JOURNAL OF SOFTWARE MAINTENANCE AND EVOLUTION: RESEARCH AR PRACTICE
J. Softw. Maint. Evol.: Res. Prac2009;23321-4 Prepared usingmrauth.cls [Version: 2003/05/07 v1.1]

Research

Optimizing Header File Include
Directives

* T Diomidis Spinellig

L

L Athens University of Economics and Business, Patision Rs1G4 34 Athens, Greece.
Email: dds@aub.gr

SUMMARY

A number of widely used programming languages use lexicallyncluded files as a way to share and
encapsulate declarations, definitions, code, and data. Ake code evolves files included in a compilation
unit are often no longer required, yet locating and removingthem is a haphazard operation, which is
therefore neglected. The difficulty of reasoning about inaided files stems primarily from the fact that the
definition and use of macros complicates the notions of scoad of identifier boundaries. By defining four
successively refined identifier equivalence classes we carcarately derive dependencies between identifiers.
A mapping of those dependencies on a relationship graph bewen included files can then be used to
determine included files that are not required in a given comfation unit and can be safely removed. We
validate our approach through a number of experiments on nunerous large production-systems.

KEY WORDS. C, C++, header files, include directive, preprocessor

1. Introduction

A notable and widely used [1] feature of the C, C++, and Cyel$?] programming languages
is a textual preprocessing step performed before the actrapilation. This step performmacro

substitutionsreplacing, at a purely lexical level, token sequences witheio token sequences,
conditional compilationcomment removalandfile inclusion[3, §3.8]. As program code evolves,
elements of it may no longer be used and should normally beegraway through a refactoring

*Diomidis Spinellis. Optimizing header file include direets. Journal of Software Maintenance and Evolution: Researath an
Practice 21(4):233-251, July/August 2009. (doi:10.1002/smr)369

TThis is a machine-readable rendering of a working papet tiraf led to a publication. The publication should alway<ited

in preference to this draft using the reference in the pres/footnote. This material is presented to ensure timeledisnation

of scholarly and technical work. Copyright and all righterin are retained by authors or by other copyright holdgls.
persons copying this information are expected to adheteetterms and constraints invoked by each author’s copyrigimost
cases, these works may not be reposted without the expdinitission of the copyright holder.

Contract/grant sponsor: European Community Sixth FramleWoogramme: Software Quality Observatory for Open Source
Software (SQO-0OSS); contract/grant number: IST-20053633

Copyright(© 2009 John Wiley & Sons, Ltd.

22 D. SPINELLIS

(il

[4, 5, 6] operation. Detecting unused functions and vaegld a relatively easy operation: the scope
where the given element appears is examined to locate neleseto it. Many compilers will issue
warnings for unused elements appearing in a given file orkkdoope; detecting unused elements in
identifiers with external linkage is a simple matter of pgieg definition and reference pairs of the
files to be linked.

A more difficult and also important task is the detection cdidier files that are needlessly included
in a compilation unit. The task is difficult, because macromplicate the notion of scope and the
notion of an identifier [7, 8, 9]. For one, preprocessor maaad file inclusion can extend the
scope of C-proper identifiers. This is for example the casenadnsingle textual macro using a field
name that is incidentally identical between two structutes are not otherwise related is applied
on variables of those structures. This implementationepatis often used to implement via the C
preprocessor structural subtyping (in C++ this is achiawgdg the template mechanism). In addition,
new identifiers can be formed at compile time via the premsaes concatenation operator. It is
therefore difficult to determine if identifiers appearingan included file are used within the main
body of a compilation unit or other subsequently includessfil

In the remainder of this section we will discuss why removimgeeded headers is important and
also the context of our work. Subsequent sections desdrdapproach we propose for dealing with
the problem (Section 2), its validation (Section 3), andsilale extensions (Section 4).

1.1. Motivation
The detection and removal of needlessly included files i@mt, for a number of reasons.

Namespace PollutionAn included header file is a larger and more unstructuredahéthan a single
function or variable. The included file can contain code adahacro definitions, and other
recursively included files. All these pollute the identifiemmespace, and can therefore affect
the compilation of subsequent code, sometimes resultinghtle and difficult to locate compile
or even run—time errors. Table | documents the breakdowmeo§arious identifiers occurring in
header files for six large software code bashiste that the namespace pollution manifests itself
both when a header file's identifiers appear in differentsotesubsequently processed code, and
when code previously processed (typically through theauision of another header file) contains
identifiers that clash with those defined in a subsequentlydted header file. Due to the global
visibility of preprocessor elements, a macro can interéen with identifiers whose scope is a
single function block or an individual structure.

Spurious DependenciesThe compilation of C code is typically performed by a toolelimake
[10] that (re)builds object files based on their dependenciakefiles often contain an
(automatically constructed) section identifying the rexadependencies for every compilation
unit. Consequently, if a file includes headers that it doggenuire, it will get compiled more
often, thus increasing the build effort.

Details of each system appear in Section 3.

Copyright© 2009 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pra@009;23321-4
Prepared usingsmrauth.cls

(il

OPTIMIZING INCLUDE DIRECTIVES 23

Table I. Header file characteristics.

Metric Fressp Linux Solaris WRK PostgreQL GDB
LoC (thousands) 3,867 3,431 2,951 829 578 362
Header files 5,206 2,506 1,840 228 321 419
Include directives 38,278 45,564 28,788 642 1,196 3,367
... of which unneeded 2,101 865 861 26 17 78
... inf.p. files (Sec. 3.2) 759 339 366 8 12 38
Average number per header file:

Lines 353 242 287 1,009 202 208
Identifiers 47.8 1111 122.7 301.7 83.2 854
Of which:

Local to header file 23.3 43.7 56.9 2185 64.8 61.1
Macros 20.6 415 43.0 75.7 194 21.2
Typedefs 1.2 2.2 49 238 3.3 1.8
Structure or union tags 15 3.2 4.4 9.8 2.0 1.7
Structure or union fields 11.6 28.1 33.7 628 12.2 10.2
Enumeration constants 1.2 4.4 1.3 10.0 2.2 5.6
File-scoped objects 29 10.8 6.4 339 55 7.5
Global-scoped objects 3.0 7.4 14.4 329 20.7 20.2

Compilation Time Removing included header files reduces the code that theitmpust process,
and should therefore reduce a project’s compilation timéhddigh in our test cases we have
found this effect to be negligible (a decrease of compitatime below 5%), there may be
projects where these savings are significant.

1.2. Work Context

To the best of our knowledge this paper contains the firstriggn of an efficient generic algorithm
for optimizing include file directives. Similar functiorigl seems to be provided by Klockwofka
commercial tool, which according to its vendor “providestatectural analysis to identify violations
such as the number of times a header file can be included.” Aidw@ryt behind the operation of
Klockwork isn’t publicly known. However, its published grface shows that Klockwork will identify:
extra includes (the files also identified by our approach3simg includes with a context dependency,
missing includes with a transitive dependency, and filesaleanot self-compilable.

Shttp://ww. kl ocwor k. con product s/ k7_ar chi tecture. asp

Copyright© 2009 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pra@009;23321-4
Prepared usingsmrauth.cls

24 D. SPINELLIS

(il

In addition, the FremsD operating system distribution includes a shell script, edm
kerninclude.s|T which detects in the Fresp kernel source tree include statements that are not
required. While the script is project and compiler—spediicapproach could be applied to other
systems. The script employs a clever brute force algorittimiorks by first locating the include
directives in each source file. It then compiles a pristingycof the source file, as well as modified
versions where a single include directive is temporaritjoged. Finally, it verifies that the file can be
permanently removed through a number of steps.

It tries to see that the file can be compiled,

if it can, it compares the resultant object file with that & fristine version,

it checks that the removed header is not also included thraudjrective nested in another file,
it verifies that no additional compiler warnings were issuset

it ensures that the included file is not in a conditional cdatjn block.

An advantage of this approach is that, for the configurattested, the correctness of the obtained
results is self-evident. At the time of writing tHesrnincludetool had not been for six years, and
it was therefore not possible to run it and obtain empiriesults of its performance. However, the
computational cost of this approach is intrinsically higbcause the number of times it processes each
file is equal to the number of include directives in it, mulgg by the number of different software
configurations. As we shall see in Section 2.3, the corredipgrcost of our approach depends only
on the number of configurations. Also, this method will silgrail in cases where timestamps are
embedded in object files (for instance through the used of flleME__ predefined macro). Finally,
the approach depends on the existence of a complete crogstaton tool chain for processing non-
native software configurations.

Other related work in our area, does not cover the problenreiaddressing, but advances the state
of the art in the building blocks we use for putting together proposed solution. Specifically, such
work covers the analysis of C code containing preprocessectives, the removal of dead code, and
the handling of multiple configurations implemented thrieegnditional compilation directives.

On the preprocessor analysis front the main approach iesaeating a two-way mapping between
preprocessor tokens and C-proper identifiers. This wassfiggested by Livadas and Small [11], and
subsequently used as a way to refactor C code [9, 12]. A r@agdr has proposedsL [13] schema
for representing either a static or a dynamic view of pregssor directives [14]. Our approach is based
on our earlier work [9], which, compared to the method désatiin reference [12], has the advantage
of handling tokens generated at compile time through C’snicdoncatenation operator.

Our system removes dead code from compilation units. Relapproaches include graph-based
analysis of program elements [15], and the partial evadnaif conditional compilation blocks in order
to remove unwanted legacy configurations [16]. The appro&seribed in reference [15] processes
file elements in a finer granularity refactoring their eletsén minimize unrelated dependencies and
thereby speed up the build process. This type of refactasingpre aggressive than what we propose.
As a result it can obtain a measurable efficiency improverogrihe build process, but at the cost of
more invasive changes to the code. The work by Baxter andibtefil6] addresses a different problem:

Tht t p: // www. f reebsd. or g/ cgi / cvsweb. cgi / src/ t ool s/ t ool s/ ker ni ncl ude/

Copyright© 2009 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pra@009;23321-4
Prepared usingsmrauth.cls

OPTIMIZING INCLUDE DIRECTIVES 25

(il

that of dead legacy code residing in conditionally compidéatks. Through the partial evaluation of
preprocessor conditionals such blocks can be identifiedemdved. Their work complements ours,
because it allows additional code elements to be removedeyAdifference is that their approach
requires the manual identification and specification of m&defining unwanted configurations.

The handling of multiple configurations implemented thropgeprocessor directives has also been
studied in other contexts, such as the type checking of tiondily compiled code [17] and the use
of symbolic execution to determine the conditions assediatith particular lines of code [18]. Again,
these papers solve different problems, but indicate thie leiggl of research interest in the area of the
interactions between the preprocessor and the languagerpro

2. Approach Description

Our strategy for locating files that need not be included irivergcompilation unit involves three
distinct tactics.

1. The establishment and use of a theory for determining vitwenidentifiers are semantically
related in the face of the scope distortion introduced byptieprocessor.

2. The processing of individual compilation units (posgibiultiple times to take into account
conditional compilation) marking definition-referencéat®nships between files according to
the established identifier relationship rules.

3. The postprocessing of the above data to divide the indlfiths into those required for compiling
a given unit and those not required.

In this section we describe the application of these taaticso C programs; a similar strategy can be
applied to C++ code.

2.1. Identifier Scope in the Presence of the Preprocessor

In order to establish dependency relationships betwednded files, we need to determine when
two identifiers are related. When these patrticipate in a iiefnreference relationship that spans a file
boundary, this indicates that the file where the identifideiined needs to be included by the file where
the identifier is referenced. Identifier equivalence in thespnce of preprocessing involves tracking
four types of identifier relationships: semantic, lexigartial lexical, and preprocessor equivalence.
The most straightforward type of identifier equivalencesésnantic equivalencéVe define two

identifiers to be semantically equivalent if these have #raesname and statically refer to the same
entity following the language’s scoping and namespaceriiiethe example below the two instances
of errno are semantically equivalent.

extern int errno;

printf ("\%s", strerror (errno));

Furthermore, by taking into account the scope and semauaitipeeprocessing commands we can
establish that two tokens alexically equivalentchanging one of them would require changing the
other for the program to remain correct. In the following e the three instances of them structure

Copyright© 2009 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pra@009;23321-4
Prepared usingsmrauth.cls

26 D. SPINELLIS

(il

member are lexically equivalent. If the structure and maefitions occurred in three separate header
files, all three would have to be included for the assignmzobmnpile.

struct Wall { int len; };
struct Window { int len; };
#define length (x) (x)}->len

struct Wall = wall_ptr ;
struct Window xwindow._ptr;
int d = length (wallptr) — length (windowptr)

Moreover, when new identifiers are created at compile timegugh the preprocessor’s token
concatenation featur@artial lexical equivalencés used to describe how parts of an identifier can
be equivalent to (parts of) another identifier. As an examplethe following code the variable
sysctlrebootfor the purposes of determining equivalence consists oftokens:sysctl (which is
equivalentto the part also appearing in the macro bodyjetmabt(which is equivalent to the argument
of thesysvammacro invocation).

#define sysvar(x) volatile int sysctl ## x
sysvar (reboot);

if (sysctlreboot)

Finally, preprocessor equivalende used to describe token relationships resulting purelsnfthe
semantics of the preprocessing. Thus, in the example bélewwo instances d?l are equivalent and
indicate a defintion-reference relationship between ths fthey occur in.

#define Pl 3.1415927
doublearea = Plx r x r;

The theoretical underpinning and detailed description Igbrithms for establishing the above
equivalence classes can be found in reference [9]. In a suynima core algorithm involves splitting
the original non-preprocessed source code into tokensassighing each one to a unique equivalence
class. The code is then preprocessed with tokens resultmg fnacro-expansion maintaining
references to the tokens from which they were derived. ireprocessing, when two tokens match
under the rules opreprocessor equivalenage described, the corresponding equivalence classes are
merged into one. The code is then parsed and semanticallyzada When two identifier tokens
belonging to different equivalence classes are found to dugvelent under the rules déxical
equivalence(for instance a variable name in an expression matches figittm) then the two
separate equivalence classes are also merged into one.aftben both identifiers consist of multiple
preprocessor-concatenated tokens their equivalenceslase first cloned to cover token parts of equal
length, and then the paired parts are merged. This last casespartial lexical equivalenceEach
merging of equivalence classes allows us to identify amimst where an identifier depends on another
and thereby establish dependencies between files.

The implementation of our approach depends on the closghthtion of a standard C preprocessor
with what amounts to the front-end of a C compiler. For ourrapph to work on real-life code the
C preprocessor has to handle the many tricky preprocesssr sisch as recursive macro expansion.

Copyright© 2009 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pra@009;23321-4
Prepared usingsmrauth.cls

OPTIMIZING INCLUDE DIRECTIVES 27

(il

Details regarding the implementation of this part can beébim another article [19]. The idea behind
the algorithm is to expand as many macros as possible, asbtigere is no danger of falling into an
infinite recursion trap. The algorithm uses the notion ofdelset associated with each token to decide
whether to expand the token or not. Initially, each tokemtstaith an empty hide set, but during
macro expansion the tokens accrue in their hide sets theos#tat were used during the expansion.
The recursive expansion of macros with a hide set obtainedi¢jin the intersection of the hide sets of
the tokens involved achieves the greatest amount of magtacement without entering into an infinite
loop.

2.2. File Relationships

Having established the ways identifiers can depend on e&eh, @ur problem is to determine the set
of files that were needlessly included in a given compilatioit. For this purpose the relationships
between the files participating in the processing of the dtatiqpn unit can be established by creating
and processing:

e aset of unique file identifierd;, and
o three binary relations from file identifiers to sets of filentifers.

To avoid complications arising from referring to the same fhrough different directory paths or
through filesystem links the file identifiers should uniquetyrespond to each file irrespective of its
path and name; most operating systems can provide thisidmadity. For instance, on Unix systems
a unique identifier is the paiinode device-numbgr while Windows systems provide axpi for
transforming an arbitrary file path to a file path that unigudéntifies the corresponding file.

The relations we maintain for each compilation unit are til®Wwing.

Providers The providersrelation R, maps a compilation unit € F' into the set of filesk,(c) that
contribute code or data to it.

Includers Theincludersrelation R; maps every filef € F participating in the compilation of unit
onto the set of fileR; (¢, f) that include it directly.

Definers The definersrelation R; maps every filef € I participating in the compilation of unit
onto the set of filefR,(c, f) containing definitions needed by it.

The right-hand-side of thprovidersrelation R, for a compilation unit being processed is easily
established by starting with the empty set, and then addinigy ¢ach and every filef € F that
contributes ta: code (function definitions or statements) or data (varidefnitions, or initialization
data).

Ry(c) = @

R;;(C) = R;n(c) u{f}
We consider data as a special case, because initializatloas/are sometimes automatically generated
and read into a compilation unit’s initializer from a segahaincluded file that only contains data.

Following our definition forproviders files that only contain preprocessor directives and datitars
(such as most library header files) are not providers.

Copyright© 2009 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pra@009;23321-4
Prepared usingsmrauth.cls

28 D. SPINELLIS

(il

Theincludersrelation is also easily established by starting with an gnspt, and updating it for
every instance of aimcludedirective taking into account the fitte F' containing thencludedirective
and the filei € F' being included.

VfE€F:Ri(ce,f) = @
Ri(c,i) = Ri(c,i)u{d}

The updating of thelefinersrelation R, is more complex, and involves taking into account the
equivalence classes presented in the previous sectioim Aba relation’s base-case value is the empty
set.

VfEF :Ryle,f)=o

Each equivalence class can be said todmedon a definition (or declaration) of one of the identifiers
that are its members. Subsequently encountered equivdiemtifiers arereferencedo the original
definition. Although there are cases where the same idertdiebe legally defined in the same scope
multiple times (two representative examples evenmonvariable definitions and macro redefinitions
with the same body) these can in practice be safely ignoreds,Twhenever an identifier is added in
an equivalence class the equivalence class’s root is addéddefinersset for the file containing the
particular identifier. Identifiers are added in equivaledlesses each time there is a semantic match
with a previous instance of that identifier. By looking atiaktances where identifiers appear in the
C grammar and in an operational definition of the C preprairass can derive an exhaustive list of
cases where identifiers can reappear, and thus trigger anfemeatch. Specifically, identifiers can
reappear as:

part of a C or a preprocessor expression

declarations for previously declared objects

an aggregate member designator

atypedefhame appearing in a declaration specifier

a tag, part of an aggregate name, aggregate key or enunmematioe
atag, part of a C99 [20] initializer designator

variable declarations in old-style [21] function formajaments
an identifier replaced by a macro

a formal macro argument appearing in a macro body

a redefined macro

an argument to anndefpreprocessor command

labels or targets ajotostatements

In each of the above cases, when an identifier is added in @mquty equivalence class, the filec F’
where the class’s root appears and the file I’ containing the identifier are appropriately added in
the correspondindefinersrelation.

R&(Cv f) = Rd(ca f) U {T}

Note that files containing only data or isolated code statesn@re members of th@ovidersrelation
R, and do not participate in@efinersrelation ;.

Copyright© 2009 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pra@009;23321-4
Prepared usingsmrauth.cls

OPTIMIZING INCLUDE DIRECTIVES 29

(il

2.3. Reasoning About Included File Dependencies

The last step for determining the included files that arelygaluired by a given compilation unit
involves calculating the union of the transitive closureta providersrelation R,, with the transitive
closure of thadefinersandincludersrelationsR; and R;. For this we define a new relation

Rdi(c7f) :Rd(ca f)URl(Ca f) (1)
and then calculate the set of fil&4¢) that a compilation unit compiled frommust include as
I'(c) = Rai(c,0)" U () Ruaile.p)*)
VpER,(c)

What the above formulation expresses is that afdef’ is required, thatis € I'(c), if it

e contains a definition for an identifier;
e includes another file that is required; or
e provides code or data to the compilation unit

Files processed during the compilation, that are not maalseiquired, and are directly included by

the compilation unit can have their correspondimgjudedirectives safely removed.

Our mathematical formulation can be expressed in code byswfahe recursively defined function
mark required This function takes as its single argument an identifierafdile being required for
processing a given compilation unit. Associated with edehidia flag identifying whether this file is
marked as “required”. This is used for determining the saeqgtired files and for avoiding endless
recursion. The functiomark requiredis defined in pseudocode as follows:

markrequired(c, f)

if (f.marked)
return;

f.marked =true;

for (i in Ra(c, f))
markrequired(c, i);

for (i in R;(c, f))
markrequired(c, i);

The recursive algorithm is invoked through the functrequired with the file identifier of each
compilation unitc as its argument.

required(c)
markrequired(c, c);

for (i in R,(c))
mark required(c, i);

Copyright© 2009 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pra@009;23321-4

Prepared usingsmrauth.cls

30 D. SPINELLIS

(il

Listing 1. Example code.
/% sys/types.hx/
typedef unsigned longino_t ;

/% sys/ stat .h«/
struct stat {

short stdev; /x inode’s devicex/
ino_t stino ; /x inode’s number/
b
/% stdlib .h %/

void exit (int);

[string .h =/
char xstrcpy (Char = restrict , const charx restrict);

/% cdefs .hx/
#include <copyright.h>

[+ copyright.hx/
static char copyright[] = "Copyright 2007 A. Holder”;

/x main.c x/

#include <cdefs.h>
#include <sys/types.b
#include <sys/stat .b
#include <stdlib . h>
#include <string.h>

main(nt argc, char sargv[])

{

struct stat buff;
exit (!(argc == 2 && stat(argv[l], &buff) == 0));

The algorithm’s implementation demonstrates that, aftesipg and semantic analysis, the B¢t)
for a compilation unit can be calculated in no more thai(c)| + | R, (c)| operations.

Copyright© 2009 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pra@009;23321-4
Prepared usingsmrauth.cls

— OPTIMIZING INCLUDE DIRECTIVES 31

Consider the code example shown in Listing 1. Processimign. ¢ as a compilation unit will
establish the following relations.

R,(¢) = {copyright.h} (3)
R;(c,sys/types.h) = {main.c} 4)
R;(c,sys/stat.h) = {main.c} (5)
Ri(c,stdlibh) = {main.c} (6)
Ri(c,stringh) = {main.c} (7)
R;(c,cdefs.h) = {main.c} (8)
R;(c,copyright.h) = {cdefs.h} 9
Ry(c,sys/stath) = {sys/types.h} (10)
Ri(c,main.c) = {sys/stat.h stdlib.h} (12)

Most of the above relations are trivially established. Eiumeal0 holds, because the type definition
i no_t is defined insys/types. h and referred bysys/stab. h. Similarly, equation 11
holds, because thst at structure tag and thexi t function referred bymai n. ¢ are defined
correspondingly irsys/ st at . handstdl i b. h.

Let us now apply the algorithm we described in Section 2.3ouin particular exampl&/z :
Rgyi(c,z) = Ry(c,x)V Rai(c,x) = Ri(c, z), S0 we do not need to elaborate equation 1. By calculating
depth-first the transitive closui@y; (¢, main.c)* through equations 11, 5, 10, and 6 we obtain the left-
hand side term of the union in equation 2.

Rgi(c,main.c)™ = {sys/stat.h,stdlib.h main.c, sys/types.h} (12)

The corresponding right-hand side is established throaghations 3 and 9 as

U Rai(c,p)T = {cdefs.h} (13)
VpER,(c)

and therefore through equations 2, 12, and 13 we obtain
I'(c)" = {sys/stat.h,stdlib.h,main.c, sys/types.h,cdefs.h}

Consequently, the directive including figd r i ng. h is not required, and can be safely removed.
Furthermore, the result can be justified intuitively asdai:

e sys/stat. hisrequired for thest at tag used imai n. c

e stdlib. hisrequired to define thexi t function used imai n. c

e sys/types. h is required to define the no_t type definition, which is required by
sys/ st at . h, which is required byrai n. ¢

e cdefs. h is required, because it includesopyri ght. h, which provides data to the
compilation unit

e string. hisnotrequired, becausd r cpy isn't used anywhere

Copyright© 2009 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pra@009;23321-4
Prepared usingsmrauth.cls

32 D. SPINELLIS

(il

2.5. Conditional Compilation

A complication arises when conditional compilation is uasé method for configuration control [22].
In such a case differently configured compilations of theesamit can result in different include file
requirements. As an example, processing a source file wighmtacrounix defined might result in
finding that the included header filindows.Hs not required, but processing the same source file with
WIN32defined might result in finding that the header fileistd.his not required. This problem can
be obviated by repeatedly processing the same compilatiltrunder many possible configurations.
This is possible, because the equivalence classes weeadiitirBection 2.1 apply to lexical tokens and
can therefore be maintained across multiple passes on e sampilation unit. Similarly, we also
maintain across the different runs the relatidt)s R;, and R, that we described in Section 2.2. After
processing all configurations, the algorithm for findingiti@uded files that are not required is applied
on the cumulative contents of these relations.

From a practical perspective the problem of this method iliesletermining the set of macro
definitions that will cover the processing of a large peragatof the code base (ideally all code lines).
The problem is often simplified because many projects peaituild configuration that accomplishes
this task for the benefit of other static verification tools.sbme cases a macro namddlT—after
the tool of the same name [23]—is used for this purpose. Nleglerss, there can be configurations
that are mutually incompatible; for instance those cowptiardware architectures with different
characteristics, or alternative implementations of theeséunctionality. In such cases our approach
involves processing the files multiple times, each time i macros controlling the configuration
set to a different value. Such a setup increases the amowoidef coverage with each configuration
added at the expense of additional processing time and .spf&cdemonstrate this increase in code
coverage in Section 3.3.

In order to assist developers locating and specifying tipeagriate configurations we can maintain
for each file the number of lines that were skipped in all canfigions by conditional compilation
directives. With appropriate tool support, developersisane a query to see which files contain the
largest number of unprocessed lines, and then view a listiregich file with markings indicating the
lines that were not processed. This allows developers tosfen low hanging fruit, adding macro
definitions or configurations that will increase the codestage and thereby the fidelity of the include
file optimization process.

2.6. Error Reporting

Reporting unused included files by reference to a specifi@filé line number (as is typically done
in compiler warning messages) can be implemented by maintaanother relation associated with
each file containing, for every file it includes, the line nwardof the directives that include it (a file
can be included more than one time). However, when dealitig muiltiple processing passes over
the same file (the method we use to deal with conditional clatipn and other configuration control
techniques) the sanirecludedirective can include differentfiles. In practice, this cacur either extra-
linguistically when each pass is performed with a differiectude file path, or through preprocessor
facilities—by defining different macro values for each cgofiation and using the corresponding
macro as an argument for arcludedirective. The following example illustrates the lattesea

Copyright© 2009 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pra@009;23321-4
Prepared usingsmrauth.cls

OPTIMIZING INCLUDE DIRECTIVES 33

(il

#if defined (__alpha.)
#define FILE "alpha.h”
#elif defined(__i386__)
#define FILE "i386.h"
#endif

#include FILE

An additional relation can be used to overcome this comjitina Every include directive is
associated with amclude site An include site identifies (by means of the file and the lineber the
corresponding directive appears) the position of an irellicective that could be a target for removal.
Each include site is associated with: the set of files inalublg its directive, and a boolean value
indicating whether at least one of the included files wasirequby the compilation unit including it.

A mapping from a compilation unit’s line numbers to the cepending include sites can then be used
to update and locate the include sites that do not include eme used header. These located include
sites are then reported as containing unused includedtigesan be safely removed.

3. Application

We integrated the algorithm described in the previous sestinto theCScoutsource code analyzer
and refactoring browser [9CScoutcan process workspaces of multiple projects (we define >roj
as a collection of C source files that are linked together)pmapthe complexity introduced by the C
preprocessor back into the original C source code filcouttakes advantage of modern hardware
advances (fast processors and large memory capacitiesalgza C source code beyond the level of
detail and accuracy provided by current compilers and liskEhe analysi€Scouperforms takes into
account the identifier scopes introduced by the C preprocessl the C language proper scopes and
namespaces.

3.1. Case Studies

Over the last few years we have performed a number of expatiaad case studies to establish the
magnitude of the needlessly included files problem and opircggeh’s efficacy in addressing it.

The largest case study took place in 2007, where we testeappuoach on 32 medium and large—
sized open-source projects. These were: the Apache h@d2irl Lucent’'s awk as of Mar 14th, 2003,
bash 3.1cvs 1.11.22, Emacs 22.1, the kernel of FBe® HEAD branch as of September 9th, 2006
LINT configuration processed for the i38@vD 64, andsPAR®b4 architectures, gdb 6.7, Ghostscript
7.05, gnuplot 4.2.2aT& T GraphViz 2.16, the default configuration of the Linux ker2e3.18.8-0.5
processed for the x86-641D64) architecture, the kernel of OpenSolaris as of August 3007
configured for the Sund4v Sun4u as@ARC architectures, the Microsoft Windows Research Kernel
1.2 processed for the i386 anthD 64 architectures, Perl 5.8.8, Postgoe 8.2.5, Xen 3.1.0, and the
versions of the programs bind, ed, lex, mail, make, ntpd, pax, pppd, routed, sendmail, tcpdump,
tcsh, window, xlint, and zsh distributed with Fes®D 6.2. The FreBsD programs were processed
under FreesD 6.2 running on an i386 processor architecture, while thie wéeere not specified, were

Copyright© 2009 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pra@009;23321-4
Prepared usingsmrauth.cls

34 D. SPINELLIS

(il

10000
.
@ 1000 o P -
[}
@
=)
2
P .
2 *
] 100 A L
S ° .
)
S .
g . .
E ° .. . °
[} _ L -
s 1 .
H .
5 .
.
.
1 A . . . -
0 3 [X) 3 °
T T T
1 10 100 1000 10000

Project size (kLOC - log scale)

Figure 1. Unneeded include directives in projects of vagisiaes.

configured under opeswseLinux 10.2 running on amMmD 64 processor architecture. For expediency,
we selected the projects by looking for representative elyidised, large-scale systems that were
written in C and could be compiled standalone. The processedce code size was 14.2 million
lines of code.

A summary of the results appears in Figure 1. As we can seead®d header files are rarely a
problem for projects smaller than RQoc, but become a significant one as the project’s size increases
(The chart’s abscissa also includes a notional value of egrere projects without include directive
problems are indicated.)

For the two largest systems, Linux and Fgee, we also verified that code resulting from removing
the identified unneeded include directives could actualygile. We wrote a small script to remove
those directives, and compiled the resulting source cotleowi a problem. The compilation time of
the corrected source code was not significantly reduced.

For the Linux case we also verified that the linked kernel gatee after removing the extraneous
header files was the same as the original one. The two gedéateel images, had the same size
(9.6 MiB), but their contents were not identical. The reas@s differences in timestamps embedded
in object files. A subsequent comparison of the disassemiriade files uncovered only a variation
in a single assembly language instruction. This was traceddne byte difference in the size of two
compressed object files that were embedded in the kernein Aba source code of the two object files
was identical; their difference stemmed from file timestarngeated in an embeddegio archive.

Copyright© 2009 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pra@009;23321-4
Prepared usingsmrauth.cls

OPTIMIZING INCLUDE DIRECTIVES 35

(il

Moreover, for the FremsD case we looked at the possibility of integrating the charsgeoice code
in the system’s production version. Specifically, in 2008, appliedCScoutto the source code of
the Fre@sD operating system kernel (version 5.1), in five separatdtaathre-specific configurations
(i386,1A64,AMD 64, Alpha, andsPAR®4); the configurations of the five architectures were preegs
in a single run. In total we processed 4,310 filem(2c) containing about 35,00@cludedirectives.

In the that set 2,781 directives were found as including fil@swere not being required. From the files
that were found as needlessly included, 741 files includewh f886 different sites could in practice
not be removed, because the same site also included (pyoladbér a different configuration) files
that were identified as required. The remaining 2,0#0ude directives could be safely removed.
The processing took 330Pu minutes on a 1.8GHamD-64 machine and required 158 of RAM.
We published a list of the corresponding changes, and disduwith other Freesp developers the
possibility of committing them to the system'’s source cogj@ository. We backed off after developers
pointed out that the files from which the include directivesrevautomatically removed violated
various style guidelines. Problems included consecufaekiines and empty blocks of preprocessor
conditionals. Thus, it turned out that, although our apphazan identify unneeded include directives,
their automatic removal is not entirely trivial.

Finally, we also applied our approach on proprietary préidncode. We processed an architectural
CAD project that is under active development since 1989 [24, Rbthe time the project consisted
of 231 files (292,000 lines of code), containing 5,2d4@udedirectives. FollowingCScouts analysis
765includedirectives from 178 files were identified as superfluousiuded and were removed. The
application was subsequently compiled, tested withoutglsiproblem, and is currently in production
use by thousands of clients.

3.2. Discussion of the Results

The substantial number of unused header files in large sgstequires some explanation. It could be
attributed to the following reasons.

Removed codeA developer removing code from a C file (or moving the code totler file) might
fail to remove the corresponding header file include divesti This is to be expected, because a
single include directive might serve multiple and differelements. It is difficult for a developer
to know when the last reference to a header file has been rehfimra a C file.

Moved header file definitions A developer moving a definition from one header file to anotiesld
be hesitant to remove references to the first header file fibtheaC files it appears in. First,
this would be a lot of work, as the header might appear in mafile§ and, second, the header
might also be required for other elements it defined.

Incomplete configurations As we are by no means acquainted with the sample programs we
examined, our analysis of them might involve configurationshich large parts of the program
functionality are not present. Header files reported asechusight in fact be required by code
that is conditionally compiled in specific configurations.

Disjoined configurations Arguably, the problem of incomplete configurations shoutd occur in
well-written code. If a given header is only required for atjgallar, conditionally-compiled,

Copyright© 2009 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pra@009;23321-4
Prepared usingsmrauth.cls

36 D. SPINELLIS

(il

configuration, then the header’s include directive shoutb e compiled only under the
corresponding configuration.

To examine the dynamics of header file addition and removalyent over 100,324 records of
modifications that were made to the Fse® kernel trunk over the last thirteen years (from 1994-05-24
to 2007-11-19). We examined differences between suceessisions, counting the number of code
lines and include directives that were added or removeddh eavision. We found that header include
directives amounted to 1.50% of code lines added, but to%4 dficode lines removed. Adjusting this
difference of 0.04% would amount to deleting another 548iithe directives; a figure roughly equal in
maghnitude to the extraneous header include directives wedfoT his finding may suggest that when
removing code developers fail to remove the correspondaaglér include directives.

In addition, to examine the effect of incomplete and digairconfigurations we associated with
each file containing unneeded include directives the nurablines that were not processed in that
file due to conditional compilation directives. We couldréfere establish the number of unneeded
header include directives located in files that were fullpgessed. The results appear in Table | on
the row titled “... in f.p. files”. These numbers establistoadr bound on the number of headers that
can be removed: more headers could be candidates for rethpratessing additional configurations
didn’t reveal that these headers were required, after . fumbers could also explain a part of the
large number of unneeded include directives we found: abalfiof the unneeded headers may be an
artifact of disjoined configurations.

3.3. Dealing with Multiple Configurations

In order to determine how processing the same files underigteultonfigurations increases the
code coverage, we processed the Bezekernel HEAD as of 2006-09-18) under the seven different
combinations of the tier-1 (fully supported) architecari886, AMb64, andspAR®4. The results
appear in Figure 2. Each node indicates the configuratidhés)were processed, the corresponding
total lines of code (in millions), and the code coverage asragntage of the total code. The lowest
amounts of code coverage occur in the case where a singléegtane is processed. When two
architectures are processed together (there are threeceutbinations in our example) the achieved
code coverage is greater, even though the number of lineegsed is higher than those processed
for each of the two architectures. Finally, the greateseammlerage (appearing in the node at middle
of the figure) is achieved when all three architectures avegused as a single configuration. Further
increases in code coverage could be achieved by processiiitgpaal configurations.

4. Discussion and Possible Extensions

The application of the approach we have described appegmotide results that are both accurate
and useful. Its requirements in terms of memory ard time may preclude its integration in a typical
compile cycle, but easily allow its periodic applicatioreoa code base as a quality assurance measure.

Although the results obtained from this method smend(removing the files reported as needlessly
included will always result in a correct compilation for tepecified configuration), they are not
complete

Copyright© 2009 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pra@009;23321-4
Prepared usingsmrauth.cls

OPTIMIZING INCLUDE DIRECTIVES 37

(il

i386-AMD64

Processing time: 1:55:36
4.1 MLOC
Coverage: 97.78%

i386

AMD64

Processing time: 0:59:59
3.3 MLOC
Coverage: 97.24%

Processing time: 0:46:16
3.0 MLOC
Coverage: 97.15%

AMDG64-i386-SPARC64

Processing time: 3:26:57
4.7 MLOC
Coverage: 98.07%

i386-SPARC64

AMD64-SPARC64

Processing time: 2:31:16
3.9 MLOC
Coverage: 97.68%

Processing time: 2:17:04
3.6 MLOC
Coverage: 97.64%

SPARC64

Processing time: 1:20:17
2.3 MLOC
Coverage: 96.92%

Figure 2. Processing more configurations yields increasdd coverage.

First of all duplicate macro definitions or object declavas occurring in different included files will
result in marking as required more files than are strictlyessary. This problem can be compounded
when a forward declaration of a structure appears aftemitsptete declaration. If at all subsequent
points only the incomplete structure declaration is rezgliiour approach will fail to detect this, and
will mark as required the header file containing the compgcture declarations and all header files
that the complete structure declaration requires.

Furthermore, our method will mark as required, through Byerelation, header files containing
code. In modern systems the trend is for header files to defatie énline functions for elements

Copyright© 2009 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pra@009;23321-4
Prepared usingsmrauth.cls

38 D. SPINELLIS

(il

that in the past were defined through preprocessor macrdsefnon the compiler to optimize these
functions away when they are not used. Such files will be nthalserequired through the,, relation.
The definition of theR, relation could be amended to take into account only code atal tthat is
actually exported by the compilation unit, but implemegtihis functionality is not trivial.

In addition, our method does not take into account diffefiées, not present in the original set of
included files, but part of the processed source code baasef suitably included might result in an
optimal (in e.g. terms of namespace pollution) set of inetlifiles. For instance, a source code base
might have a small header file containing only incompletecttire declarations, and a larger header
file containing the full structure declarations. If the shinlader is not included in a given compilation
unit, our method will not suggest that the larger headertidduide directive can be removed.

Finally, our approach may fail in pathological cases whermgof a single syntactical element (for
example a structure or function definition, or even a sintdéesnent) span various files. For instance,
one could place each C keyword in a separatevitdlé.h if.h, else.h etc.) and include that file instead
of writing the keyword. Fixing this requires changing thdidigon of the relations to include all the
files from which the tokens comprising an element being ddfaweme from, rather than just the token
of the identifier being defined.

Although the approach we have described works for the toadit style of C code, modern
compilers and style guidelines are moving toward a sliglifferent direction. The complexity of
current C++ header files is changing the way header files ang lised. Traditionally programmers
were advised to avoid nesting header includes [26]. In eshtmodern style guidelines require each
included file to be self-sufficient (compile on its own) by lumting all the requisite header files [27,
p. 42]. Header files in turn should be protected against bpingessed multiple times by so-called
internal include guardsThat is, the contents of each header file are placed in a blecthe following.

#ifndef FILE_H_INCLUDED
#define FILE_H_INCLUDED

#endif

Modern compilers can recognize this idiom and avoid evemimggthe file after processing it for
the first time. Under such a style regime, our approach woane o be modified to treat each header
file as a potentially standalone compilation unit. The fetet we described in Section 2.2 would still
be required, but the inference for deciding which files tdude would have to be modified to match
this style’s guidelines.

Clearly, including the correct headers is far from triveadd programmers need all the help tools can
provide them.

Acknowledgements

Alexios Zavras gave insightful comments on earlier versiof this paper. Vasilis Kapouleas helped in the
formalization of the algorithm’s description. The Fes® community provided me with hardware resources for
testing the effectiveness of the approach on version 5.tiekeérnel, while Ruslan Ermilov, Bruce Evans, John-
Mark Gurney, Alexander Langer, M. Warner Losh, Juli Mallattd Peter Wemm examined the proposed changes
and commented on them. Markos Gogoulos setup and mainttiee@sting environment. Furthermore, | wish
to thank Microsoft Corporation (and Fotis Draganidis intaar) for providing me access to the Windows

Copyright© 2009 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pra@009;23321-4
Prepared usingsmrauth.cls

(il

OPTIMIZING INCLUDE DIRECTIVES 39

Research Kernel. Most importantly, the comments of thigpa@nonymous referrees have contributed greatly to
its improvement.

REFERENCES

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

. Michael D. Ernst, Greg J. Badros, and David Notkin. An etogl analysis of C preprocessor udEEE Transactions on

Software Engineering28(12):1146-1170, December 2002.

. Trevor Jim, Greg Morrisett, Dan Grossman, Michael Hidksnes Cheney, and Yanling Wang. Cyclone: A safe dialect of

C. InUSENIX Technical Conference ProceedinBerkeley, CA, June 2002. USENIX Association.

. American National Standard for Information Systems —gpamming language — C: ANSI X3.159-1989, December

1989. (Also ISO/IEC 9899:1990).

. William F. Opdyke. Refactoring Object-Oriented Framework®hD thesis, University of lllinois at Urbana-Champaign,

Urbana-Champaign, IL, 1992.

. William G. Griswold and David Notkin. Automated assistarior program restructuringACM Transactions on Software

Engineering and Methodolog{(3):228-269, 1993.

. Martin Fowler. Refactoring: Improving the Design of Existing Cod&ddison-Wesley, Boston, MA, 2000.
. Jean-Marie Favre. Preprocessors from an abstract pbwiew. In Proceedings of the International Conference on

Software Maintenance ICSM '98EEE Computer Society, 1996.

. Greg J. Badros and David Notkin. A framework for preprgoesaware C source code analys&oftware: Practice &

Experience 30(8):907-924, July 2000.

. Diomidis Spinellis. Global analysis and transformagian preprocessed languagetEEE Transactions on Software

Engineering 29(11):1019-1030, November 2003.

Stuart I. Feldman. Make—a program for maintaining compprograms.Software: Practice & Experiencé(4):255—
265, 1979.

Panos E. Livadas and David T. Small. Understanding cod&aiming preprocessor constructs. IEEE Third Workshop
on Program Comprehensippages 89—97, November 1994.

Marian Vittek. Refactoring browser with preprocessior.CSMR '03: Proceedings of the Seventh European Conference
on Software Maintenance and Reengineerjpage 101. IEEE Computer Society, 2003.

Richard C. Holt, Andy Schirr, Susan Elliott Sim, and Aeab Winter. GXL: a graph-based standard exchange format fo
reengineering.Science of Computer Programmir@(2):149-170, 2006.

LaszI6 VidacsArpad Beszédes, and Rudolf Ferenc. Columbus schema fo#+Cpreprocessing. ICSMR '04:
Proceedings of the Eighth European Conference on Softwaatbhance and Reengineeringages 75-84. |IEEE
Computer Society, March 2004.

Yijun Yu, Homy Dayani-Fard, and John Mylopoulos. Renmgvifalse code dependencies to speedup software build
processes. ICASCON ’'03: Proceedings of the 2003 Conference of the CémtrAdvanced Studies on Collaborative
Researchpages 343-352. IBM Press, 2003.

Ira D. Baxter and Michael Mehlich. Preprocessor coodél removal by simple partial evaluation. WCRE '01:
Proceedings of the Eighth Working Conference on Reverse&gigng pages 281-292, Washington, DC, USA, 2001.
IEEE Computer Society.

Lerina Aversano, Massimiliano Di Penta, and Ira D. Baxtélandling preprocessor-conditioned declarations. In
SCAM'02: Second IEEE International Workshop on Source Gaasysis and Manipulatignpages 83—-93, Los Alamitos,
CA, USA, 2002. IEEE Computer Society.

Ying Hu, Ettore Merlo, Michel Dagenais, and Bruno Lagi@/C++ conditional compilation analysis using symbolic
execution. InICSM '00: Proceedings of the International Conference oritvi@re Maintenance pages 196-207,
Washington, DC, USA, 2000. IEEE Computer Society.

Diomidis Spinellis. Code finessingpr. Dobb’s, 31(11):58—63, November 2006.

International Organization for Standardizati®rogramming Languages — @SO, Geneva, Switzerland, 1999. ISO/IEC
9899:1999.

Brian W. Kernighan and Dennis M. Ritchi@’he C Programming LanguagePrentice Hall, Englewood Cliffs, NJ, first
edition, 1978.

Henry Spencer and Geoff Collyer. #ifdef considered ffialrar portability experience with C news. In Rick Adams,tedi
Proceedings of the Summer 1992 USENIX Confergrages 185-198, Berkeley, CA, June 1992. USENIX Assodiatio
Stephen C. Johnson. Lint, a C program checker. Compatenc& Technical Report 65, Bell Laboratories, Murray Hill
NJ, December 1977.

Diomidis Spinellis. Tekton: A program for the compasitj design, and three-dimensional view of architecturbjesis.

In 4th Panhellenic Informatics Conferenamlume |, pages 361-372. Greek Computer Society, Deceh®8s. In Greek.

Copyright© 2009 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pra@009;23321-4
Prepared usingsmrauth.cls

40

D. SPINELLIS

(il

25.

26.

27.

Diomidis Spinellis. Reliable software implementatisging domain specific languages. In G. |. Schuéller and fk&a
editors,Proceedings ESREL '99 — The Tenth European Conference ety $aid Reliability pages 627-631, Rotterdam,
September 1999. ESRA, VDI, TUM, A. A. Balkema.

L. W. Cannon, R. A. Elliott, L. W. Kirchhoff, J. H. MillerJ. M. Milner, R. W. Mitze, E. P. Schan, N. O. Whittington,
Henry Spencer, David Keppel, and Mark Brader. Recommendestylé and coding standards. Available online
http://sunl and. gsfc. nasa. gov/i nfo/cstyl e. ht i (January 2006). Updated version of the Indian Hill
C Style and Coding Standards paper.

Herb Sutter and Andrei Alexandresc@++ Coding Standards: 101 Rules, Guidelines, and Best Reast Addison

Wesley, 2004.

AUTHOR’S BIOGRAPHY

Diomidis Spinellis is an Associate Professor at the Depantmof Management Science and Technology at
the Athens University of Economics and Business, Greecg rétiearch interests include software engineering
tools, computer security, and programming languages. Kenhiten the twoOpen Source Perspectimoks:
Code ReadingSoftware Development Productivity Award 2004), aBdde Quality(Software Development
Productivity Award 2007). He is a member of tlieEE Softwareeditorial board, authoring the regulawols of the
Tradecolumn. He is a FreesD committer and the author of a number of open-source softpeckages, libraries,
and tools. He holds an MEng in Software Engineering and a Rifdmputer Science, both from Imperial College
London. Dr. Spinellis is a senior member of the ACM, and a menaf the IEEE, and the Usenix Association.

Id: include.tex 1.35 2008/02/29 21:09:07 dds Exp

Copyright© 2009 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pra@009;23321-4
Prepared usingsmrauth.cls

