
JOURNAL OF SOFTWARE MAINTENANCE AND EVOLUTION: RESEARCH AND PRACTICE
J. Softw. Maint. Evol.: Res. Pract.2009;233:21–4 Prepared usingsmrauth.cls [Version: 2003/05/07 v1.1]

Research

Optimizing Header File Include
Directives
∗ † Diomidis Spinellis1

1 Athens University of Economics and Business, Patision 76, GR-104 34 Athens, Greece.
Email: dds@aub.gr

SUMMARY

A number of widely used programming languages use lexicallyincluded files as a way to share and
encapsulate declarations, definitions, code, and data. As the code evolves files included in a compilation
unit are often no longer required, yet locating and removingthem is a haphazard operation, which is
therefore neglected. The difficulty of reasoning about included files stems primarily from the fact that the
definition and use of macros complicates the notions of scopeand of identifier boundaries. By defining four
successively refined identifier equivalence classes we can accurately derive dependencies between identifiers.
A mapping of those dependencies on a relationship graph between included files can then be used to
determine included files that are not required in a given compilation unit and can be safely removed. We
validate our approach through a number of experiments on numerous large production-systems.

KEY WORDS: C, C++, header files, include directive, preprocessor

1. Introduction

A notable and widely used [1] feature of the C, C++, and Cyclone [2] programming languages
is a textual preprocessing step performed before the actualcompilation. This step performsmacro
substitutionsreplacing, at a purely lexical level, token sequences with other token sequences,
conditional compilation, comment removal, and file inclusion [3, §3.8]. As program code evolves,
elements of it may no longer be used and should normally be pruned away through a refactoring

∗Diomidis Spinellis. Optimizing header file include directives.Journal of Software Maintenance and Evolution: Research and
Practice, 21(4):233–251, July/August 2009. (doi:10.1002/smr.369)
†This is a machine-readable rendering of a working paper draft that led to a publication. The publication should always becited
in preference to this draft using the reference in the previous footnote. This material is presented to ensure timely dissemination
of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders.All
persons copying this information are expected to adhere to the terms and constraints invoked by each author’s copyright. In most
cases, these works may not be reposted without the explicit permission of the copyright holder.
Contract/grant sponsor: European Community Sixth Framework Programme: Software Quality Observatory for Open Source
Software (SQO-OSS); contract/grant number: IST-2005-033331

Copyright c© 2009 John Wiley & Sons, Ltd.

22 D. SPINELLIS

[4, 5, 6] operation. Detecting unused functions and variables is a relatively easy operation: the scope
where the given element appears is examined to locate references to it. Many compilers will issue
warnings for unused elements appearing in a given file or block scope; detecting unused elements in
identifiers with external linkage is a simple matter of processing definition and reference pairs of the
files to be linked.

A more difficult and also important task is the detection of header files that are needlessly included
in a compilation unit. The task is difficult, because macros complicate the notion of scope and the
notion of an identifier [7, 8, 9]. For one, preprocessor macros and file inclusion can extend the
scope of C-proper identifiers. This is for example the case when a single textual macro using a field
name that is incidentally identical between two structuresthat are not otherwise related is applied
on variables of those structures. This implementation pattern is often used to implement via the C
preprocessor structural subtyping (in C++ this is achievedusing the template mechanism). In addition,
new identifiers can be formed at compile time via the preprocessor’s concatenation operator. It is
therefore difficult to determine if identifiers appearing inan included file are used within the main
body of a compilation unit or other subsequently included files.

In the remainder of this section we will discuss why removingunneeded headers is important and
also the context of our work. Subsequent sections describe the approach we propose for dealing with
the problem (Section 2), its validation (Section 3), and possible extensions (Section 4).

1.1. Motivation

The detection and removal of needlessly included files is important, for a number of reasons.

Namespace PollutionAn included header file is a larger and more unstructured element than a single
function or variable. The included file can contain code, data, macro definitions, and other
recursively included files. All these pollute the identifiernamespace, and can therefore affect
the compilation of subsequent code, sometimes resulting insubtle and difficult to locate compile
or even run–time errors. Table I documents the breakdown of the various identifiers occurring in
header files for six large software code bases.‡ Note that the namespace pollution manifests itself
both when a header file’s identifiers appear in different roles in subsequently processed code, and
when code previously processed (typically through the inclusion of another header file) contains
identifiers that clash with those defined in a subsequently included header file. Due to the global
visibility of preprocessor elements, a macro can interfereeven with identifiers whose scope is a
single function block or an individual structure.

Spurious DependenciesThe compilation of C code is typically performed by a tool like make
[10] that (re)builds object files based on their dependencies. Makefiles often contain an
(automatically constructed) section identifying the header dependencies for every compilation
unit. Consequently, if a file includes headers that it does not require, it will get compiled more
often, thus increasing the build effort.

‡Details of each system appear in Section 3.

Copyright c© 2009 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract.2009;233:21–4
Prepared usingsmrauth.cls

OPTIMIZING INCLUDE DIRECTIVES 23

Table I. Header file characteristics.

Metric FreeBSD Linux Solaris WRK PostgreSQL GDB

LOC (thousands) 3,867 3,431 2,951 829 578 362
Header files 5,206 2,506 1,840 228 321 419
Include directives 38,278 45,564 28,788 642 1,196 3,367
... of which unneeded 2,101 865 861 26 17 78
... in f.p. files (Sec. 3.2) 759 339 366 8 12 38
Average number per header file:
Lines 353 242 287 1,009 202 208
Identifiers 47.8 111.1 122.7 301.7 83.2 85.4
Of which:
Local to header file 23.3 43.7 56.9 218.5 64.8 61.1
Macros 20.6 41.5 43.0 75.7 19.4 21.2
Typedefs 1.2 2.2 4.9 23.8 3.3 1.8
Structure or union tags 1.5 3.2 4.4 9.8 2.0 1.7
Structure or union fields 11.6 28.1 33.7 62.8 12.2 10.2
Enumeration constants 1.2 4.4 1.3 10.0 2.2 5.6
File-scoped objects 2.9 10.8 6.4 33.9 5.5 7.5
Global-scoped objects 3.0 7.4 14.4 32.9 20.7 20.2

Compilation Time Removing included header files reduces the code that the compiler must process,
and should therefore reduce a project’s compilation time. Although in our test cases we have
found this effect to be negligible (a decrease of compilation time below 5%), there may be
projects where these savings are significant.

1.2. Work Context

To the best of our knowledge this paper contains the first description of an efficient generic algorithm
for optimizing include file directives. Similar functionality seems to be provided by Klockwork,§ a
commercial tool, which according to its vendor “provides architectural analysis to identify violations
such as the number of times a header file can be included.” The theory behind the operation of
Klockwork isn’t publicly known. However, its published interface shows that Klockwork will identify:
extra includes (the files also identified by our approach), missing includes with a context dependency,
missing includes with a transitive dependency, and files that are not self-compilable.

§http://www.klocwork.com/products/k7_architecture.asp

Copyright c© 2009 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract.2009;233:21–4
Prepared usingsmrauth.cls

24 D. SPINELLIS

In addition, the FreeBSD operating system distribution includes a shell script, named
kerninclude.sh,¶ which detects in the FreeBSD kernel source tree include statements that are not
required. While the script is project and compiler–specificits approach could be applied to other
systems. The script employs a clever brute force algorithm.It works by first locating the include
directives in each source file. It then compiles a pristine copy of the source file, as well as modified
versions where a single include directive is temporarily removed. Finally, it verifies that the file can be
permanently removed through a number of steps.

• It tries to see that the file can be compiled,
• if it can, it compares the resultant object file with that of the pristine version,
• it checks that the removed header is not also included through a directive nested in another file,
• it verifies that no additional compiler warnings were issued, and
• it ensures that the included file is not in a conditional compilation block.

An advantage of this approach is that, for the configurationstested, the correctness of the obtained
results is self-evident. At the time of writing thekernincludetool had not been for six years, and
it was therefore not possible to run it and obtain empirical results of its performance. However, the
computational cost of this approach is intrinsically high,because the number of times it processes each
file is equal to the number of include directives in it, multiplied by the number of different software
configurations. As we shall see in Section 2.3, the corresponding cost of our approach depends only
on the number of configurations. Also, this method will silently fail in cases where timestamps are
embedded in object files (for instance through the used of theTIME predefined macro). Finally,
the approach depends on the existence of a complete cross-compilation tool chain for processing non-
native software configurations.

Other related work in our area, does not cover the problem we are addressing, but advances the state
of the art in the building blocks we use for putting together the proposed solution. Specifically, such
work covers the analysis of C code containing preprocessor directives, the removal of dead code, and
the handling of multiple configurations implemented through conditional compilation directives.

On the preprocessor analysis front the main approach involves creating a two-way mapping between
preprocessor tokens and C-proper identifiers. This was firstsuggested by Livadas and Small [11], and
subsequently used as a way to refactor C code [9, 12]. A recentpaper has proposed aGXL [13] schema
for representing either a static or a dynamic view of preprocessor directives [14]. Our approach is based
on our earlier work [9], which, compared to the method described in reference [12], has the advantage
of handling tokens generated at compile time through C’s token concatenation operator.

Our system removes dead code from compilation units. Related approaches include graph-based
analysis of program elements [15], and the partial evaluation of conditional compilation blocks in order
to remove unwanted legacy configurations [16]. The approachdescribed in reference [15] processes
file elements in a finer granularity refactoring their elements to minimize unrelated dependencies and
thereby speed up the build process. This type of refactoringis more aggressive than what we propose.
As a result it can obtain a measurable efficiency improvementon the build process, but at the cost of
more invasive changes to the code. The work by Baxter and Mehlich [16] addresses a different problem:

¶http://www.freebsd.org/cgi/cvsweb.cgi/src/tools/tools/kerninclude/

Copyright c© 2009 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract.2009;233:21–4
Prepared usingsmrauth.cls

OPTIMIZING INCLUDE DIRECTIVES 25

that of dead legacy code residing in conditionally compiledblocks. Through the partial evaluation of
preprocessor conditionals such blocks can be identified andremoved. Their work complements ours,
because it allows additional code elements to be removed. A key difference is that their approach
requires the manual identification and specification of macros defining unwanted configurations.

The handling of multiple configurations implemented through preprocessor directives has also been
studied in other contexts, such as the type checking of conditionally compiled code [17] and the use
of symbolic execution to determine the conditions associated with particular lines of code [18]. Again,
these papers solve different problems, but indicate the high level of research interest in the area of the
interactions between the preprocessor and the language proper.

2. Approach Description

Our strategy for locating files that need not be included in a given compilation unit involves three
distinct tactics.

1. The establishment and use of a theory for determining whentwo identifiers are semantically
related in the face of the scope distortion introduced by thepreprocessor.

2. The processing of individual compilation units (possibly multiple times to take into account
conditional compilation) marking definition-reference relationships between files according to
the established identifier relationship rules.

3. The postprocessing of the above data to divide the included files into those required for compiling
a given unit and those not required.

In this section we describe the application of these tacticsin ISO C programs; a similar strategy can be
applied to C++ code.

2.1. Identifier Scope in the Presence of the Preprocessor

In order to establish dependency relationships between included files, we need to determine when
two identifiers are related. When these participate in a definition-reference relationship that spans a file
boundary, this indicates that the file where the identifier isdefined needs to be included by the file where
the identifier is referenced. Identifier equivalence in the presence of preprocessing involves tracking
four types of identifier relationships: semantic, lexical,partial lexical, and preprocessor equivalence.

The most straightforward type of identifier equivalence issemantic equivalence. We define two
identifiers to be semantically equivalent if these have the same name and statically refer to the same
entity following the language’s scoping and namespace rules. In the example below the two instances
of errnoare semantically equivalent.

extern int errno ;
...
printf (”\%s”, strerror (errno));

Furthermore, by taking into account the scope and semanticsof preprocessing commands we can
establish that two tokens arelexically equivalent: changing one of them would require changing the
other for the program to remain correct. In the following example the three instances of thelenstructure

Copyright c© 2009 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract.2009;233:21–4
Prepared usingsmrauth.cls

26 D. SPINELLIS

member are lexically equivalent. If the structure and macrodefinitions occurred in three separate header
files, all three would have to be included for the assignment to compile.

struct Wall { int len ; };
struct Window{ int len ; };
#define length (x) (x)−>len
...
struct Wall ∗wall ptr ;
struct Window∗window ptr;
int d = length (wallptr) − length(windowptr)

Moreover, when new identifiers are created at compile time, through the preprocessor’s token
concatenation feature,partial lexical equivalenceis used to describe how parts of an identifier can
be equivalent to (parts of) another identifier. As an example, in the following code the variable
sysctlreboot for the purposes of determining equivalence consists of twotokens:sysctl (which is
equivalent to the part also appearing in the macro body) andreboot(which is equivalent to the argument
of thesysvarmacro invocation).

#define sysvar (x) volatile int sysctl ## x
sysvar (reboot);
...

if (sysctl reboot)

Finally, preprocessor equivalenceis used to describe token relationships resulting purely from the
semantics of the preprocessing. Thus, in the example below the two instances ofPI are equivalent and
indicate a defintion-reference relationship between the files they occur in.

#define PI 3.1415927
double area = PI∗ r ∗ r ;

The theoretical underpinning and detailed description of algorithms for establishing the above
equivalence classes can be found in reference [9]. In a summary the core algorithm involves splitting
the original non-preprocessed source code into tokens, andassigning each one to a unique equivalence
class. The code is then preprocessed with tokens resulting from macro-expansion maintaining
references to the tokens from which they were derived. During preprocessing, when two tokens match
under the rules ofpreprocessor equivalencewe described, the corresponding equivalence classes are
merged into one. The code is then parsed and semantically analyzed. When two identifier tokens
belonging to different equivalence classes are found to be equivalent under the rules oflexical
equivalence(for instance a variable name in an expression matches its definition) then the two
separate equivalence classes are also merged into one. Whenone or both identifiers consist of multiple
preprocessor-concatenated tokens their equivalence classes are first cloned to cover token parts of equal
length, and then the paired parts are merged. This last case coverspartial lexical equivalence. Each
merging of equivalence classes allows us to identify an instance where an identifier depends on another
and thereby establish dependencies between files.

The implementation of our approach depends on the close collaboration of a standard C preprocessor
with what amounts to the front-end of a C compiler. For our approach to work on real-life code the
C preprocessor has to handle the many tricky preprocessor uses, such as recursive macro expansion.

Copyright c© 2009 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract.2009;233:21–4
Prepared usingsmrauth.cls

OPTIMIZING INCLUDE DIRECTIVES 27

Details regarding the implementation of this part can be found in another article [19]. The idea behind
the algorithm is to expand as many macros as possible, as longas there is no danger of falling into an
infinite recursion trap. The algorithm uses the notion of a hide set associated with each token to decide
whether to expand the token or not. Initially, each token starts with an empty hide set, but during
macro expansion the tokens accrue in their hide sets the macros that were used during the expansion.
The recursive expansion of macros with a hide set obtained through the intersection of the hide sets of
the tokens involved achieves the greatest amount of macro replacement without entering into an infinite
loop.

2.2. File Relationships

Having established the ways identifiers can depend on each other, our problem is to determine the set
of files that were needlessly included in a given compilationunit. For this purpose the relationships
between the files participating in the processing of the compilation unit can be established by creating
and processing:

• a set of unique file identifiers,F , and
• three binary relations from file identifiers to sets of file identifiers.

To avoid complications arising from referring to the same file through different directory paths or
through filesystem links the file identifiers should uniquelycorrespond to each file irrespective of its
path and name; most operating systems can provide this functionality. For instance, on Unix systems
a unique identifier is the pair (inode, device-number), while Windows systems provide anAPI for
transforming an arbitrary file path to a file path that uniquely identifies the corresponding file.

The relations we maintain for each compilation unit are the following.

Providers TheprovidersrelationRp maps a compilation unitc ∈ F into the set of filesRp(c) that
contribute code or data to it.

Includers The includersrelationRi maps every filef ∈ F participating in the compilation of unitc
onto the set of filesRi(c, f) that include it directly.

Definers The definersrelationRd maps every filef ∈ F participating in the compilation of unitc
onto the set of filesRd(c, f) containing definitions needed by it.

The right-hand-side of theprovidersrelationRp for a compilation unitc being processed is easily
established by starting with the empty set, and then adding to it each and every filef ∈ F that
contributes toc code (function definitions or statements) or data (variabledefinitions, or initialization
data).

Rp(c) = ∅

R′
p(c) = Rp(c) ∪ {f}

We consider data as a special case, because initialization values are sometimes automatically generated
and read into a compilation unit’s initializer from a separately included file that only contains data.
Following our definition forproviders, files that only contain preprocessor directives and declarations
(such as most library header files) are not providers.

Copyright c© 2009 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract.2009;233:21–4
Prepared usingsmrauth.cls

28 D. SPINELLIS

The includersrelation is also easily established by starting with an empty set, and updating it for
every instance of anincludedirective taking into account the filed ∈ F containing theincludedirective
and the filei ∈ F being included.

∀f ∈ F : Ri(c, f) = ∅

R′
i(c, i) = Ri(c, i) ∪ {d}

The updating of thedefinersrelationRd is more complex, and involves taking into account the
equivalence classes presented in the previous section. Again, the relation’s base-case value is the empty
set.

∀f ∈ F : Rd(c, f) = ∅

Each equivalence class can be said to berootedon a definition (or declaration) of one of the identifiers
that are its members. Subsequently encountered equivalentidentifiers arereferencesto the original
definition. Although there are cases where the same identifier can be legally defined in the same scope
multiple times (two representative examples arecommonvariable definitions and macro redefinitions
with the same body) these can in practice be safely ignored. Thus, whenever an identifier is added in
an equivalence class the equivalence class’s root is added in thedefinersset for the file containing the
particular identifier. Identifiers are added in equivalenceclasses each time there is a semantic match
with a previous instance of that identifier. By looking at allinstances where identifiers appear in the
C grammar and in an operational definition of the C preprocessor we can derive an exhaustive list of
cases where identifiers can reappear, and thus trigger a semantic match. Specifically, identifiers can
reappear as:

• part of a C or a preprocessor expression
• declarations for previously declared objects
• an aggregate member designator
• a typedefname appearing in a declaration specifier
• a tag, part of an aggregate name, aggregate key or enumeration name
• a tag, part of a C99 [20] initializer designator
• variable declarations in old-style [21] function formal arguments
• an identifier replaced by a macro
• a formal macro argument appearing in a macro body
• a redefined macro
• an argument to anundefpreprocessor command
• labels or targets ofgotostatements

In each of the above cases, when an identifier is added in a non-empty equivalence class, the filer ∈ F
where the class’s root appears and the filef ∈ F containing the identifier are appropriately added in
the correspondingdefinersrelation.

R′
d(c, f) = Rd(c, f) ∪ {r}

Note that files containing only data or isolated code statements are members of theprovidersrelation
Rp and do not participate in adefinersrelationRd.

Copyright c© 2009 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract.2009;233:21–4
Prepared usingsmrauth.cls

OPTIMIZING INCLUDE DIRECTIVES 29

2.3. Reasoning About Included File Dependencies

The last step for determining the included files that are really required by a given compilation unit
involves calculating the union of the transitive closure oftheprovidersrelationRp with the transitive
closure of thedefinersandincludersrelationsRd andRi. For this we define a new relation

Rdi(c, f) = Rd(c, f) ∪ Ri(c, f) (1)

and then calculate the set of filesI ′(c) that a compilation unit compiled fromc must include as

I ′(c) = Rdi(c, c)
+ ∪

⋃

∀p∈Rp(c)

Rdi(c, p)+ (2)

What the above formulation expresses is that a filei ∈ F is required, that isi ∈ I ′(c), if it

• contains a definition for an identifier;
• includes another file that is required; or
• provides code or data to the compilation unitc.

Files processed during the compilation, that are not markedas required, and are directly included by
the compilation unit can have their correspondingincludedirectives safely removed.

Our mathematical formulation can be expressed in code by means of the recursively defined function
mark required. This function takes as its single argument an identifier fora file being required for
processing a given compilation unit. Associated with each file is a flag identifying whether this file is
marked as “required”. This is used for determining the set ofrequired files and for avoiding endless
recursion. The functionmark requiredis defined in pseudocode as follows:

mark required(c, f)
{

if (f.marked)
return ;

f.marked =true;
for (i in Rd(c, f))

mark required(c, i);
for (i in Ri(c, f))

mark required(c, i);
}

The recursive algorithm is invoked through the functionrequired with the file identifier of each
compilation unitc as its argument.

required(c)
{

mark required(c, c);
for (i in Rp(c))

mark required(c, i);
}

Copyright c© 2009 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract.2009;233:21–4
Prepared usingsmrauth.cls

30 D. SPINELLIS

Listing 1. Example code.
/∗ sys / types .h∗/
typedef unsigned long ino t ;

/∗ sys / stat .h∗/
struct stat {

short st dev ; /∗ inode’s device∗/
ino t st ino ; /∗ inode’s number∗/

};

/∗ stdlib .h ∗/
void exit (int);

/∗ string .h ∗/
char ∗strcpy (char ∗ restrict , const char∗ restrict);

/∗ cdefs .h∗/
#include <copyright.h>

/∗ copyright .h∗/
static char copyright [] = ”Copyright 2007 A. Holder”;

/∗ main.c ∗/
#include <cdefs.h>
#include <sys/types.h>
#include <sys/ stat .h>
#include <stdlib .h>
#include <string .h>

main(int argc , char ∗argv [])
{

struct stat buff ;
exit (!(argc == 2 && stat(argv [1], &buff) == 0));

}

The algorithm’s implementation demonstrates that, after parsing and semantic analysis, the setI ′(c)
for a compilation unitc can be calculated in no more than|I ′(c)| + |Rp(c)| operations.

Copyright c© 2009 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract.2009;233:21–4
Prepared usingsmrauth.cls

OPTIMIZING INCLUDE DIRECTIVES 31

2.4. Example

Consider the code example shown in Listing 1. Processingmain.c as a compilation unitc will
establish the following relations.

Rp(c) = {copyright.h} (3)

Ri(c, sys/types.h) = {main.c} (4)

Ri(c, sys/stat.h) = {main.c} (5)

Ri(c, stdlib.h) = {main.c} (6)

Ri(c, string.h) = {main.c} (7)

Ri(c, cdefs.h) = {main.c} (8)

Ri(c, copyright.h) = {cdefs.h} (9)

Rd(c, sys/stat.h) = {sys/types.h} (10)

Rd(c, main.c) = {sys/stat.h, stdlib.h} (11)

Most of the above relations are trivially established. Equation 10 holds, because the type definition
ino t is defined in sys/types.h and referred bysys/stab.h. Similarly, equation 11
holds, because thestat structure tag and theexit function referred bymain.c are defined
correspondingly insys/stat.h andstdlib.h.

Let us now apply the algorithm we described in Section 2.3. Inour particular example∀x :
Rdi(c, x) = Rd(c, x)∨Rdi(c, x) = Ri(c, x), so we do not need to elaborate equation 1. By calculating
depth-first the transitive closureRdi(c, main.c)

+ through equations 11, 5, 10, and 6 we obtain the left-
hand side term of the union in equation 2.

Rdi(c, main.c)
+ = {sys/stat.h, stdlib.h, main.c, sys/types.h} (12)

The corresponding right-hand side is established through equations 3 and 9 as
⋃

∀p∈Rp(c)

Rdi(c, p)+ = {cdefs.h} (13)

and therefore through equations 2, 12, and 13 we obtain

I ′(c)+ = {sys/stat.h, stdlib.h, main.c, sys/types.h, cdefs.h}

Consequently, the directive including filestring.h is not required, and can be safely removed.
Furthermore, the result can be justified intuitively as follows:

• sys/stat.h is required for thestat tag used inmain.c
• stdlib.h is required to define theexit function used inmain.c
• sys/types.h is required to define theino t type definition, which is required by
sys/stat.h, which is required bymain.c

• cdefs.h is required, because it includescopyright.h, which provides data to the
compilation unit

• string.h is not required, becausestrcpy isn’t used anywhere

Copyright c© 2009 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract.2009;233:21–4
Prepared usingsmrauth.cls

32 D. SPINELLIS

2.5. Conditional Compilation

A complication arises when conditional compilation is usedas a method for configuration control [22].
In such a case differently configured compilations of the same unit can result in different include file
requirements. As an example, processing a source file with the macrounix defined might result in
finding that the included header filewindows.his not required, but processing the same source file with
WIN32defined might result in finding that the header fileunistd.his not required. This problem can
be obviated by repeatedly processing the same compilation unit under many possible configurations.
This is possible, because the equivalence classes we outlined in Section 2.1 apply to lexical tokens and
can therefore be maintained across multiple passes on the same compilation unit. Similarly, we also
maintain across the different runs the relationsRp, Ri, andRd that we described in Section 2.2. After
processing all configurations, the algorithm for finding theincluded files that are not required is applied
on the cumulative contents of these relations.

From a practical perspective the problem of this method liesin determining the set of macro
definitions that will cover the processing of a large percentage of the code base (ideally all code lines).
The problem is often simplified because many projects provide a build configuration that accomplishes
this task for the benefit of other static verification tools. In some cases a macro namedLINT—after
the tool of the same name [23]—is used for this purpose. Nevertheless, there can be configurations
that are mutually incompatible; for instance those covering hardware architectures with different
characteristics, or alternative implementations of the same functionality. In such cases our approach
involves processing the files multiple times, each time withthe macros controlling the configuration
set to a different value. Such a setup increases the amount ofcode coverage with each configuration
added at the expense of additional processing time and space. We demonstrate this increase in code
coverage in Section 3.3.

In order to assist developers locating and specifying the appropriate configurations we can maintain
for each file the number of lines that were skipped in all configurations by conditional compilation
directives. With appropriate tool support, developers canissue a query to see which files contain the
largest number of unprocessed lines, and then view a listingof each file with markings indicating the
lines that were not processed. This allows developers to focus on low hanging fruit, adding macro
definitions or configurations that will increase the code coverage and thereby the fidelity of the include
file optimization process.

2.6. Error Reporting

Reporting unused included files by reference to a specific fileand line number (as is typically done
in compiler warning messages) can be implemented by maintaining another relation associated with
each file containing, for every file it includes, the line numbers of the directives that include it (a file
can be included more than one time). However, when dealing with multiple processing passes over
the same file (the method we use to deal with conditional compilation and other configuration control
techniques) the sameincludedirective can include different files. In practice, this canoccur either extra-
linguistically when each pass is performed with a differentinclude file path, or through preprocessor
facilities—by defining different macro values for each configuration and using the corresponding
macro as an argument for anincludedirective. The following example illustrates the latter case.

Copyright c© 2009 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract.2009;233:21–4
Prepared usingsmrauth.cls

OPTIMIZING INCLUDE DIRECTIVES 33

#if defined (alpha)
#define FILE ”alpha.h”
elif defined (i386)
#define FILE ”i386.h”
#endif

#include FILE

An additional relation can be used to overcome this complication. Every include directive is
associated with aninclude site. An include site identifies (by means of the file and the line number the
corresponding directive appears) the position of an include directive that could be a target for removal.
Each include site is associated with: the set of files included by its directive, and a boolean value
indicating whether at least one of the included files was required by the compilation unit including it.
A mapping from a compilation unit’s line numbers to the corresponding include sites can then be used
to update and locate the include sites that do not include even one used header. These located include
sites are then reported as containing unused included files that can be safely removed.

3. Application

We integrated the algorithm described in the previous sections into theCScoutsource code analyzer
and refactoring browser [9].CScoutcan process workspaces of multiple projects (we define a project
as a collection of C source files that are linked together) mapping the complexity introduced by the C
preprocessor back into the original C source code files.CScouttakes advantage of modern hardware
advances (fast processors and large memory capacities) to analyze C source code beyond the level of
detail and accuracy provided by current compilers and linkers. The analysisCScoutperforms takes into
account the identifier scopes introduced by the C preprocessor and the C language proper scopes and
namespaces.

3.1. Case Studies

Over the last few years we have performed a number of experiments and case studies to establish the
magnitude of the needlessly included files problem and our approach’s efficacy in addressing it.

The largest case study took place in 2007, where we tested ourapproach on 32 medium and large–
sized open-source projects. These were: the Apache httpd 1.3.27, Lucent’s awk as of Mar 14th, 2003,
bash 3.1,CVS 1.11.22, Emacs 22.1, the kernel of FreeBSD HEAD branch as of September 9th, 2006
LINT configuration processed for the i386,AMD 64, andSPARC64 architectures, gdb 6.7, Ghostscript
7.05, gnuplot 4.2.2,AT& T GraphViz 2.16, the default configuration of the Linux kernel2.6.18.8-0.5
processed for the x86-64 (AMD 64) architecture, the kernel of OpenSolaris as of August 8th, 2007
configured for the Sun4v Sun4u andSPARC architectures, the Microsoft Windows Research Kernel
1.2 processed for the i386 andAMD 64 architectures, Perl 5.8.8, PostgreSQL 8.2.5, Xen 3.1.0, and the
versions of the programs bind, ed, lex, mail, make, ntpd, nvi, pax, pppd, routed, sendmail, tcpdump,
tcsh, window, xlint, and zsh distributed with FreeBSD 6.2. The FreeBSD programs were processed
under FreeBSD 6.2 running on an i386 processor architecture, while the rest, where not specified, were

Copyright c© 2009 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract.2009;233:21–4
Prepared usingsmrauth.cls

34 D. SPINELLIS

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000

U
nn

ee
de

d
in

cl
ud

e
di

re
ct

iv
es

 (
lo

g
sc

al
e)

Project size (kLOC - log scale)

0

Figure 1. Unneeded include directives in projects of various sizes.

configured under openSUSELinux 10.2 running on anAMD 64 processor architecture. For expediency,
we selected the projects by looking for representative, widely-used, large-scale systems that were
written in C and could be compiled standalone. The processedsource code size was 14.2 million
lines of code.

A summary of the results appears in Figure 1. As we can see, unneeded header files are rarely a
problem for projects smaller than 20KLOC, but become a significant one as the project’s size increases.
(The chart’s abscissa also includes a notional value of zerowhere projects without include directive
problems are indicated.)

For the two largest systems, Linux and FreeBSD, we also verified that code resulting from removing
the identified unneeded include directives could actually compile. We wrote a small script to remove
those directives, and compiled the resulting source code without a problem. The compilation time of
the corrected source code was not significantly reduced.

For the Linux case we also verified that the linked kernel generated after removing the extraneous
header files was the same as the original one. The two generated kernel images, had the same size
(9.6 MiB), but their contents were not identical. The reasonwas differences in timestamps embedded
in object files. A subsequent comparison of the disassembledimage files uncovered only a variation
in a single assembly language instruction. This was traced to a one byte difference in the size of two
compressed object files that were embedded in the kernel. Again, the source code of the two object files
was identical; their difference stemmed from file timestamps located in an embeddedcpioarchive.

Copyright c© 2009 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract.2009;233:21–4
Prepared usingsmrauth.cls

OPTIMIZING INCLUDE DIRECTIVES 35

Moreover, for the FreeBSD case we looked at the possibility of integrating the changedsource code
in the system’s production version. Specifically, in 2003, we appliedCScoutto the source code of
the FreeBSD operating system kernel (version 5.1), in five separate architecture-specific configurations
(i386, IA 64,AMD 64, Alpha, andSPARC64); the configurations of the five architectures were processed
in a single run. In total we processed 4,310 files (2MLOC) containing about 35,000includedirectives.
In the that set 2,781 directives were found as including filesthat were not being required. From the files
that were found as needlessly included, 741 files included from 386 different sites could in practice
not be removed, because the same site also included (probably under a different configuration) files
that were identified as required. The remaining 2,040include directives could be safely removed.
The processing took 330CPU minutes on a 1.8GHzAMD -64 machine and required 1.5GB of RAM.
We published a list of the corresponding changes, and discussed with other FreeBSD developers the
possibility of committing them to the system’s source code repository. We backed off after developers
pointed out that the files from which the include directives were automatically removed violated
various style guidelines. Problems included consecutive blank lines and empty blocks of preprocessor
conditionals. Thus, it turned out that, although our approach can identify unneeded include directives,
their automatic removal is not entirely trivial.

Finally, we also applied our approach on proprietary production code. We processed an architectural
CAD project that is under active development since 1989 [24, 25]. At the time the project consisted
of 231 files (292,000 lines of code), containing 5,249includedirectives. FollowingCScout’s analysis
765includedirectives from 178 files were identified as superfluously included and were removed. The
application was subsequently compiled, tested without a single problem, and is currently in production
use by thousands of clients.

3.2. Discussion of the Results

The substantial number of unused header files in large systems requires some explanation. It could be
attributed to the following reasons.

Removed codeA developer removing code from a C file (or moving the code to another file) might
fail to remove the corresponding header file include directives. This is to be expected, because a
single include directive might serve multiple and different elements. It is difficult for a developer
to know when the last reference to a header file has been removed from a C file.

Moved header file definitions A developer moving a definition from one header file to anotherwould
be hesitant to remove references to the first header file from all the C files it appears in. First,
this would be a lot of work, as the header might appear in many Cfiles, and, second, the header
might also be required for other elements it defined.

Incomplete configurations As we are by no means acquainted with the sample programs we
examined, our analysis of them might involve configurationsin which large parts of the program
functionality are not present. Header files reported as unused might in fact be required by code
that is conditionally compiled in specific configurations.

Disjoined configurations Arguably, the problem of incomplete configurations should not occur in
well-written code. If a given header is only required for a particular, conditionally-compiled,

Copyright c© 2009 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract.2009;233:21–4
Prepared usingsmrauth.cls

36 D. SPINELLIS

configuration, then the header’s include directive should also be compiled only under the
corresponding configuration.

To examine the dynamics of header file addition and removal, we went over 100,324 records of
modifications that were made to the FreeBSD kernel trunk over the last thirteen years (from 1994-05-24
to 2007-11-19). We examined differences between successive revisions, counting the number of code
lines and include directives that were added or removed in each revision. We found that header include
directives amounted to 1.50% of code lines added, but to 1.46% of code lines removed. Adjusting this
difference of 0.04% would amount to deleting another 548 include directives; a figure roughly equal in
magnitude to the extraneous header include directives we found. This finding may suggest that when
removing code developers fail to remove the corresponding header include directives.

In addition, to examine the effect of incomplete and disjoined configurations we associated with
each file containing unneeded include directives the numberof lines that were not processed in that
file due to conditional compilation directives. We could therefore establish the number of unneeded
header include directives located in files that were fully processed. The results appear in Table I on
the row titled “... in f.p. files”. These numbers establish a lower bound on the number of headers that
can be removed: more headers could be candidates for removalif processing additional configurations
didn’t reveal that these headers were required, after all. The numbers could also explain a part of the
large number of unneeded include directives we found: abouthalf of the unneeded headers may be an
artifact of disjoined configurations.

3.3. Dealing with Multiple Configurations

In order to determine how processing the same files under multiple configurations increases the
code coverage, we processed the FreeBSD kernel (HEAD as of 2006-09-18) under the seven different
combinations of the tier-1 (fully supported) architectures: i386, AMD64, andSPARC64. The results
appear in Figure 2. Each node indicates the configuration(s)that were processed, the corresponding
total lines of code (in millions), and the code coverage as a percentage of the total code. The lowest
amounts of code coverage occur in the case where a single architecture is processed. When two
architectures are processed together (there are three suchcombinations in our example) the achieved
code coverage is greater, even though the number of lines processed is higher than those processed
for each of the two architectures. Finally, the greatest code coverage (appearing in the node at middle
of the figure) is achieved when all three architectures are processed as a single configuration. Further
increases in code coverage could be achieved by processing additional configurations.

4. Discussion and Possible Extensions

The application of the approach we have described appears toprovide results that are both accurate
and useful. Its requirements in terms of memory andCPU time may preclude its integration in a typical
compile cycle, but easily allow its periodic application over a code base as a quality assurance measure.

Although the results obtained from this method aresound(removing the files reported as needlessly
included will always result in a correct compilation for thespecified configuration), they are not
complete.

Copyright c© 2009 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract.2009;233:21–4
Prepared usingsmrauth.cls

OPTIMIZING INCLUDE DIRECTIVES 37

AMD64−i386−SPARC64

Processing time: 3:26:57

4.7 MLOC

Coverage: 98.07%

AMD64

Processing time: 0:46:16

3.0 MLOC

Coverage: 97.15%

i386

Processing time: 0:59:59

3.3 MLOC

Coverage: 97.24%

SPARC64

Processing time: 1:20:17

2.3 MLOC

Coverage: 96.92%

AMD64−SPARC64

Processing time: 2:17:04

3.6 MLOC

Coverage: 97.64%

i386−AMD64

Processing time: 1:55:36

4.1 MLOC

Coverage: 97.78%

i386−SPARC64

Processing time: 2:31:16

3.9 MLOC

Coverage: 97.68%

Figure 2. Processing more configurations yields increased code coverage.

First of all duplicate macro definitions or object declarations occurring in different included files will
result in marking as required more files than are strictly necessary. This problem can be compounded
when a forward declaration of a structure appears after its complete declaration. If at all subsequent
points only the incomplete structure declaration is required, our approach will fail to detect this, and
will mark as required the header file containing the completestructure declarations and all header files
that the complete structure declaration requires.

Furthermore, our method will mark as required, through theRp relation, header files containing
code. In modern systems the trend is for header files to define static inline functions for elements

Copyright c© 2009 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract.2009;233:21–4
Prepared usingsmrauth.cls

38 D. SPINELLIS

that in the past were defined through preprocessor macros, and rely on the compiler to optimize these
functions away when they are not used. Such files will be marked as required through theRp relation.
The definition of theRp relation could be amended to take into account only code and data that is
actually exported by the compilation unit, but implementing this functionality is not trivial.

In addition, our method does not take into account differentfiles, not present in the original set of
included files, but part of the processed source code base, that if suitably included might result in an
optimal (in e.g. terms of namespace pollution) set of included files. For instance, a source code base
might have a small header file containing only incomplete structure declarations, and a larger header
file containing the full structure declarations. If the small header is not included in a given compilation
unit, our method will not suggest that the larger header file include directive can be removed.

Finally, our approach may fail in pathological cases where parts of a single syntactical element (for
example a structure or function definition, or even a single statement) span various files. For instance,
one could place each C keyword in a separate file (while.h, if.h, else.h, etc.) and include that file instead
of writing the keyword. Fixing this requires changing the definition of the relations to include all the
files from which the tokens comprising an element being defined come from, rather than just the token
of the identifier being defined.

Although the approach we have described works for the traditional style of C code, modern
compilers and style guidelines are moving toward a slightlydifferent direction. The complexity of
current C++ header files is changing the way header files are being used. Traditionally programmers
were advised to avoid nesting header includes [26]. In contrast, modern style guidelines require each
included file to be self-sufficient (compile on its own) by including all the requisite header files [27,
p. 42]. Header files in turn should be protected against beingprocessed multiple times by so-called
internal include guards. That is, the contents of each header file are placed in a blocklike the following.

#ifndef FILE H INCLUDED
#define FILE H INCLUDED
...

#endif

Modern compilers can recognize this idiom and avoid even opening the file after processing it for
the first time. Under such a style regime, our approach would have to be modified to treat each header
file as a potentially standalone compilation unit. The relations we described in Section 2.2 would still
be required, but the inference for deciding which files to include would have to be modified to match
this style’s guidelines.

Clearly, including the correct headers is far from trivial,and programmers need all the help tools can
provide them.

Acknowledgements

Alexios Zavras gave insightful comments on earlier versions of this paper. Vasilis Kapouleas helped in the
formalization of the algorithm’s description. The FreeBSD community provided me with hardware resources for
testing the effectiveness of the approach on version 5.1 of the kernel, while Ruslan Ermilov, Bruce Evans, John-
Mark Gurney, Alexander Langer, M. Warner Losh, Juli Mallett, and Peter Wemm examined the proposed changes
and commented on them. Markos Gogoulos setup and maintainedthe testing environment. Furthermore, I wish
to thank Microsoft Corporation (and Fotis Draganidis in particular) for providing me access to the Windows

Copyright c© 2009 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract.2009;233:21–4
Prepared usingsmrauth.cls

OPTIMIZING INCLUDE DIRECTIVES 39

Research Kernel. Most importantly, the comments of this paper’s anonymous referrees have contributed greatly to
its improvement.

REFERENCES

1. Michael D. Ernst, Greg J. Badros, and David Notkin. An empirical analysis of C preprocessor use.IEEE Transactions on
Software Engineering, 28(12):1146–1170, December 2002.

2. Trevor Jim, Greg Morrisett, Dan Grossman, Michael Hicks,James Cheney, and Yanling Wang. Cyclone: A safe dialect of
C. In USENIX Technical Conference Proceedings, Berkeley, CA, June 2002. USENIX Association.

3. American National Standard for Information Systems — programming language — C: ANSI X3.159–1989, December
1989. (Also ISO/IEC 9899:1990).

4. William F. Opdyke. Refactoring Object-Oriented Frameworks. PhD thesis, University of Illinois at Urbana-Champaign,
Urbana-Champaign, IL, 1992.

5. William G. Griswold and David Notkin. Automated assistance for program restructuring.ACM Transactions on Software
Engineering and Methodology, 2(3):228–269, 1993.

6. Martin Fowler. Refactoring: Improving the Design of Existing Code. Addison-Wesley, Boston, MA, 2000.
7. Jean-Marie Favre. Preprocessors from an abstract point of view. In Proceedings of the International Conference on

Software Maintenance ICSM ’96. IEEE Computer Society, 1996.
8. Greg J. Badros and David Notkin. A framework for preprocessor-aware C source code analyses.Software: Practice &

Experience, 30(8):907–924, July 2000.
9. Diomidis Spinellis. Global analysis and transformations in preprocessed languages.IEEE Transactions on Software

Engineering, 29(11):1019–1030, November 2003.
10. Stuart I. Feldman. Make—a program for maintaining computer programs.Software: Practice & Experience, 9(4):255–

265, 1979.
11. Panos E. Livadas and David T. Small. Understanding code containing preprocessor constructs. InIEEE Third Workshop

on Program Comprehension, pages 89–97, November 1994.
12. Marian Vittek. Refactoring browser with preprocessor.In CSMR ’03: Proceedings of the Seventh European Conference

on Software Maintenance and Reengineering, page 101. IEEE Computer Society, 2003.
13. Richard C. Holt, Andy Schürr, Susan Elliott Sim, and Andreas Winter. GXL: a graph-based standard exchange format for

reengineering.Science of Computer Programming, 60(2):149–170, 2006.
14. László Vidács,Árpád Beszédes, and Rudolf Ferenc. Columbus schema for C/C++ preprocessing. InCSMR ’04:

Proceedings of the Eighth European Conference on Software Maintenance and Reengineering, pages 75–84. IEEE
Computer Society, March 2004.

15. Yijun Yu, Homy Dayani-Fard, and John Mylopoulos. Removing false code dependencies to speedup software build
processes. InCASCON ’03: Proceedings of the 2003 Conference of the Centrefor Advanced Studies on Collaborative
Research, pages 343–352. IBM Press, 2003.

16. Ira D. Baxter and Michael Mehlich. Preprocessor conditional removal by simple partial evaluation. InWCRE ’01:
Proceedings of the Eighth Working Conference on Reverse Engineering, pages 281–292, Washington, DC, USA, 2001.
IEEE Computer Society.

17. Lerina Aversano, Massimiliano Di Penta, and Ira D. Baxter. Handling preprocessor-conditioned declarations. In
SCAM’02: Second IEEE International Workshop on Source CodeAnalysis and Manipulation, pages 83–93, Los Alamitos,
CA, USA, 2002. IEEE Computer Society.

18. Ying Hu, Ettore Merlo, Michel Dagenais, and Bruno Lagüe. C/C++ conditional compilation analysis using symbolic
execution. In ICSM ’00: Proceedings of the International Conference on Software Maintenance, pages 196–207,
Washington, DC, USA, 2000. IEEE Computer Society.

19. Diomidis Spinellis. Code finessing.Dr. Dobb’s, 31(11):58–63, November 2006.
20. International Organization for Standardization.Programming Languages — C. ISO, Geneva, Switzerland, 1999. ISO/IEC

9899:1999.
21. Brian W. Kernighan and Dennis M. Ritchie.The C Programming Language. Prentice Hall, Englewood Cliffs, NJ, first

edition, 1978.
22. Henry Spencer and Geoff Collyer. #ifdef considered harmful or portability experience with C news. In Rick Adams, editor,

Proceedings of the Summer 1992 USENIX Conference, pages 185–198, Berkeley, CA, June 1992. USENIX Association.
23. Stephen C. Johnson. Lint, a C program checker. Computer Science Technical Report 65, Bell Laboratories, Murray Hill,

NJ, December 1977.
24. Diomidis Spinellis. Tekton: A program for the composition, design, and three-dimensional view of architectural subjects.

In 4th Panhellenic Informatics Conference, volume I, pages 361–372. Greek Computer Society, December1993. In Greek.

Copyright c© 2009 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract.2009;233:21–4
Prepared usingsmrauth.cls

40 D. SPINELLIS

25. Diomidis Spinellis. Reliable software implementationusing domain specific languages. In G. I. Schuëller and P. Kafka,
editors,Proceedings ESREL ’99 — The Tenth European Conference on Safety and Reliability, pages 627–631, Rotterdam,
September 1999. ESRA, VDI, TUM, A. A. Balkema.

26. L. W. Cannon, R. A. Elliott, L. W. Kirchhoff, J. H. Miller,J. M. Milner, R. W. Mitze, E. P. Schan, N. O. Whittington,
Henry Spencer, David Keppel, and Mark Brader. Recommended Cstyle and coding standards. Available online
http://sunland.gsfc.nasa.gov/info/cstyle.html (January 2006). Updated version of the Indian Hill
C Style and Coding Standards paper.

27. Herb Sutter and Andrei Alexandrescu.C++ Coding Standards: 101 Rules, Guidelines, and Best Practices. Addison
Wesley, 2004.

AUTHOR’S BIOGRAPHY

Diomidis Spinellis is an Associate Professor at the Department of Management Science and Technology at
the Athens University of Economics and Business, Greece. His research interests include software engineering
tools, computer security, and programming languages. He has written the twoOpen Source Perspectivebooks:
Code Reading(Software Development Productivity Award 2004), andCode Quality(Software Development
Productivity Award 2007). He is a member of theIEEE Softwareeditorial board, authoring the regularTools of the
Tradecolumn. He is a FreeBSD committer and the author of a number of open-source softwarepackages, libraries,
and tools. He holds an MEng in Software Engineering and a PhD in Computer Science, both from Imperial College
London. Dr. Spinellis is a senior member of the ACM, and a member of the IEEE, and the Usenix Association.

Id: include.tex 1.35 2008/02/29 21:09:07 dds Exp

Copyright c© 2009 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract.2009;233:21–4
Prepared usingsmrauth.cls

