier in a source code base may fail to locate
identifier instances that are dynamically constructed, or will also locate identifiers that reside in a different scope
or namespace. When working with a compiler or ide-constructed symbol table there is another problem. Many C
implementations treat preprocessing as a separate phase and fail to pass information about C macros down through
the other compilation phases. Therefore, a more sophisticated search using such a symbol table database will fail to
match all macro instances, while its results will be difficult to match against the original source code. Consequently,
program maintenance and evolution suffer, because programmers, unsupported by the tools they use, are reluctant to
perform even a simple rename-function refactoring. Anecdotal evidence supports our observation: consider mutilated
identifier names such as that of the Unix creat system call that still persist, decades after the reasons for their original
names have become irrelevant [7, p. 60]. The readability of existing code slowly decays as layers of deprecated
historical practice accumulate [23, pp. 4–6, 184] and even more macro definitions are used to provide compatibility
bridges between legacy and modern code.

3. Related Work

Tools that aid program code analysis and transformation operations are often termed browsers [19, pp. 297–307]
and refactoring browsers [40] respectively. Related work on object-oriented design refactoring [56] asserts that it is
generally not possible to handle all problems introduced by preprocessing in large software applications. However,

3

Table 1: Comparison of C and C++ Refactoring and Transformation Tools

CScout Xrefactory Proteus CDT Refactor!
Number of supported refactorings 4 11 ∞ 5 150
Handle C namespaces

√ √ √ √ √

Rename preprocessor identifiers
√ √

×
√ √

Handle scopes introduced by the C preprocessor
√ √

× × ×

Handle identifiers created by the C preprocessor
√

× × × ×

C++ support ×
√ √ √ √

Yacc support
√

× × × ×

User environment Web Emacs — Eclipse Visual Studio
Reference [59] [60] [42] [9]

as we shall see in the following sections, advances in hardware capabilities are now making it possible to implement
useful refactoring tools that address the complications of the C programming language. The main advantage of our
approach is the correct handling of preprocessor constructs, so, although we have only tested the approach on different
variants of C programs, (K&R C, ANSI C, and C99 [28, 1, 25]) it is, in principle, also applicable to programs written
in C++ [53], Cyclone [27], pl/i and many assembly-code dialects.

Reference [10] provides a complete empirical analysis of the C preprocessor use, a categorization of macro bodies,
and a description of common erroneous macros found in existing programs. Two theoretical approaches proposed for
dealing with the problems of the C preprocessor involve the use of mathematical concept analysis for handling cases
where the preprocessor is used for configuration management [43], and the definition of an abstract language for
capturing the abstractions for the C preprocessor in a way that allows formal analysis [11]. The two-way mapping
between preprocessor tokens and C-proper identifiers used by CScout was first suggested by Livadas and Small [34].

A number of tools support the refactoring and transformation of C and C++ code. A summary of their capabilities
appears in Table 1; below we provide a brief description of each tool in comparison to CScout.

A tool adopting an approach similar to ours is Vittek’s Xrefactory [59]. Its functionality is integrated with the
Emacs editor [51]. Compared to CScout, Xrefactory supports C++, and thus also offers a number of additional
refactorings: field and method moving, pushing down and pulling up fields and methods, and the encapsulation of
fields. However, Xrefactory is unable to handle identifiers generated during the preprocessing stage; its author writes
that deciding how to handle the renaming of an identifier that is constructed from parts of other identifiers is, in
general, an unsolvable problem. The case refers to the renaming of the identifier sysctl var sdelay we showed
in Section 2.1 into, say, foo. Vittek, correctly writes that there is no way to perform this renaming in a natural way.
We sidestep this restriction by only allowing the renaming of an identifier’s constituent parts. Thus, in this case, a
CScout’s user can rename individually the identifier’s sysctl var part and the sdelay part, with each renaming
affecting the other corresponding parts in the program.

Another related tool, Proteus [60], analyzes C and C++ code, faithfully preserving preprocessor directives, com-
ments, and formatting information by integrating these elements into an abstract syntax tree (ast). This has the
advantage of allowing more sophisticated transformations than those that CScout can perform. The changes are speci-
fied using a domain-specific language, yatl—Yet Another Transformation Language. Proteus handles all preprocessor
directives as layout elements. Consequently, because Proteus does not consider and handle macro definitions as first-
class entities these cannot be changed. Furthermore, the code reconstructed from the ast can differ from the original
one, even if no transforms were applied; the authors conducted three large studies and found that 2.0%–4.5% of the
lines differed.

In the recent years two ides have evolved to support the refactoring C and C++ code through add-on modules.
Compared to CScout these support C++ and offer many more refactoring operations, but with less fidelity. The Eclipse
C/C++ Development Tooling (cdt) project features the following refactorings: extract constant, extract function,
generate getters and setters, hide method, and implement method [42]. The refactoring support of Visual Studio 2008
does not support C, but a third-party add-on Refactor! supports C/C++, offering 150 refactorings [9]. However, the
most recent versions of these two systems (Eclipse cdt 5.0.2—2009-02-13 and Refactor! for Visual Studio 3.2—

4

Table 2: File and Function Metrics that CScout Collects

File Metrics

• Number of: statements, copies of the file, defined project-scoped functions, defined file-scoped (static) functions,
defined project-scoped variables, defined file-scoped (static) variables, complete aggregate (struct/union) dec-
larations, declared aggregate (struct/union) members, complete enumeration declarations, declared enumeration
elements, directly included files

File and Function Metrics

• Number of: characters, comment characters, space characters, line comments, block comments, lines, character
strings, unprocessed lines, preprocessed tokens, compiled tokens, C preprocessor directives, processed C prepro-
cessor conditionals (ifdef, if, elif), defined C preprocessor function-like macros (e.g. max(a, b)), defined C
preprocessor object-like macros (e.g. EOF)

• Maximum number of characters in a line

Function Metrics

• Number of: statements or declarations, operators, unique operators, numeric constants, character literals, else clauses,
global namespace occupants at function’s top, parameters

• Number of statements by type: if, switch, break, for, while, do, continue, goto, return

• Number of labels by type: goto, case, default

• Number of identifiers by type: project-scoped, file-scoped (static), macro, object (identifiers having a value) and
object-like macros, label

• Number unique of identifiers by type: project-scoped, file-scoped, macro, object and object-like

• Maximum level of statement nesting

• Fan-in and fan-out

• Complexity: cyclomatic, extended cyclomatic, and maximum (including switch statements) cyclomatic

2009-02-27) cannot handle the preprocessor complications listed in Section 2.1. Specifically, when attempting to
rename identifiers appearing in Section’s 2.1 source examples Eclipse cdt reports “The selected name could not be
analyzed”, whereas Refactor! renames the identifier specified, but fails to rename other associated instances.

Other related work has proposed the integration of multiple approaches, views, and perspectives into a single
environment [2], the full integration of preprocessor directives in the internal representation [16, 14], the use of an
abstract syntax graph for communicating semantic information [30], and the use of a gxl [21] schema for representing
either a static or a dynamic view of preprocessor directives [58].

The handling of multiple configurations implemented through preprocessor directives that CScout implements, has
also been studied in other contexts, such as the removal of preprocessor conditionals through partial evaluation [5],
the type checking of conditionally compiled code [3], and the use of symbolic execution to determine the conditions
associated with particular lines of code [22].

4. The CScout Refactoring Browser

To be able to map and rename identifiers across program families accurately and efficiently CScout integrates in a
single processing engine functions of a build tool (such as make or ant), a C preprocessor, a C compiler front-end, a
parser of yacc files, a linker, a relational database export facility, and a web-based gui.

CScout as a source code analysis tool can:

• annotate source code with hyperlinks to a detail page for each identifier,

• list files that would be affected by changing a specific identifier,
5

������

���	�
����

�������

���
��	����
���	��
���

�

�
�	���
��
�����

����

�
��������
��
���

������

����

�����
�
�����

���
��	����

����������

��
������
����������

Figure 2: CScout system operation.

• determine whether a given identifier belongs to the application or to an external library, based on the accessibil-
ity and location of the header files that declare or define it,

• locate unused identifiers taking into account inter-project dependencies,

• perform sophisticated queries for identifiers, files, and functions,

• monitor and report superfluously included header files, and

• provide accurate metrics over functions and files (see Table 2).

More importantly, CScout helps programmers in refactoring code by identifying dead objects to remove, and can
automatically perform accurate global rename identifier, add parameter, remove parameter, and change parameter
order refactorings [20]. One might question whether support for a few simple refactoring types merits calling CScout
a refactoring tool. To answer this, consider that the rename identifier operation is by far the most common refactoring
operation performed in practice [36], and that performing refactoring operations reliably on production C source code
is very tricky. Specifically, CScout will automatically rename identifiers and refactor function arguments

• taking into account the namespace of each identifier: a renaming of a structure tag, member, or a statement
label will not affect, for example, variables with the same name,

• respecting the scope of identifiers: a refactoring operation can affect multiple files, or variables within a single
block, exactly matching the semantics the C compiler would enforce,

• across multiple projects (linkage units) when the same identifier is defined in common shared header files or
even code,

• across conditionally compiled units, if an appropriate workspace (a set of interrelated linkage units) has been
defined and processed.

Uniquely, CScout will rename identifiers occurring in macro bodies and even parts of other identifiers, when these are
created through the C preprocessor’s token concatenation feature.

4.1. Source Code Processing

Figure 2 illustrates the model of CScout’s operation. The operation is directed by a processing script, which
contains a sequence of imperative processing commands. These commands setup an environment for processing each
source code file. The environment is defined by the current directory, the header file directory search path, externally

6

Table 3: The #pragma Directives of the CScout Processing Script
Pragma Action

echo string Display the string on CScout’s standard output when the directive is processed.
ro prefix string Add string to the list of filename prefixes that mark read-only files. This is a global

setting used for bifurcating the source code into the system’s (read-only) files and the
application’s (writable) files.

project string Set the name of the current project (linkage unit) to string. All identifiers and files
processed from then on will be set to belong to the given project.

block enter Enter a nested scope block. Two blocks are supported, the first block enter will
enter the project scope (linkage unit); the second encountered nested block enter

will enter the file scope (compilation unit).
block exit Exit a nested scope block. The number of block enter pragmasshould match the

number of block exit pragmas and there should never be more than two block enter

pragmas in effect.
process string Analyze (CScout’s equivalent to compiling) the C source file named string.
pushd string Set the current directory to string, saving the previous current directory in a stack.

From that point onward, all relative file accesses will search the specified file from the
given directory.

popd Restore the current directory to the one in effect before a previously pushed directory.
The number of pushd pragmas should match the number of popd pragmas.

includepath string Add string to the list of directories used for searching included files (the include path).
clear include Clear the include path, allowing the specification of a new one from scrarch.
clear defines Clear all defined macros allowing the specification of new ones from scrarch. Should

normally be executed before processing a new file. Note that macros can be defined
in the processing script using the normal #define C preprocessor directive.

defined macros, and the linkage unit name to be associated with global identifiers. The script is a C file comprised
mostly of #define directives and CScout-specific #pragma directives (see Table 3). In cases where the source code
involves multiple configurations implemented through conditional compilation the script will contain directives to
process the source code multiple times, once for each configuration with different options (defined macros or include
file paths) set in each pass.

Creating the processing script is not trivial; for a large project, like the Linux kernel, the (automatically generated)
script can be more than half a million lines long. The script can be created in three ways.

1. A CScout companion program, csmake, can monitor compiler, archiver, and linker invocations in a make-driven
build process, and thereby gather data to automatically create the processing script. This method has been used
for processing all code listed in Table 4 (apart from the Solaris and Windows kernels), as well as tens of other
Unix-based systems.

2. A declarative specification of the source components, compiler options, and file locations required to build the
members of a program family is processed by the CScout workspace compiler cswc. This method offers precise
control of CScout’s processing. It is also useful in cases when csmake is not compatible with the platform’s
compilation process; csmake currently handles the programs make, gcc, cc, ld, ar, and mv running in a posix
shell environment. A 27-line csmake specification has been used for processing the Unix utilities illustrated in
Figure 1 and a 125-line specification for processing a 350 kloc proprietary cad system.

3. The build process can be instrumented to record the commands executed. This transcript can then be semi-
automatically converted into the CScout processing script. For instance, a 74-line Perl script was used to convert
the 1,149-line output of Microsoft’s nmake program compiling the Windows Research Kernel into a 51,288-line
Cscout processing script. Similarly, a 137-line Perl script was used to convert the 26,704-line output of Sun’s
dmake program [54] compiling the OpenSolaris kernel into a 140,552-line Cscout processing script.

As a by-product of the processing CScout generates a list of error and warning messages in a standard format that

7

typical editors (like vi and Emacs) and ides can process. These warnings go beyond what a typical compiler will detect
and report

• unnecessarily included header files,

• identifiers for functions, variables, macros, labels, tags, and members that are never used across the complete
workspace, and

• elements that should have been declared with file-local (static) visibility.

Many worthwhile maintenance activities can be performed by processing this standardized error report. In one case
we automatically processed those warnings to remove 765 superfluous #include directives (out of a total of 5429)
from a 190kloc cad program [50], thereby increasing its maintainability by reducing namespace pollution.

After processing all source files, CScout can operate as a web server, allowing members of a team to browse
and modify the files comprising the program family. All changes performed through the web interface (currently
rename operations on identifiers and various function argument refactorings) are mirrored in an in-memory copy of
the source code. These changes can then be committed back to the source code files, optionally issuing commands
for a version control system. When CScout writes back the refactored source code the only changes made are the
renamed identifiers and the changed function arguments. Therefore, CScout’s effect on the source code’s formatting
is negligible. A separate backend enables CScout to export its data structures to a relational database management
system for further processing.

4.2. Web-Based Interface
The easiest way to use CScout is through its interactive web-based interface (see Figure 3). Using the swill

embedded web server library [29], CScout allows the connection of web clients to the tool’s http-server interface.
Through a set of hyperlinks users can perform the following tasks.

• Browse file and identifier names belonging to specific semantic categories (e.g. read-only files, file-spanning
identifiers, or unused identifiers).

• Examine the source code of individual files, with hyperlinks providing navigation from each identifier to a
separate page providing details of its use.

• Specify identifier queries based on the identifier’s namespace, scope, and name, and whether the identifier is
writable, crosses a file boundary, is unused, occurs in files of a given name, is used as a type definition, or is a
(possibly undefined) macro, or macro argument. The file and identifier names to include or exclude can also be
specified in the query as extended regular expressions—see Figure 4(a).

• Specify simple form-based file and function queries based on the calculated metrics listed in Table 2.

• Perform queries for functions based on their callers, the functions they call, identifiers they contain, and the
filenames where they reside.

• View the semantic information associated with a class of identifiers. Users can find out whether the identifier
is read-only (i.e. at least one of its instances resides in a read-only file), and whether its instances are used
as macros, macro arguments, structure, union, or enumeration tags, structure or union members, labels, type
definitions, or as ordinary identifiers. In addition, users can see if the identifier’s scope is limited to a single file,
if it is unused (i.e. appears exactly once in a workspace), the files it appears in, and the projects (linkage units)
that use it. Unused identifiers allow the programmer to find functions, macros, variables, type names, structure,
union, or enumeration members or tags, labels, or formal function parameters that can be safely removed from
the program.

• View information associated with a function or a function-like macro: the identifiers comprising its name, its
declaration and definition, the callers and the called functions, and their transitive closure—see Figure 4(b).
Uniquely, CScout can calculate metrics and call graphs that take into account both functions and function-like
macros—see Figure 5(b) derived while browsing the source code of awk and drawn using dot [17]. This matches
the reality of C programming, where the two are used interchangeably.

8

Figure 3: A screen dump of the CScout web interface.

9

(a) The identifier query form. (b) A function or macro page.

Figure 4: The CScout web front-end in operation.

�����

�����

	
�����

�����

�������

������� �������� ��
�������	���

(a) Included files.

�����

����������

�����	�
 ������

������ ��
�	�
���
�����

	��
�
��

���	��
��

(b) Call graph spanning functions and macros.

���

�����

�����

��	��

�����

������

������

(c) Control dependencies between files.

���

�����

�����

��	��

�����

������

������

���������

(d) Data dependencies between files.

Figure 5: CScout-generated graphs for the awk source code file lex.c.

10

�����

����
����	�
�
����
�
�����
���

�������	����

�

�

�
���

����
����
�
�������������

�

�

�����

����������

�

�

�

�

�������	

����������

����������

�

�

��	����

����������
���������

�

�

����	

����������

�������

�

�

�����

����������
���������

�

�

�
���	���

�����
����
����
�
�����
����

�
�

�

�

�
���	�����	����

���������������
�������������
����
�
�������������

����������
���

�

�

����������
�����

�

�

�

 ���������

�
���	�������

���
�
�

�

�����
�

�

�
�������

�

�

Figure 6: The logical schema of the exported database.

• Generate graphs of compile-time and run-time control and data–dependencies—see Figures 5(c) and 5(d). .

• Perform rename identifier and various function argument refactorings. Specifically, users can substitute all
matching instances of a given identifier with a new user-specified name. In addition, in a function’s web page
users can specify a substitution template for the function’s parameters. This can include the original parameters
(denoted by placeholders for the original arguments, named @1, @2, etc.), as well as other arbitrary text, like
constants and expressions. Refactorings can be specified multiple times, allowing the incremental improvement
of the code, without the expensive reprocessing step. A separate operation will permanently save the modified
code.

The rename functionality can be used to semi automatically perform two important refactoring operations: rename,
e.g. Griswold and Notkin’s [20] “rename-variable”, and remove, e.g. Fowler’s [13] “Remove Parameter”. Remove
refactorings can be trivially performed by hand, after identifiers that occur exactly once have been automatically and
accurately identified. Fully automating this process is hard (there are many rare special cases that have to be handled),
but performing it by hand is in most cases very easy. The substitution template for function parameters can be used
for adding a function argument (with a user-specified default value), for removing a function argument (by omitting
its placeholder from the substitution pattern), and for changing the order of a function’s arguments.

The web server follows the representational state transfer (rest) architecture [12], and therefore its urls can be
used for interoperating with other tools. For instance, a build tool could use the url

http://localhost:8081/fgraph.txt?gtype=C

to obtain the compile-time dependencies between a project’s files. Furthermore, as all web pages that CScout generates
are identified by a unique url, programmers can easily mark important pages (such as a particular identifier that must
be refactored, or the result of a specialized form-based query) using their web browser’s bookmarking mechanism,
or even email an interesting page’s url to a coworker. In fact, many links appearing on CScout’s main web page are
simply canned hyperlinks to the general queries we previously outlined.

4.3. SQL Backend

CScout can also dump the data structures representing the source code analysis it performed in an sql script
suitable for loading the data into a relational database. There is considerable history behind storing source code in

11

a relational schema both for procedural languages in general [33] and, in particular, for C [6]. We chose to use a
relational model over a specialized and more expressive logic query language, along the lines of soul [62] or JQuery
[26, 8], in order to exploit the performance and maturity of existing rdbms systems for the offline storage of very large
data sets—one particular study we performed [48] involved storing and processing more than 160 million records.

Figure 6 shows the most important parts of the corresponding schema. (Four tables associated with reasoning
about include file dependencies are omitted.) Through the database one can issue all the queries available on the gui
front-end and many more. For instance, the following simple sql query will find all type definitions that don’t end in
“ t” (a common naming convention).

select distinct name from ids left join tokens on ids . eid = tokens . eid
where ids . typedef and not name like ’% t’ order by name

The following, more complex, query

select name,count(∗) as nfile from (select fid , tokens . eid ,count(∗) as c from tokens group by eid , fid)
as cl inner join ids on cl . eid = ids . eid group by ids . eid , ids .name order by nfile desc;

will show all identifiers, ordered by the number of different files in which they occur (a measure of coupling):

+---------+-------+

| name | nfile |

+---------+-------+

| NULL | 3292 |

| u | 2560 |

| printk | 1922 |

| ... | ... |

The program’s sql representation contains all elements of the corresponding source code. Therefore, one can also
perform large-scale refactorings through sql commands. Then, the source code of each file (e.g. file number 42 in the
following sql query) can be fully reconstituted from its refactored parts.

select s from (
select name as s , foffset
from ids inner join tokens on ids . eid = tokens . eid where fid = 42
union select code as s , foffset from rest where fid = 42
union select comment as s, foffset from comments where fid = 42
union select string as s , foffset from strings where fid = 42

) order by foffset

5. Design and Implementation

Bringing CScout into life required careful analysis of the principles of its operation, a design that matched the
software and computing resources at hand, and substantial implementation work. The major challenges can be divided
into: preprocessing and parsing, the enforcement of C namespaces, the handling of C preprocessor complications,
the handling of code reuse complications, testing, achieving adequate performance, and keeping the project in a
manageable scale.

5.1. Preprocessing and Parsing
Preprocessing C is anything but trivial. CScout’s lexical analyzer and the C preprocessor are hand-crafted; con-

verging toward a correct preprocessor proved to be tricky. For many years CScout would be patched to fix misbe-
haviors occurring in obscure cases of macro invocations. The situation was becoming increasingly difficult, because
often fixing one case would break another. In the end we realized that the only way to achieve correct behavior was
to locate (through a personal communication with its author) and implement the so-called Prosser’s macro expansion
algorithm [39]. Almost miraculously all test cases worked correctly, and after two years of use and many millions of
processed code, no other problems were reported in the area of macro expansion.

12

In contrast to C++, C is not difficult to parse, but the grammar supplied as part of the C standards is not suitable
for generating yacc-based parsers, because such parsers then contain numerous rule conflicts. CScout’s C grammar is
based on Roskind’s work [41] extended to support the parsing of yacc files, and many C99 [25], gcc, and Microsoft C
extensions. It comprises 144 productions and, after 149 revisions, it is 2,670 lines long. The parsing of preprocessor
expressions and the C code are handled by two separate btyacc grammars. Btyacc was selected over yacc for its porta-
bility, better support for C++, superior handling of syntax errors through backtracking, and the ability to customize it
in order to support the side-by-side linking of two separate grammars.

Handling the various language extension dialects hasn’t proven to be difficult; probably because CScout is quite
permissive in what is accepts. Therefore, currently CScout’s input is the union of all possible language extensions. If
in the future some extensions are found to be mutually exclusive, this can be handled by adding #pragma directives
that will change the handling of the corresponding keywords.

5.2. Enforcement of C Namespaces

The separation of identifiers into C namespaces is achieved through a symbol table containing basic type infor-
mation for identifiers in the current scope. Furthermore, support for the C99 initializer designators also requires the
evaluation of compile-time constants. This non-trivial functionality is needed, because the array position of an ini-
tializer can be specified by a compile-time constant. When elements of nested aggregates—structures, unions, and
arrays—are specified in comma-separated form without enclosing them in braces, the array position constant must be
evaluated in order to determine the type of the next element.

The type checking subsystem is mainly used to identify a tag’s underlying structure or union for member access
and initialization, and to handle type definitions. In addition, its implementation provided us with a measure of
confidence regarding the equivalence class unification operations dictated by the language’s semantics.

The symbol table design follows the language’s block scoping rules, with special cases handling prototype dec-
larations and compilation and linkage unit visibility. Between the processing of two different projects (linkage units)
the complete symbol table is cleared and only equivalence classes remain in memory, thus reducing CScout’s memory
footprint. This optimization can be performed, because if we ignore extra-linguistic facilities (such as shared libraries,
debug symbols, and reflection) linked programs operate as standalone processes and do not depend on any program
identifiers for their operation.

5.3. Handling C Preprocessor Complications

The basic principle of CScout’s operation is to tag each identifier appearing in the original source code with
its precise location (file and offset) and to follow that identifier (or its part when new identifiers are composed by
concatenating original ones) across preprocessing, parsing, (partial) semantic analysis, and (notional) linking [45]. To
handle the scoping rule mix-ups generated by the C preprocessor (see Section 2.1), every identifier is set to belong
to exactly one equivalence class: a set of identifiers that would have to be renamed in concert for the program
family to remain semantically and syntactically correct. The notion of an equivalence class is orthogonal to the
language’s existing namespace and scope extents, taking into account the changes to those extents introduced by the
C preprocessor. When each identifier token is read, a new equivalence class for that token is created. Every time a
symbol table lookup operation for an identifier matches an existing identifier (e.g. the use of a declared variable or the
use of a parameter of a function-like macro) the two corresponding equivalence classes are unified into a single one.

In total, 20 equivalence class unifications are performed by CScout. These can be broadly classified into the
following categories: macro formal parameters and their use inside the macro body, macros used within the source
code, macros being redefined or becoming undefined, tests for macros being defined, identifiers used in expressions,
structure or union member access (direct, through a pointer indirection, or through an initializer designator), decla-
rations using typedef types, application of the typeof operator (a gcc extension) to an identifier, use of structure,
union, and enumeration tags, old-style [28] function parameter declarations with the respective formal parameter
name, multiple declarations and definitions of objects with compilation or linkage unit scope, and goto labels and
targets, respectively.

By classifying all identifiers into equivalence classes, and then creating and merging the classes following the
language’s rules, we end up with a data structure that can identify many interesting relationships between identifiers.

13

• A rename operation simply involves changing the name of all identifiers belonging to the same equivalence
class.

• Verifying that a renamed identifier does not clash with other identifiers means checking that no new equivalence
class unifications occur when reprocessing the code. This method handles correctly all the language’s scoping
rules, a problem for many other refactoring tools [52].

• Unused identifiers are those belonging to an equivalence class with exactly one member.

• If at least one identifier in an equivalence class is located in a read-only file—for instance a system library
header file—then all the identifiers of that class are considered immutable.

5.4. Handling Code Reuse Complications
CScout handles the code reuse complications outlined in Section 2.2 by providing an integrated build system that

can process multiple linkage units as a whole.
An early design choice based this build system on extending the C language that CScout can process with a few

#pragma directives (see Table 3). Making the build language an extension of C means that existing C facilities can
be used for a number of tasks. Thus, external macro definitions that other build systems pass to the compiler as
flags are simply defined through #define directives. Furthermore, internally-defined macro definitions, such as those
handling gcc’s built-in intrinsic functions, can be easily introduced simply by processing the file that defines them
with a #include directive.

Making the build language textual, rather than gui-based as is typically the case in many ides, means that other
more sophisticated tools can create build scripts. This is the case with the cswc, the CScout workspace compiler and
csmake, the make-driven build process monitor and build script generator.

5.5. Testing
The complexity of CScout’s analysis requires a framework to ensure that it remains functional and correct as the

code evolves. The testing of CScout consists of stress and regression testing. Stress testing involves applying CScout
to various large open-source systems. Problems in the preprocessor, the parser, or the semantic analysis quickly
exhibit themselves as parsing errors or crashes. In addition, by having CScout replace all identifiers of a system with
mechanically-derived names and then recompiling and testing the corresponding code builds confidence in CScout’s
equivalence algorithms and the rename-identifier refactoring.

Regression testing is currently used to verify corner cases and check for accidental errors. The CScout’s prepro-
cessor is tested through 70 test cases whose output is then compared with the hand-verified output. The parser and
analyzer are further tested through 42 small and large test cases whose complete analysis is stored in an rdbms and
compared with previously verified results.

5.6. Performance
With CScout processing multi-million line projects as a single entity, time and space performance have to be

kept within acceptable bounds, with increases at most linearly dependent on the size of the input. Although no
fancy algorithms and data structures were used to achieve the CScout’s scalability, extreme care was taken to adopt
everywhere data structures and corresponding algorithms that would gracefully scale. This was made possible by
the C++ stl library. For each data structure we simply chose a container that would handle all operations on its
elements efficiently in terms of space and time. Thus, all data lookup operations are either O(1) for accessing data
through a pointer indirection or at a vector’s known index, or O(log N) for operations on sets and maps. These choices
also allow the elegant and efficient expression of complex relationships, using stl functions like set union, set -

intersection, and equal range. Up to now algorithmic tuning was required only once, to fix a pathological case
in the implementation of the C preprocessor macro expansion [46].

The aggressive use of stl complicated CScout’s debugging. Navigating stl data structures with gdb is almost
impossible, because gdb provides a view of the data structures’ implementation details, but not their high-level op-
erations. This problem was solved by implementing a custom logging framework [47]: a lightweight and efficient
construct that allowed us to instrument the code with (currently 200) log statements. As the following example shows,
writing such a debugpoint statement is trivial:

14

if (DP()) cout << ”Gather args returns : ” << v << endl;

Each debugpoint can be easily enabled at runtime by specifying in a text file its corresponding file name and line
number. The overhead of debugpoints can be completely disabled at compile time, but even when they get compiled,
if none of them is enabled, their cost is only that of a compare and a jump instruction.

5.7. Project Scale
Implementing a tool of CScout’s complexity proved to require considerable effort. CScout has been actively

developed for five years, and currently consists of 27 kloc. Most of the code is written in C++ with Perl being used
to implement the CScout processing script generators csmake and cswc. Two more Perl scripts automatically extract
from the source code the documentation for the sql database schema and the reported error messages.

Eight class hierarchies allow for some inheritance-based code reuse. Ordered by decreasing number of classes
in each inheritance tree, these cover C’s types, graph rendering, the handling of user options, sql output, query
processing, C’s tokens, metrics, and functions.

More importantly, CScout benefits from the use of existing mature open source components and tools: the btyacc
backtracking variant of the yacc parser generator, the swill embedded web server library [29], the dot graph drawing
program [17], and the mySQL and PostgreSQL relational database systems. The main advantages of these components
were their stability, efficiency, and hassle-free availability. In addition, the source code availability of btyacc and swill
allowed us to port them to various platforms and to add some minor but essential features: a function to retrieve an
http’s request url in swill, and the ability for multiple grammars to co-exist in a program in btyacc.

6. Applying CScout

CScout has been applied on tens of open source and commercial software systems running on a variety of hardware
and software platforms [48, 49, 50]. The workspace sizes range from 6 kloc (awk) to 4.1 mloc (the Linux kernel).
In all cases CScout was applied on the unmodified source code of each project. (CScout supports the original k&r C
[28], ansi C [1], and many C99 [25], gcc, and Microsoft C extensions.) Details of some representative projects can be
seen in Table 4, while data of the hosting hardware appears in Table 5. The projects listed are the following.

awk The one true awk scripting language.1

Apache httpd The Apache project web server, version 1.3.27.

FreeBSD The source code of the Freebsd kernel head branch, as of 2006-09-18, in three architecture configurations:
i386, amd64, and sparc64.

Linux The Linux kernel, version 2.6.18.8-0.5, in its amd64 configuration.

Solaris Sun’s OpenSolaris kernel, as of 2007-07-28, in three architecture configurations: Sun4v, Sun4u, and sparc.

WRK The Microsoft Windows Research Kernel, version 1.2, into two architecture configurations: i386 and amd64.

PostreSQL The PostgreSQL relational database, version 8.2.5.

GDB The gnu debugger, version 6.7.

In the cases of awk, Apache httpd, gdb, wrk, and gdb the program family included one main project and a number
of small peripheral ones (such as add-on modules or post-processing tools) sharing a few source or header files. The
three Unix-like kernels (Freebsd, Linux, and OpenSolaris) were different: all consist of a main kernel and hundreds
more run time–loadable modules providing functionality for various devices, filesystems, networking protocols, and
additional features. Similarly, Postgresql included in its build numerous commands, tests, and dynamically-loadable
localization libraries. With CScout all linkage units were processed as a single workspace, allowing browsing and
refactoring to span elements residing in different linkage units.

1http://cm.bell-labs.com/who/bwk/index.html

15

Table
4:D

etails
ofrepresentative

processed
applications.

aw
k

A
pache

Free
b
sd

L
inux

Solaris
w
r
k

Postgre
sq
l

g
d
b

httpd
kernel

kernel
kernel

O
verview

C
onfigurations

1
1

3
1

3
2

1
1

M
odules

(linkage
units)

1
3

1,224
1,563

561
3

92
4

Files
14

96
4,479

8,372
3,851

653
426

564
L

ines
(thousands)

6.6
59.9

2,599
4,150

3,000
829

578
363

Identifiers
(thousands)

10.5
52.6

1,110
1,411

571
127

32
60

D
efined

functions
170

937
38,371

86,245
39,966

4,820
1,929

7,084
D

efined
m

acros
185

1,129
727,410

703,940
136,953

31,908
4,272

6,060
Preprocessordirectives

376
6,641

415,710
262,004

173,570
35,246

13,236
20,101

C
statem

ents
(thousands)

4.3
17.7

948
1,772

1,042
192

70
129

R
efactoring

opportunities
U

nused
file-scoped

identifiers
20

15
8,853

18,175
4,349

3,893
2,149

2,275
U

nused
project-scoped

identifiers
8

8
1,403

1,767
4,459

2,628
2,537

939
U

nused
m

acros
4

412
649,825

602,723
75,433

25,948
1,763

2,542
V

ariables
thatcould

be
m

ade
static

47
4

1,185
470

3,460
1,188

29
148

Functions
thatcould

be
m

ade
static

10
4

1,971
1,996

5,152
3,294

133
69

Perform
ance

c
pu

tim
e

0.81”
35”

3h
43’40”

7h
26’35”

1h
18’54”

58’53”
3’55”

11’13”
L

ines
/s

8,148
1,711

194
155

634
235

2,460
539

R
equired

m
em

ory
(m
b)

21
71

3,707
4,807

1,827
582

463
376

B
ytes

/line
3,336

1,243
1,496

1,215
639

736
840

1,086

16

Table 5: Performance measurements’ hardware configuration.

Item Description
Computer Custom-made 4U rack-mounted server

cpu 4 × Dual-Core Opteron
cpu clock speed 2.4ghz

L2 cache 1024kb (per cpu)
ram 16gb 400 mhz ddr2 sdram

System Disks 2 × 36gb, sata ii, 8 mb cache, 10k rpm, software raid-1 (mirroring)
Storage Disks 8 × 500gb, sata ii, 16 mb cache, 7.2k rpm, hardware raid-10 (4-stripped mirrors)

Database Disks 4 × 300gb, sata ii, 16 mb cache, 10k rpm, hardware raid-10 (2-stripped mirrors)
raid Controller 3ware 9550sx, 12 sata ii ports, 226mb cache

Operating system Debian 5.0 stable running the 2.6.26-1-amd64 Linux kernel

Another interesting element of the analysis was the handling of different configurations for Freebsd, OpenSolaris,
and wrk [48]. A kernel configuration specifies the cpu architecture, the device drivers, filesystems, and other elements
that will be included in a kernel build. Through conditional compilation directives, the processed source code of one
configuration can differ markedly from another. By processing multiple configurations as a single workspace CScout
can present the source code as the union of the corresponding source code elements, and therefore ensure that the
refactorings won’t break any of the configurations processed.

The processing time required appears to be acceptable for integrating CScout in an ide for small (e.g. up to 10
kloc) projects. Memory requirements also appear to be tolerable for up to medium sized workspaces (e.g. up to
100 kloc) for a typical developer workstation. Large workspaces will require a high-end modern workstation or a
server equipped with multi-gigabyte memory and a 64-bit cpu. The time required to write-back the refactored files
is negligible. For instance, saving the 96 files of Apache httpd (60 kloc) with all identifiers replaced with a unique
random name required in our configuration 331 ms—about 1% of the total processing time. However, if the user opts
to check rename refactorings for clashes with other identifiers, then a complete reprocessing of the source code is
required; this takes about the same time as the original processing.

Up to now the most useful application of CScout has been the cleanup of source code, performed by removing
unused objects, macros, and included header files, and by reducing the visibility scope of defined objects. This is an
easy target, since all it entails is letting an editor automatically jump to each affected file location by going through
CScout’s standardized warning report.

To test CScout’s identifier analysis we added an option in the refactoring engine to rename all the writable iden-
tifiers into new, mechanically derived, random identifier names. We applied this transformation to the apache http
server source code; the resulting version compiled and appeared to work without a problem. This source code transfor-
mation can be applied on proprietary code to derive an architecture-neutral software distribution format: a (minimally)
obfuscated version of the source code, which, like compiled code, unauthorized third parties cannot easily compre-
hend and modify, but, unlike compiled code, can be configured and compiled on each end-user platform to match its
processor architecture and operating system.

7. Lessons Learned

The main lessons learned from CScout’s development are the value of end-to-end whole-workspace analysis of C
source code, and the many practical difficulties of dealing with real-world C software. Researchers can apply these
lessons by adopting a similar depth of analysis, such as the analysis already done in the llvm compiler infrastructure
project [31]. Alternatively, researchers at the forefront of tool technology, can save a lot of effort and pain by steering
their energy toward more tractable languages, like Java. Furthermore, commercial tool builders should plan and
budget for the difficulties we outline.

The operation of program analysis and transformation tools can be characterized as sound when the analysis will
not generate any false positive results, and as complete when there are not missing elements in the results of the

17

analysis. The analysis performed by CScout over identifier equivalence classes is in the general case sound, because it
follows precisely the language’s semantic rules. The incompleteness of the produced results stems from three different
complications; addressing those with heuristics would result in an analysis that would no longer be sound. Predictably,
these complications in our scheme arise from preprocessing features.

Unifying undefined macros. In the absence of a shared #undef directive two undefined macros with the same name
can only be unified into a single identifier through a heuristic rule that considers them to be referring to the same
entity. This is typically a correct assumption, because testing through undefined macros is used for configuring
software through a carefully managed namespace, with identifiers such as HAS FGETPOS and HAS GETPPID.

Coverage of macro applications. Dealing with function-like macros whose application does not cover all possible
cases needed for semantically correct refactoring can be problematic. Consider the first case in Section 2.1. If the
code does not apply get block len on at least one element of type disk block and one of type mem block CScout
has no way to know that all three instances of len are semantically equivalent and should be renamed in concert.

Handling conditional compilation. In practice, this issue has caused the greatest number of problems. Conditional
compilation results in code parts that are not always processed. Some of them may be mutually exclusive, defining
e.g. different operating system–dependent versions of the same function. The problem can be handled with multiple
passes over the code, or by ignoring conditional compilation commands. This process may need to be guided by
hand, because conditionally compiled code sections are often specific to a particular compilation environment. When
processing the Freebsd kernel we used both approaches: a special predefined kernel configuration target named lint
to maximize the amount of conditionally compiled code that the configuration and processing would cover, and a
separate pass for each of the three supported processor architectures. Yet, even this approach did not adequately cover
the complete source code, as evidenced by an aborted attempt to remove header files that appeared to be unused.

Another problem we encountered when applying CScout in realistic situations concerned language extensions.
The first version of CScout supported the 1989 version of ansi C [1] and a number of C99 [25] extensions. In practice
we found that CScout could not be applied on real-world source code without supporting many compiler-specific
language extensions. Even programs that were written in a portable manner included platform-specific header files,
which used many compiler extensions, and could therefore not be processed by a tool that did not support them. This
was a significant problem for a number of reasons.

• Compiler-specific language extensions are typically far less carefully documented than the standardized lan-
guage. In a number of cases we had to understand an extension’s syntax and semantics by looking for examples
of its use, or by reading the corresponding compiler’s source code.

• Significant effort that could have been spent on improving the usefulness of CScout on all platforms was often
diverted toward the support of a single proprietary and seldom-used compiler-specific extension.

• Some language extensions were mutually incompatible.

• Unintended extensions arising from a compiler’s sometimes haphazard checking of a program’s syntactic cor-
rectness restrict the portability of supposedly portable programs that mistakenly rely on the extension.

Finally, we have yet to find a practical way to handle meta programming approaches where a project-internal
domain specific language (dsl) is used to produce C code. In such cases, changes to the C source code may need to be
propagated to the dsl code, or even to the dsl compiler. Integrating the support into CScout, as we have done for yacc,
solves the problem for one specific case, but this approach cannot scale in a realistic manner. Currently, identifiers
residing in an automatically generated C file can be easily tagged as “read-only”, but this will restrict the number of
identifiers that can be renamed.

8. Conclusions

We have plans to extend CScout in a number of directions. One challenging and worthwhile avenue is support for
the C++ language and object-oriented refactorings.

18

The web front-end is beginning to show its age. It should probably be redesigned to use of ajax technologies,
communicating with the CScout engine through xml requests. This interface would also allow the implementation
of a more sophisticated testing framework. Queries can be made considerably more flexible by allowing the user
to specify them in an embedded scripting language, like Lua [24]. Such a change would probably also require the
provision of an asynchronous mechanism for aborting expensive queries. An alternative approach would be to provide
a built-in sql interface, perhaps through virtual tables of an embedded database, like sqlite [37].

Currently, many urls of the web front end are fragile, breaking across CScout invocations or when the web-front
end source code changes. These urls can be made more robust by expressing them at a higher level of abstraction.
Logging of CScout’s http requests can provide research data on its actual use.

Source code browsing can also be improved. The source code views can be enhanced through the use of config-
urable syntax coloring and easier navigation to various elements. An interface can be provided for showing identifiers
shared between two files. Refactoring opportunities can be pointed out by identifying bad smells in the code. These
can be located through the judicious provision of some key metric-based queries, and through the automatic detection
of duplicated code [32].

CScout could support file names as first class citizens. This should allow the renaming of a file name, correcting all
references to it in include directives. Furthermore, the web front-end should hyperlink file names appearing in include
directives. On the same subject, CScout could provide a header refactoring option to support the style guideline that
requires each included file to be self-sufficient (compile on its own) by including all the requisite header files [55, p.
42].

CScout’s support for dsls can be improved along a number of lines. For one, csmake should also support yacc
invocations. More generally, it would probably be worthwhile to provide CScout with an option to perform best-effort
identifier substitutions in files it can’t parse. These substitutions would be performed simply by matching whole
words; developers will enable this option when they are reasonable confident that there are no spurious matches of
the identifiers they rename in dsl files. In the future, ubiquitous accurate file and offset tagging of the automatically
created source code, in a way similar to the #line directives currently emitted by generators such as lex and yacc,
may offer a more robust solution.

The application of cpu and memory resources toward the analysis of large program families written in C is an
effective approach that yields readily exploitable refactoring opportunities in legacy code. CScout has already been
successfully applied on a wide range of projects for performing modest, though not insignificant, refactoring oper-
ations. Our approach can be readily extended to cover other preprocessed languages like C++. Open issues from
a research perspective are the automatic identification and implementation of more complex refactoring operations,
increasing the accuracy of dependency graphs by reasoning about function pointers [35], the production of source
code views for given macro values, and the efficient maximization of code coverage.

Acknowledgements and Tool Availability
We would like to thank the anonymous reviewers for their many excellent suggestions to improve this paper and

CScout. The following people have helped over the years the development of CScout with advice, comments, and
feature requests: Walter Briscoe, Wilko Bulte, Munish Chopra, Georgios Gousios, Poul-Henning Kamp, Kris Kenn-
away, Alexander Leidinger, Sandor Markon, Marcel Moolenaar, Richard A. O’Keefe, Igmar Palsenberg, Wes Peters,
Dave Prosser, Jeroen Ruigrok van der Werven, Remco van Engelen, and Peter Wemm. The tool, its documentation,
and representative examples are available at http://www.dmst.aueb.gr/dds/cscout/. CScout currently runs under
the Freebsd, Linux, Mac os x, Microsoft Windows, and Solaris operating systems under several 32 and 64-bit archi-
tectures. The freely-downloadable version of CScout can be used on open-source code; the supported commercial
version is licensed for use on proprietary code, and includes the obfuscation and sql back-ends.

References

[1] American National Standard for Information Systems — programming language — C: ANSI X3.159–1989, (Also ISO/IEC 9899:1990) (Dec.
1989).

[2] G. Antoniol, R. Fiutem, G. Lutteri, P. Tonella, S. Zanfei, E. Merlo, Program understanding and maintenance with the CANTO environment,
in: ICSM ’97: Proceedings of the International Conference on Software Maintenance, IEEE Computer Society, Washington, DC, USA, 1997.

[3] L. Aversano, M. D. Penta, I. D. Baxter, Handling preprocessor-conditioned declarations, in: SCAM’02: Second IEEE International Workshop
on Source Code Analysis and Manipulation, IEEE Computer Society, Los Alamitos, CA, USA, 2002.

19

[4] G. J. Badros, D. Notkin, A framework for preprocessor-aware C source code analyses, Software: Practice & Experience 30 (8) (2000)
907–924.

[5] I. D. Baxter, M. Mehlich, Preprocessor conditional removal by simple partial evaluation, in: WCRE ’01: Proceedings of the Eighth Working
Conference on Reverse Engineering, IEEE Computer Society, Washington, DC, USA, 2001.

[6] Y.-F. Chen, M. Y. Nishimoto, C. V. Ramamoorthy, The C information abstraction system, IEEE Transactions on Software Engineering 16 (3)
(1990) 325–334.

[7] D. Cooke, J. Urban, S. Hamilton, Unix and beyond: An interview with Ken Thompson, IEEE Computer 32 (5) (1999) 58–64.
[8] K. De Volder, JQuery: A generic code browser with a declarative configuration language, in: Practical Aspects of Declarative Languages,

Springer Verlag, 2006, pp. 88–102, Lecture Notes in Computer Science 3819.
[9] Developer Express Inc., Refactoring your code with Refactor!, Online http://www.devexpress.com/Products/Visual_Studio_

Add-in/Refactoring/whitepaper.xml. Accessed 2009-03-17. Archived by WebCite at http://www.webcitation.org/5fMxaOP4n,
white paper (2009).
URL http://www.webcitation.org/5fMxaOP4n

[10] M. D. Ernst, G. J. Badros, D. Notkin, An empirical analysis of C preprocessor use, IEEE Transactions on Software Engineering 28 (12)
(2002) 1146–1170.

[11] J.-M. Favre, Preprocessors from an abstract point of view, in: Proceedings of the International Conference on Software Maintenance ICSM
’96, IEEE Computer Society, 1996.

[12] R. T. Fielding, R. N. Taylor, Principled design of the modern Web architecture, ACM Transactions on Internet Technology 2 (2) (2002)
115–150.

[13] M. Fowler, Refactoring: Improving the Design of Existing Code, Addison-Wesley, Boston, MA, 2000.
[14] A. Garrido, Program refactoring in the presence of preprocessor directives, Ph.D. thesis, University of Illinois at Urbana-Champaign, Cham-

paign, IL, USA, adviser: Ralph Johnson (2005).
URL http://www.lifia.info.unlp.edu.ar/papers/2005/Garrido2005.pdf

[15] A. Garrido, R. Johnson, Challenges of refactoring C programs, in: IWPSE ’02: Proceedings of the International Workshop on Principles of
Software Evolution, ACM, New York, NY, USA, 2002.

[16] A. Garrido, R. Johnson, Analyzing multiple configurations of a C program, in: ICSM ’05: Proceedings of the 21st IEEE International
Conference on Software Maintenance, IEEE Computer Society, Washington, DC, USA, 2005.

[17] E. R. Gasner, E. Koutsofios, S. C. North, K.-P. Vo, A technique for drawing directed graphs, IEEE Transactions on Software Engineering
19 (3) (1993) 124–230.

[18] R. Ghiya, D. Lavery, D. Sehr, On the importance of points-to analysis and other memory disambiguation methods for C programs, ACM
SIGPLAN Notices 36 (5) (2001) 47–158, pLDI ’01: Proceedings of the ACM SIGPLAN Conference on Programming Language Design and
Implementation.

[19] A. Goldberg, D. Robson, Smalltalk-80: The Language, Addison-Wesley, Reading, MA, 1989.
[20] W. G. Griswold, D. Notkin, Automated assistance for program restructuring, ACM Transactions on Software Engineering and Methodology

2 (3) (1993) 228–269.
[21] R. C. Holt, A. Schürr, S. E. Sim, A. Winter, GXL: a graph-based standard exchange format for reengineering, Science of Computer Program-

ming 60 (2) (2006) 149–170.
[22] Y. Hu, E. Merlo, M. Dagenais, B. Lagüe, C/C++ conditional compilation analysis using symbolic execution, in: ICSM ’00: Proceedings of

the International Conference on Software Maintenance, IEEE Computer Society, Washington, DC, USA, 2000.
[23] A. Hunt, D. Thomas, The Pragmatic Programmer: From Journeyman to Master, Addison-Wesley, Boston, MA, 2000.
[24] R. Ierusalimschy, Programming in Lua, 2nd ed., Lua.org, Rio de Janeiro, 2006.
[25] International Organization for Standardization, Programming Languages — C, ISO, Geneva, Switzerland, 1999, ISO/IEC 9899:1999.
[26] D. Janzen, K. D. Volder, Navigating and querying code without getting lost, in: AOSD ’03: Proceedings of the 2nd International Conference

on Aspect-Oriented Software Development, ACM, New York, NY, USA, 2003.
[27] T. Jim, G. Morrisett, D. Grossman, M. Hicks, J. Cheney, Y. Wang, Cyclone: A safe dialect of C, in: USENIX Technical Conference

Proceedings, USENIX Association, Berkeley, CA, 2002.
[28] B. W. Kernighan, D. M. Ritchie, The C Programming Language, 1st ed., Prentice Hall, Englewood Cliffs, NJ, 1978.
[29] S. Lampoudi, D. M. Beazley, SWILL: A simple embedded web server library, in: USENIX Technical Conference Proceedings, USENIX

Association, Berkeley, CA, 2002, FREENIX Track Technical Program.
[30] S. Lapierre, B. Laguë, C. Leduc, Datrix source code model and its interchange format: lessons learned and considerations for future work,

SIGSOFT Softw. Eng. Notes 26 (1) (2001) 53–56.
[31] C. Lattner, V. Adve, LLVM: A compilation framework for lifelong program analysis & transformation, in: CGO ’04: Proceedings of the 2004

International Symposium on Code Generation and Optimization, 2004.
[32] Z. Li, S. Lu, S. Myagmar, Y. Zhou, CP-miner: Finding copy-paste and related bugs in large-scale software code, IEEE Transactions on

Software Engineering 32 (3) (2006) 176–192.
[33] M. A. Linton, Implementing relational views of programs, in: SDE 1: Proceedings of the First ACM SIGSOFT/SIGPLAN Software Engi-

neering Symposium on Practical Software Development Environments, ACM, New York, NY, USA, 1984.
[34] P. E. Livadas, D. T. Small, Understanding code containing preprocessor constructs, in: IEEE Third Workshop on Program Comprehension,

1994.
[35] A. Milanova, A. Rountev, B. G. Ryder, Precise call graphs for C programs with function pointers, Automated Software Engineering 11 (1)

(2004) 7–26.
[36] G. C. Murphy, M. Kersten, L. Findlater, How are Java software developers using the Eclipse IDE?, IEEE Software 23 (4) (2006) 76–83.
[37] M. Owens, The Definitive Guide to SQLite, Apress, Berkeley, CA, 2006.
[38] D. L. Parnas, On the design and development of program families, IEEE Transactions on Software Engineering SE-2 (1) (1976) 1–9.
[39] D. F. Prosser, Complete macro expansion algorithm, Standarization committee memo X3J11/86-196, ANSI, New York, online http://www.

20

spinellis.gr/blog/20060626/x3J11-86-196.pdf. Accessed 2009-03-21. Archived by WebCite at X3J11/86-196 (Dec. 1986).
URL http://www.webcitation.org/5fRS2iru0

[40] D. Roberts, J. Brant, R. E. Johnson, A refactoring tool for Smalltalk, Theory and Practice of Object Systems 3 (4) (1997) 39–42.
[41] J. A. Roskind, Grammar file for the dpANSI C language, Available online at http://www.ccs.neu.edu/research/demeter/

tools/master/doc/headers/C++Grammar/c4.y. Accessed: 2009-03-13. Archived by WebCite at http://www.webcitation.org/
5fF8fX28Q (Mar. 1990).
URL http://www.webcitation.org/5fF8fX28Q

[42] D. Schaefer, Code analysis and refactoring with CDT, Available online http://cdtdoug.blogspot.com/2008/11/

code-analysis-and-refactoring-with-cdt.html. Accessed 2009-03-15. Archived by WebCite at http://www.webcitation.
org/5fMyo3trp, Eclipse Summit Europe presentation (Nov. 2008).
URL http://www.webcitation.org/5fMyo3trp

[43] G. Snelting, Reengineering of configurations based on mathematical concept analysis, ACM Transactions on Software Engineering and
Methodology 5 (2) (1996) 146–189.

[44] D. Spinellis, Code Reading: The Open Source Perspective, Addison-Wesley, Boston, MA, 2003.
[45] D. Spinellis, Global analysis and transformations in preprocessed languages, IEEE Transactions on Software Engineering 29 (11) (2003)

1019–1030.
[46] D. Spinellis, Code finessing, Dr. Dobb’s 31 (11) (2006) 58–63.
[47] D. Spinellis, Debuggers and logging frameworks, IEEE Software 23 (3) (2006) 98–99.
[48] D. Spinellis, A tale of four kernels, in: W. Schäfer, M. B. Dwyer, V. Gruhn (eds.), ICSE ’08: Proceedings of the 30th International Conference

on Software Engineering, Association for Computing Machinery, New York, 2008.
[49] D. Spinellis, The way we program, IEEE Software 25 (4) (2008) 89–91.
[50] D. Spinellis, Optimizing header file include directives, Journal of Software Maintenance and Evolution: Research and Practice 21 (4) (2009)

233–251.
[51] R. M. Stallman, EMACS: The extensible, customizable, self-documenting display editor, in: D. R. Barstow, H. E. Shrobe, E. Sandwell (eds.),

Interactive Programming Environments, McGraw-Hill, 1984, pp. 300–325.
[52] F. Steimann, A. Thies, From public to private to absent: Refactoring Java programs under constrained accessibility, in: S. Drossopoulou (ed.),

ECOOP ’09: Proceedings of the European Conference on Object-Oriented Programming, Springer-Verlag, 2009, Lecture Notes in Computer
Science.

[53] B. Stroustrup, The C++ Programming Language, 3rd ed., Addison-Wesley, Reading, MA, 1997.
[54] Sun Microsystems, Inc., Santa Clara, CA, Sun Studio 12: Distributed Make (dmake), part No: 819-5273. Available online http://docs.

sun.com/app/docs/doc/819-5273. Accessed 2009-03-13 (2007).
URL http://docs.sun.com/app/docs/doc/819-5273

[55] H. Sutter, A. Alexandrescu, C++ Coding Standards: 101 Rules, Guidelines, and Best Practices, Addison Wesley, 2004.
[56] L. Tokuda, D. Batory, Evolving object-oriented designs with refactorings, Automated Software Engineering 8 (2001) 89–120.
[57] Q. Tu, M. Godfrey, The build-time software architecture view, in: ICSM’01: Proceedings of the IEEE International Conference on Software

Maintenance, 2001.
[58] L. Vidács, A. Beszédes, R. Ferenc, Columbus schema for C/C++ preprocessing, in: CSMR ’04: Proceedings of the Eighth European

Conference on Software Maintenance and Reengineering, IEEE Computer Society, 2004.
[59] M. Vittek, Refactoring browser with preprocessor, in: CSMR ’03: Proceedings of the Seventh European Conference on Software Maintenance

and Reengineering, IEEE Computer Society, 2003.
[60] D. G. Waddington, B. Yao, High-fidelity C/C++ code transformation, Electronic Notes in Theoretical Computer Science 141 (4) (2005)

35–56.
[61] D. M. Weiss, C. T. R. Lai, Software Product-Line Engineering: A Family-Based Software Development Process, Addison-Wesley, 1999.
[62] R. Wuyts, Declarative reasoning about the structure of object-oriented systems, in: TOOLS ’98: Proceedings of the Technology of Object-

Oriented Languages and Systems, IEEE Computer Society, Washington, DC, 1998.

21

