
A Framework for the Static Verification of API
Calls1,2

Diomidis Spinellis2 and Panagiotis Louridas

Department of Management Science and Technology
Athens University of Economist and Business

Patision 76
GR-104 34 Athens, Greece

email: {dds,louridas}@aueb.gr

Abstract

A number of tools can statically check program code to identify commonly encountered
bug patterns. At the same time, programs are increasingly relying on external APIs for per-
forming the bulk of their work: the bug-prone program logic is being fleshed-out, and many
errors involve tricky subroutine calls to the constantly growing set of external libraries. Ex-
tending the static analysis tools to cover the available APIs is an approach that replicates
scarce human effort across different tools and does not scale. Instead, we propose moving
the static API call verification code into the API implementation, and distributing the verifi-
cation code together with the library proper. We have designed a framework for providing
static verification code together with Java classes, and have extended the FindBugs static
analysis tool to check the corresponding method invocations. To validate our approach we
wrote verification tests for 100 different methods, and ran FindBugs on 6.9 million method
invocations on what amounts to about 13 million lines of production-quality code. In the set
of 55 thousand method invocations that could potentially be statically verified our approach
identified 800 probable errors.

Key words: Static analysis, API, Library, Programming by contract, FindBugs

1 Journal of Systems and Software, 80(7):1156–1168, July 2007.
2 This is a machine-readable rendering of a working paper draft that led to a publication.
The publication should always be cited in preference to this draft using the reference in the
previous footnote. This material is presented to ensure timely dissemination of scholarly
and technical work. Copyright and all rights therein are retained by authors or by other
copyright holders. All persons copying this information are expected to adhere to the terms
and constraints invoked by each author’s copyright. In most cases, these works may not be
reposted without the explicit permission of the copyright holder.
3 Corresponding author.

Preprint submitted to Elsevier Science Date : 2006/09/1719 : 50 : 45



1 Introduction

Automatic program verification tools have had a significant impact on software
development, and are more and more used in practice to eliminate many errors
that in the past would have caused program crashes, security vulnerabilities, and
program instability (Johnson, 1977; Bush et al., 2000; Ball and Rajamani, 2002;
Das et al., 2002; Csallner and Smaragdakis, 2005; Cok and Kiniry, 2005; Barringer
et al., 2006). However, two software development trends are now hindering the
applicability of automated program verification tools:

(1) the increasing use of binary-packaged components (for the most part libraries)
through their application programming interface (API), and

(2) the increasing API sophistication, and in particular the embedding of many
different domain-specific languages (DSLs) as strings in the program code.

Both trends reduce the efficiency of the current approaches. The use of feature-rich
libraries in their binary form handicaps verification programs that require access to
source code, such as ESC/Java (Flanagan et al., 2002), and also programs that con-
tain a fixed-set of specific bug patterns, like ITS4 (Viega et al., 2000). Furthermore,
the diversity of the libraries handicaps any tool that depends on a centralized repos-
itory of verification patterns. In addition, the embedding of DSLs, like SQL and
XPath, in strings appearing in the program’s source code can introduce bugs that
are beyond the reach of the current breed of tools based on approaches like theo-
rem proving (Flanagan et al., 2002), dataflow analysis (Jackson, 1995), and finite
state machines (Ball and Rajamani, 2002). To overcome these difficulties we pro-
pose a framework for incorporating API call verification code within each library
containing the corresponding API implementation. Through the use of reflection
techniques program checkers can invoke this code and verify that the actual argu-
ments presented to API invocations meet corresponding value constraints.

1.1 Programming through APIs

An application programming interface specifies how one software component or
system can communicate with a provider of some services. The communication can
take the form of a (local or remote) procedure call, a method invocation, an operat-
ing system trap, or a web service invocation. The provider of the API functionality
can be packaged in the form of a library, a component (Szyperski, 2002), a run-
ning process, or an abstract service available over the internet. Widely-used APIs
include those defined in the Single UNIX Specification, the Microsoft Windows
Win32, ODBC, and .NET APIs, the APIs defined in the Java 2 Enterprise Edition
platform, as well as vertical APIs addressing domains such as graphics rendering
(OpenGL, DirectX), storage devices (ATAPI, SCSI), and network interfaces (NDIS).

2



Project name Classes Foreign

Total Own Foreign %

Centraview 2.0.6 5,813 2,219 3,594 61.8

Compiere 2.5.2d 11,162 1,611 9,551 85.6

Eclipse 3.1 18,584 16,227 2,357 12.7

Jahia 4.1.0 17,310 1,308 16,002 92.4

JBoss 4.0.2 37,308 10,235 27,073 72.6

Netbeans 4.1 14,876 7,963 6,913 46.5

OpenWFE 1.5.4 6,268 444 5,824 92.9
Table 1
The use of foreign classes in Java projects

To substantiate the need for a program verification approach specifically targeting
API calls we must look into the number and size of existing APIs, their actual uti-
lization in real-life software, the organizational structure of library development,
and trends regarding their use. We gathered data from three sources:

• the FreeBSD ports collection, a set of more than 10,000 contributed applications,
mostly written in C/C++, and organized in a way that allows straightforward
installation,

• a number of large and popular Java projects,
• historical implementations of the Emacs editor.

By and large, our results indicate that the number of projects that use external
APIs—that is, APIs that are not by default part of their language or execution
environment—are significant, as is the number of these APIs, and their size. By
tracking the dependencies of the FreeBSD packages we established that the 12,357
ports packages in our FreeBSD 4.11 system, had in total 21,135 library dependen-
cies; i.e., they required a library, other than the 52 libraries that are part of the base
system, in order to compile. The library dependencies comprised 688 different li-
braries, while the number of different external libraries used by a single project
varied between 1 and 38, with a mode value of 2. Furthermore, 5,117 projects used
at least one external library and 405 projects used 10 or more.

We tracked the use of foreign APIs in some large representative Java projects by
analyzing all the Java archive files comprising the project’s binary distribution, and
categorizing the class files they included according to their package. Those whose
package was the same as the project (for example, org.eclipse for Eclipse)
were categorized as “own”, the rest as “foreign”. The results are summarized in Ta-
ble 1. Note that the numbers in the table do not include the Java runtime classes, be-
cause these are by default part of the runtime environment. Evidently, many projects
depend on library code for a large part of their functionality.

3



Product Release Size Imported

year (kLOC) elements

GNU Emacs 18.59 1992 94 121

XEmacs 19.16 1997 232 406

jEdit 4.3 2005 145 2927
Table 2
The use of API elements over time

The numbers we collected also point toward a highly decentralized organizational
structure under which libraries are developed. The 111,321 foreign classes appear-
ing in Table 1 are not unique, because the same classes may be used in multi-
ple projects or subprojects; in our data set the class org.apache.commons.
logging.LogSource was used 20 times. Nevertheless, the projects use among
them 60,273 unique classes outside their own domain. Most of the classes belong to
packages named according to Sun’s conventions: the name’s first elements define
the organization behind the package. By looking at the first two elements of the
package names we found 66 different entities behind the packages, like com.ibm
or org.jboss. Clearly, any proposal for handling API call verification must take
this diversity into account.

The previous two paragraphs indirectly support our claim regarding the size of
existing APIs through the large number of foreign classes used by the Java projects.
We can further substantiate the size of existing APIs by looking at the number of
functions and methods available in some modern environments.

• The Single UNIX Specification version 2 identifies as interfaces 725 functions
and macros.

• The Windows API list distributed with Visual C/C++ 5.0 contains 3,777 elements
listed as DLL functions.

• The Microsoft .NET Framework 1.1 documents 3,136 types and 15,724 methods.
• The Java 1.5.0 runtime environment has 6,520 public classes that contain 52,743

public methods and constructors.

In fact, such is the size and complexity of modern APIs, that a recent paper proposes
a system for mining API usage patterns from a corpus of sample programs in order
to aid programmers in the navigation of the increasingly large and convoluted APIs
(Mandelin et al., 2005).

Finally, anyone who has been writing software for the last 20 years will readily
attest that software systems are being fleshed-out, increasingly using third-party
components through API calls. It is instructive to witness this trend in action. Table
2 details the total number of imported functions or methods used by three differ-
ent editors. The text-based GNU Emacs editor derives from a 1985 codebase, and
provides a feature-rich editing environment while using just 121 elements from the

4



operating system and the C library. Released about 10 years later, XEmacs uses
406 elements to provide an X Window System GUI, while nowadays jEdit uses
2927 Java methods to provide a similar interface with almost 100 thousand lines
less code.

1.2 Domain-specific Languages

A domain-specific language is tailored specifically to an application domain: rather
than being general purpose its aim is to capture precisely a domain’s semantics.
Examples of domain-specific languages are BNF grammar specifications and regu-
lar expressions, as used for example by the yacc and lex tools for generating lexical
analyzers and parsers (Johnson and Lesk, 1987), the SQL database definition and
manipulation language, and XSLT, the XML document transformation language. Of-
ten DSL fragments are directly embedded into the source code of a general purpose
language (Spinellis, 2001), in many cases as strings. Apart from the ubiquitous SQL

statements found in any typical database client, other DSLs that appear as strings in
code are regular expressions, output formatting specifications, various applications
of XML, XPath queries, and URLs. The verification of code written in these DSLs is
both important and worthy of an explicitly targeted approach.

Although some of the DSLs we have described may appear trivial, they are not. Even
a URL is defined by a fairly extensive syntax, and specific URL schemes can have
very precise rules for the elements that appear in them. Java’s Generic Connection
Framework defines a BNF grammar for a number of schemes, allowing for example
the connection to a Bluetooth GPS receiver using a URL like

btspp://000A5600F776:1;authenticate=false;encrypt=false;
master=true;authorize=true

The name value pairs in the above URL are precisely defined and a spelling error
in one of them would result in a runtime error. In fact, a spelling mistake is not
the only error that can occur within a DSL string embedded in a general purpose
language. Other error classes include the following.

Syntax Error Some DSLs, like SQL, are defined by an extensive syntax, and it is
easy for a programmer to write an invalid statement.

Internationalization Problem Regular expressions and format strings, both de-
fined through a DSL, can often contain assumptions that can make a program
difficult to localize. As an example, a regular expression containing the sequence
[A-Z] to specify an uppercase letter will only work with ASCII characters, and
should probably be changed to specify a Unicode category through a sequence
like \p{Lu}.

Portability Problem Like general purpose programming languages, many of the
DSLs have been implemented or extended in a number of non-standard and in-

5



compatible ways. A programmer may unwittingly use such an extension, and
thus burden the program with unintended portability restrictions that will cause
problems in the future. As an example, our prototype tool flagged the following
SQL statement appearing in OpenWFE as wrong.
SELECT workitem_id, action, arg
FROM action where msg_err is null

Although not readily apparent, the error in the above statement is the use of
action, an SQL reserved word, as an identifier.

All the DSLs we have outlined are beyond the reach of general purpose program
verification tools, because they appear in the program code as untyped strings. Er-
rors in the DSLs can, and are, caught by special purpose approaches that target
the specific DSLs. However, such schemes are inherently difficult to scale: they
must incorporate special-purpose checking code for every DSL in existence. Fur-
thermore, the special-purpose verification code may well end-up duplicating func-
tionality available in the actual DSL implementation, such as a parser. For these
reasons we believe that API verifiers should not be implemented as part of verifica-
tion tools, but should be incorporated into the API libraries.

2 Research Context

Our approach to program verification falls within the domain of static program
analysis. This involves the analysis of program code for certain properties without
executing it; usually, it is performed at compile time. Errors discovered late cost
much more than errors discovered early in the development process (Fagan, 1976).
Static analysis aims at lowering development costs by eliminating problem spots as
early as possible.

Before we examine static program analysis methods, let us note that a different but
complementary approach for verifying code across component boundaries involves
run time monitoring to check for conditions that are more stringent than those
specified in a procedure’s API type signature. These are typically based on the ap-
plication of lightweight formal methods during the execution of programs. See for
example the work of Marinov and Khurshid (2001); Havelund and Roşu (2004);
Artho et al. (2005); Pnueli et al. (2006) and the annual Workshop on Runtime Ver-
ification (Barringer et al., 2006). Another runtime monitoring technique involves
“debugging” library implementations that perform more stringent tests on their ar-
guments at the expense of reduced time and space performance. This approach is
often used in languages that allow unbounded pointers, like C and C++. Examples
include malloc debug libraries (Barach et al., 1982), the GNU implementation of
the C++ STL functionality, and the Microsoft Windows SDK debug libraries. As
we argue in our concluding remarks, runtime monitoring tools complement our
approach with a potential to locate more errors slightly later in the development

6



cycle.

The progenitor of static bug finding tools is Lint (Johnson, 1977). Lint employs
heuristics for locating bugs, portability problems and style deviations in C source
code. Lint’s success led to many projects with similar goals that follow a variety of
different approaches. A comparison of bug finding tools for Java can be found in
the work by Rutar et al. (2004).

Heuristics-based approaches are used by a number of successors to Lint, like
LCLint (Evans et al., 1994), which checks C programs against a set of formal
specifications written in the LCL language (Guttag and Horning, 1993), and Splint
(Evans and Larochelle, 2002), LCLint’s successor. JLint (JLint, 2004) finds a fixed
set of synchronization, inheritance, and dataflow problems in Java programs. Heuris-
tics are also employed by ITS4 (It’s The Software Stupid! Security Scanner) (Viega
et al., 2000), which statically scans security-critical source code for vulnerabilities.
ITS4 acts as a smarter version of the Unix grep command by locating, for exam-
ple, calls to unsafe library functions like strcpy and gets. Metacompilation
(MC/Coverity, Hallem et al. (2002)) finds bugs in C programs by using heuristics
written as compiler extensions (checkers) that are executed by an analysis engine.
Checkers can be written to find violations of known correctness rules and even au-
tomatically infer such rules from source code (Engler et al., 2001). SABER (Reimer
et al., 2004) performs static analysis of Java programs looking for violation of pro-
gramming rules, grouped in categories; its matches are subsequently filtered to re-
duce false positives.

In this area Microsoft’s PREfast (Larus et al., 2004) tool parses functions and in-
vokes plugins that traverse the function’s parse tree, looking for idioms that might
indicate problem points. Modern versions of the Microsoft Windows API header
files annotate the declaration of many function parameters to specify whether a pa-
rameter passes values in or out of the function, whether it represents a buffer, or
whether it specifies a buffer’s size. The declaration annotations are based on prim-
itives of the so-called Standard Annotation Language (SAL).

Popular heuristics-based tools for Java are PMD (Copeland, 2005) and FindBugs
(Hovemeyer and Pugh, 2004). Some of the tools based on heuristics can detect
errors in DSL strings. For example, the GNU C compiler can verify printf format
specifications, while FindBugs will attempt to parse regular expressions.

A different class of checkers uses theorem proving techniques. ESC/Java (Ex-
tended Static Checking for Java) (Flanagan et al., 2002) bases its checking on tag-
like annotations added on program comments. Annotations, state routine precon-
ditions, postconditions, object invariants, and ghost fields (fields only seen by the
checker, and not by the compiler), are written in JML (Java Modeling Language)
(Leavens et al., 2005; Burdy et al., 2005). Experience showed that about 40–100
(manually inserted) annotations are required per thousand lines of code. The bur-

7



den can be lightened if annotations are produced automatically; on this path, Hou-
dini (Flanagan and Leino, 2001), is an annotation assistant. Another extension to
ESC/Java is Check ’n’ Crash (CnC) (Csallner and Smaragdakis, 2005). CnC takes
ESC/Java’s output and constructs a series of JUnit tests (Beck and Gamma, 1998).
Recently, the ESC/Java and JML research efforts appear to have been merged under
the roof of ESC/Java2 (Cok and Kiniry, 2005).

The preconditions, postconditions, and object invariants that theorem proving tools
use are not a new concept. They characterize Programming by Contract, as formal-
ized by VDM (Jones, 1990) and exemplified in the Eiffel programming language
(Meyer, 1997). The difference is that Programming by Contract is typically asso-
ciated with the testing of invariants at runtime, whereas static checking aims at
checking them at compile time.

Conceptually related to theorem proving is an approach taken by the functional pro-
gramming community that builds on soft type checking (Wright and Cartwright,
1997). Functional programming languages are sometimes dynamically typed; soft
type checking uses an inference engine (without annotations) to deduce types for
the variables used in a program. The approach has been used in a Scheme imple-
mentation (Findler et al., 2002) and in Erlang for checking commercial telecom-
munications software (Lindahl and Sagonas, 2004).

Aspect (Jackson, 1995) builds on dataflow analysis. It employs assertions that
annotate program code to indicate dependencies between variables used in proce-
dures. Analysis then indicates places where variable use does not follow the spec-
ifications; for instance, errors of omission, when the value of a variable does not
depend on a variable declared as a dependency. Aspect has been used for checking
CLU programs with a specification to code ratio varying from 25% to 50%.

Finite state machines have had a number of followers in the field. Inspired by
the success of finite state machines in hardware design, Bandera (Corbett et al.,
2000) uses program slicing (Weiser, 1981) and abstraction to generate a tractable
finite state machine that checks specifications. Symbolic model checking using fi-
nite state machines is used by SLAM (Ball and Rajamani, 2002), ESP (Error detec-
tion via Scalable Program analysis) (Das et al., 2002), and MOPS (MOdel Checking
Programs for Security properties) (Chen and Wagner, 2002), which models the pro-
gram as a pushdown automaton and security properties as finite state automata. In
particular, Ball and Rajamani (2002) used the SLAM toolkit specifically for check-
ing the (temporal) properties of interfaces, while Chaki et al. (2003) targeted the
MAGIC tool to software components written in C. SLAM was adopted by Microsoft
as a static driver verifier (Ball et al., 2004). Fugue (DeLine and Fähndrich, 2004),
another Microsoft tool, employs both dataflow analysis and state machines. Fugue
is a static protocol checker for languages that compile to Microsoft’s CLR (Com-
mon Language Runtime). The user annotates the program source to indicate state
transitions and custom checking code to be executed before and after method exe-

8



cution.

Abstract interpretation (Cousot and Cousot, 1977) can also be a basis for static
analysis. Abstract interpretation builds and reasons upon an abstract model of a
program; the absence of errors in the model implies the absence of some types of
errors in the concrete program. Abstract interpretation has been used in the context
of safety-critical software (Blanchet et al., 2003).

PREfix (Bush et al., 2000) adopts a related technique, symbolic execution. It parses
the source code into abstract syntax trees, and then follows a program’s behavior by
emulating function calls using automatically generated function models. A function
model embodies the behavior of a function in a Lisp-like notation.

A different approach for avoiding program errors involves creating a new lan-
guages that enforce safety properties. Cyclone is a safe dialect of C (Jim et al.,
2002). The Cyclone compiler refuses to compile any valid C program whose safety
it cannot guarantee through static analysis and insertion of runtime checks. Vault
(DeLine and Fähndrich, 2001) is a C-like language with annotations that express a
function’s preconditions and postconditions, and also track program resources such
as files.

All the approaches we have outlined have the potential to contribute to a program’s
verification. However, none of the static checking approaches we described explic-
itly targets its checking across the division between application code and third party
libraries. In particular, because third-party libraries are typically used in their com-
piled form, it is difficult to apply on them tools that rely on the availability of source
code. First of all, notwithstanding the move toward open source software, there will
probably always be companies which will distribute their software in binary form
to protect their proprietary information. For example, although Linux is an open
source project many hardware vendors are currently distributing their Linux drivers
in binary form. It has even been suggested that some vendors are adopting a binary-
only distribution policy to minimize the risk of patent-related lawsuits. In addition,
even open source projects often use third party libraries in binary form for the sake
of convenience; building a library from source may require extra tools, can be a lot
of work, and can introduce an additional source of instability.

Other advantages of the framework we will describe over comparable approaches
are the provision to API developers of a facility to allow the static verification of
function arguments, its ability to verify DSL code embedded in function arguments,
the potential to reuse existing API implementation code for verification purposes,
the wide range of verification checks that can be supported, and the fact that it is an
open framework on which others may freely build upon.

9



3 Adjunct Verification Code

Having established in Section 1.1 that programs increasingly utilize complicated
APIs from a large and diverse set of third-party libraries, it is easy to see that API-
specific verification code should be tied to the library providing the actual imple-
mentation. We therefore propose that every API implementation should carry with
it functionality for the static verification of API calls at compile time. Verification
tools can then tap into this functionality to extend their reach into the—now often
opaque to them—API invocations.

There are two approaches for tying verification code with an API. One can use a
declarative formalism, like that adopted by JML and ESC/Java2 (Cok and Kiniry,
2005). For example a queue data structure enqueue operation can be annotated with
the following statements.

@ requires \typeof(e) <: elementType
@ modifies size;
@ ensures size == \old(size) + 1;

Although in the verification tools we mentioned the annotations are embedded in
comments, and therefore inaccessible to programs working with binary-distributed
libraries, the annotations could conceivably be placed in the compiled object’s data
section and fetched from the library at compile time. The other approach involves
adding in the library imperative code that will verify a given set of arguments en-
countered at compile time for correctness.

Both approaches have benefits and drawbacks. The declarative approach can be
used together with automated theorem proving techniques and can therefore catch
errors that are beyond the reach of the imperative checks. The imperative approach
can be readily understood by developers not versed in formal specifications—unfortunately
the norm in the software industry—and therefore easier to implement in a decen-
tralized fashion: separately by each API developer. Moreover, the DSL verification
problems we described earlier are a lot easier to handle in the imperative approach.
Therefore, taking a mainly strategic decision, we decided to start by designing and
implementing a framework around imperative functions that can verify constant
API arguments. If routine API verification catches on, developers can be enticed to
enhance their verification specifications with more extensive and precise declara-
tive annotations.

The API verification framework we propose adds to every API method, constructor,
or function, an adjunct verification method or function. This element has a name
and argument signature close to that of the API element it is used to verify, but
is suitably differentiated to avoid name clashes and code bloat. As an example,
in our prototype Java implementation the verifier for the function java.lang.
Math.log is java.lang.MathV.log. The verification function receives as

10



its arguments the arguments to the actual function (a method’s invocation target is
passed as the first argument), along with a boolean array that indicates which values
could be determined at compile-time, and which could not. It returns as a result one
of the following values.

Unverified None of the method’s arguments could be verified; all the arguments
have values that can not be determined at compile time, and at least one of the
arguments could cause the method to fail at runtime.

Partially Verified A method’s target object or some of the method’s arguments are
correct.

Arguments Verified All the method’s arguments are correct.
Correct The method’s invocation target and its arguments are correct. The invo-

cation can not result in a runtime error related to the invocation target and its
arguments.

Argument Error A discrete argument’s value is incorrect. Example: a negative
string starting position is passed to a substring function.

Domain Error A continuous value is outside its allowable domain. Example: a
value greater than 1 is passed to an arc cosine function.

Name Error A specified name is incorrect. Example: a non-existent character set
name is passed to a character code translation function.

Syntax Error A (DSL) argument’s syntax is wrong. Example: the table name is
missing from an SQL SELECT statement.

Although only the error values are of direct interest to developers who run a veri-
fication tool against their API calls, the other values can be used to judge the effi-
ciency of a given verification tool’s abstract interpretation techniques and the cover-
age of the approach. Given verification functions following the above conventions,
any verification tool can invoke these functions using reflection or dynamic library
loading techniques to verify API calls located in arbitrary libraries, for which the
verification tool has no a priori knowledge.

The design we have described offers a number of advantages over incorporating the
verification code directly in a tool.

• It places the burden of checking to the API developers: the ones who should best
know how their API is to be used.

• It allows the checking code to interoperate with internal API functions, because
the two can potentially live in the same C++/C# namespace or Java package
space. This allows, for example, the checking code to invoke a DSL parser.

• Checking code is easier to write and contains fewer dependencies than ad hoc
API verification code that comes together with a verification tool.

• Improvements of the checking tool, such as the incorporation of sophisticated
abstract interpretation techniques, are automatically utilized by all existing API

checking functions.
• The same checking code can be used by a number of different tools. Thus, the

11



significant effort required to write checks for the many thousands of API func-
tions and methods does not need to be duplicated among different tools, while
verification tools can still compete on the way they determine the arguments of
an API invocation, efficiency, usability, and other features.

• The checking results across different APIs and methods can be readily summa-
rized in a uniform manner to obtain an idea of the approach’s coverage.

4 Implementation Examples

To validate the feasibility of our approach, we designed the application of our veri-
fication framework on Java methods, we added API verification functionality to the
FindBugs tool (Hovemeyer and Pugh, 2004), and wrote verifiers for a small num-
ber of Java classes. Note that none of the above steps characterizes our approach.
Our framework can be applied to different languages, can be integrated with other
tools, and, of course, it can support a large number of API verification functions.

4.1 API Verification in Java

To apply the API verification approach to a particular language, one has to define
the interface and calling conventions for the verification functions. For our Java
implementation we defined these as follows.

• The verification methods are defined in a separate verification class, named by
appending the letter V to the original class name.

• The verification classes are defined either in the same package as the actual API

class, or in the package of the actual API class with the sequence gr.aueb.
dmst.apiv prepended to it. This convention allows both a package’s author
and third parties to write API verification methods.

• Each verification method has as its first argument an array of boolean values.
Each element of the array is true if the value of a corresponding subsequent
argument could be statically determined at compile time.

• The second argument of each verification method is the original method’s invo-
cation target.

• Subsequent arguments of each verification method are of the same type as those
of the corresponding API method.

• Verification methods shall return values from the enumeration gr.aueb.dmst.
apiv.VerifyResult following the semantics we defined in Section 3.

12



4.2 Extending FindBugs

The second step for implementing an API verification system is to have a tool scan
the source or the object code of a program, locate calls to API functions, statically
evaluate their arguments, call the corresponding API verification function, and dis-
play the verification results. In our implementation we extended the FindBugs tool
(version 0.9.2-dev). Specifically, we added to FindBugs’s suite of bug detectors one
that calls the API verification functions.

FindBugs works by examining the compiled Java virtual machine bytecodes of the
programs it checks, using the bytecode engineering library (BCEL) (Dahm, 1999).
It supports plug-in bug detectors, it performs a (rudimentary at the time of writ-
ing) abstract interpretation of the Java virtual machine instructions, and it has an
extensive mechanism for reporting errors, both through a GUI and by textual out-
put. FindBugs was therefore ideally suited as a platform for adding API verification
functionality.

Our API verifier taps into the bytecode’s method invocation point. It obtains the
method’s signature (its class, name, package, and argument types), which uniquely
determines the called method. Then, by using Java’s dynamic class loading and
reflection capabilities, it tries to load and execute an API verification function, and
transform the returned value into an appropriate FindBugs error message. FindBugs
annotates each error message with the corresponding source file name and line
number, and also contains functionality for localizing the messages for different
languages.

Given the many services that FindBugs already provides, the implementation effort
for the API verifier was modest, totaling about 500 lines of Java code. We therefore
believe that adding API verification to other verification tools, compilers, or IDEs
will be a similarly lightweight task.

4.3 Class Verifiers

To bootstrap and validate our approach we implemented a number of API verifiers;
in the future we hope that libraries will come packaged with their verification code,
in the same way as nowadays they include in their distribution their on-line doc-
umentation. We wrote about 100 method verifiers, spanning 12 different classes:
java.lang.Math, java.lang.String, java.sql.Connection, java.
sql.Statement, java.util.regex.Matcher, java.util.regex.Pattern,
org.apache.xpath.XPath, org.apache.xpath.CachedXPath, org.
apache.xpath.XPathAPI, javax.xml.xpath.XPath, org.dom4j.Node,
and org.dom4j.Document. We chose the classes for a variety of reasons: Math,
because it contained a number of functions with well-defined argument domain val-

13



ues; String, because we found it to be one of the classes with the highest number
of afferent couplings among the projects we examined; and the rest to experiment
with different DSL verification strategies.

Writing a method verifier is not difficult. In total, our verifiers, excluding the 3000-
line ANTLR-based implementation of an existing ANSI SQL parser, consist of 1350
lines of Java code; about 14 lines for each verification method. We found ourselves
employing three different approaches for implementing the verifiers. One involves
directly checking the arguments for validity, as in the following verifier for the
method static double Math.log(double x).

public static VerifyResult.Value
log(boolean isConstant[], Math t, double x) {
if (isConstant[1])
if (x < 0)

return VerifyResult.Value.DOMAIN_ERROR;
else

return VerifyResult.Value.CORRECT;
else
return VerifyResult.Value.UNVERIFIED;

}

The second approach involves actually executing the function with the known val-
ues and appropriate stubs, and catching any generated exceptions. This is the ap-
proach we used for implementing the constructor String(byte[] bytes,
String charsetName).

public VerifyResult.Value String(boolean isConstant[],
String t, byte[] bytes, String charsetName) {
if (isConstant[2]) {
try {

String x = new String(new byte[]{}, charsetName);
} catch (UnsupportedEncodingException e) {

return VerifyResult.Value.NAME_ERROR;
}
return VerifyResult.Value.CORRECT;

} else
return VerifyResult.Value.UNVERIFIED;

}

Finally, the third approach involves implementing one verifier in terms of another.
Needless to say, this approach results in very terse code; a clear boon when a class
contains tens of similar methods. Here is as an example the verifier for the method
int executeUpdate(String sql, int[] columnIndexes).

public VerifyResult.Value executeUpdate(boolean isConst[],
Statement s, String sql, int[] columnIndexes) {

14



return execute(isConst, s, sql);
}

Although the class coverage of our verifiers is by no means representative, it is
instructive to see the distribution of the returned error types. Of the verifiers 57
can return an argument error, 13 return a syntax error, 7 a domain error, and 3
a name error. Another 20 verifiers are implemented in terms of others, and thus
return indirectly one of the above errors.

5 Empirical Evaluation

We ran our API verifier on the compiled code (application-specific and accompany-
ing libraries) of the eight packages listed in Table 3. The Java archives we checked
comprised 353MB (about 13 MLOC), and FindBugs invoking only our API verifier
took 68 minutes on dual-CPU 2.2MHz AMD Opteron computer running the Java
HotSpot 64-bit server 1.5.0 virtual machine. Thus, the bytecode throughput of the
API verification was about 86kB/s—comparable to that of a Java compiler running
on the same hardware (22kB/s). Therefore, the API verification could in the future
conceivably be part of the compilation process. Our figures also allow us to extrap-
olate an approximate source code throughput of 3,000kLOC/s; this indicates that an
IDE could perform API verification while a program is being edited.

From a total of 6.9 million method invocations, our 100 method verifiers matched
55 thousand invocations and could perform some argument checking on 25 thou-
sand of them. The verifiers identified 800 potential errors, though, as we will see,
many of them were false positives. In general, our approach is neither sound nor
complete: it will identify as erroneous method invocations that are obviously cor-
rect, and it will also fail to detect errors that could be detected. However, the quality
of the results depends to a large degree on the tool that applies the method verifiers.
Therefore, once the investment in method verifiers is made, improvements to the
analysis tools will increase the return on that investment.

The API verification methods that were called and reported errors, the extend to
which they could verify their arguments, and the errors they detected, appear in Ta-
ble 4. All the applications we verified are stable and of production-quality, therefore
one should not expect to locate many errors remaining in them. We encountered
two of the four possible error categories our framework defines: argument errors
and syntax errors. Our application sample contained relatively few calls to mathe-
matical functions, and from them even fewer could have their arguments checked;
this explains the absence of domain errors. Furthermore, none of the three String
methods that could return a name error got called; therefore, no name errors appear
in our results.

15



N
um

be
r

M
et

ho
d

in
vo

ca
tio

ns

of
.ja

r
O

ve
ra

ll
C

he
ck

ed
V

er
ifi

ca
tio

n
ex

te
nt

E
rr

or
s

Pr
oj

ec
tn

am
e

fil
es

To
ta

l
U

ni
qu

e
To

ta
l

U
ni

qu
e

N
on

e
Pa

rt
A

rg
s

Fu
ll

A
rg

Sy
nt

ax

C
en

tr
av

ie
w

2.
0.

6
12

4
36

07
27

49
67

1
25

88
26

13
30

2
11

21
11

7
17

1

C
om

pi
er

e
2.

5.
2d

86
61

06
33

10
49

87
66

20
34

29
37

10
34

71
12

4
51

27

E
cl

ip
se

3.
1

23
0

15
27

31
2

36
48

36
80

01
20

46
23

2
30

32
22

5
11

9
0

Ja
hi

a
4.

1.
0

16
6

95
92

15
15

42
68

99
84

36
57

73
16

37
58

16
3

75
19

9

Ja
va

1.
5.

0
1

44
11

59
75

23
3

35
05

25
19

64
7

13
64

14
5

25
0

JB
os

s
4.

0.
2

23
1

16
42

23
5

28
69

44
11

60
3

34
65

18
8

46
46

30
0

11
0

21

N
et

be
an

s
4.

1
28

6
10

99
83

2
23

40
60

92
95

28
42

96
6

32
22

16
61

92
18

O
pe

nW
F

E
1.

5.
4

70
31

19
54

56
96

6
39

17
25

21
80

4
15

82
10

1
35

15

To
ta

l
69

53
06

7
55

51
3

29
62

1
55

22
19

6
28

36
52

4
28

1

Ta
bl

e
3.

A
P

I
ve

ri
fic

at
io

n
re

su
lts

fo
rd

iff
er

en
tJ

av
a

pr
oj

ec
ts

16



Verification extent Errors

Method None Part Args Full Arg Syntax

String.String(char[],int,int) 2506 55 0 0 13 0

String.charAt(int) 6552 0 9403 1606 122 0

String.substring(int) 5285 0 5915 130 108 0

String.substring(int,int) 11990 0 6125 117 281 0

Connection.prepareStatement(String) 625 0 375 0 0 188

Statement.execute(String) 169 0 3 0 0 26

Statement.executeQuery(String) 496 0 47 0 0 63

Statement.executeUpdate(String) 235 0 0 0 0 4
Table 4
API verification error reports

Lacking an intimate knowledge of the verified code base, we could not judge all
the results we obtained. Nevertheless, by opportunistically examining the subset
of results that could be easily analyzed we identified some actual syntax errors
stemming out of non-portable DSL constructs, and four classes of false positives.

5.1 Portability Problems

We saw in Section 1.2 that some DSL syntax errors might in fact be portability
problems: constructs that might work correctly in one specific DSL dialect, but fail
on a different one. As an example, the following SQL construct, part of the HSQLDB

test data, fails to embed the nested SELECT statement in brackets.

sStatement.execute(
"UPDATE Invoice SET Total=SELECT SUM(Cost*"
+ "Quantity) FROM Item WHERE InvoiceID=Invoice.ID");

Although HSQLDB will accept this construct in its current form, a different database
implementation—for example Microsoft Access in this case—might flag it as an
error. If an application provides the flexibility of running with different back-end
database engines, such an error might manifest itself on a subset of the product’s
installations: a problem that would be difficult to isolate.

A different class of portability problems might arise from successive extensions
made to an API. Again, these might not be uncovered during development, but sur-
face when the application is deployed to different clients. As an example, consider a
call to java.util.regex.Pattern.quote. This method is a feature of Java
1.5, yet Sun’s compiler will happily accept it, even if the application is compiled for

17



a Java 1.4 environment. Our API verification framework can be easily extended to
flag such invocations as errors. Conveniently, the corresponding checks can proba-
bly be automatically implemented by scanning JavaDoc comments for instances of
the @since tag.

5.2 Control Graph Inference

Currently FindBugs analyzes a program’s bytecodes without making any inferences
regarding the flow of control. As a result, we identified a number of false positives
that would be avoided by a tool invoking our API checking framework after per-
forming some deeper inference analysis of the code’s control paths. The following
code fragment from the Eclipse source code is a typical example.

int numberOfDots = 0;
[...]
if ((numberOfDots % 2) == 0) return true;
if (numberOfDots == 1) return false;
if (tagName.charAt(lastDot - 1) == ’0’ &&

tagName.charAt(lastDot - 2) == ’.’) return true;

FindBugs in conjunction with our checking framework will report that charAt
can be called erroneously with a value of −1 or −2. This could indeed happen by
taking into account the initial value of numberOfDots, and that the code that
follows only increments it. However, the first two if statements ensure that if
numberOfDots ≤ 2, control will never reach the third if statement, and there-
fore the suspect charAt invocations.

5.3 API Postconditions

Performing sophisticated control path analysis of the program’s code would elimi-
nate a number of false positives. Even more could be eliminated by having the API
checking framework incorporate additional knowledge regarding the properties of
API calls. Consider the following code fragment from Apache Ant.

String replace(String data, String from, String to) {
StringBuffer buf = new StringBuffer(data.length());
int pos = -1;
int i = 0;
while ((pos = data.indexOf(from, i)) != -1) {

buf.append(data.substring(i, pos)).append(to);
i = pos + from.length();

}
buf.append(data.substring(i));

18



return buf.toString();
}

Here our framework erroneously reported as an error a call of substring(int,
int) with pos being negative. Analysis of the program’s control flow would
establish that when substring is invoked pos 6= −1, but in the above case
substring would also fail for pos < i. To eliminate this possibility the analysis
framework would have to know the range of the indexOf method:

indexOf(a, b) ∈ {−1, b...Integer.MAX VALUE}

and that therefore in our case pos ≥ i.

5.4 Performance Bottlenecks

In the following excerpt from Apache Tomcat our API verifier complains that in the
last line substring can be called with the value of the second argument less than
the first.

while ((pos = value.indexOf("$", prev)) >= 0) {
if (pos == (value.length() - 1)) {

sb.append(’$’);
prev = pos + 1;

} else if (value.charAt(pos + 1) != ’{’) {
sb.append(’$’);
prev = pos + 1; // XXX

} else {
int endName = value.indexOf(’}’, pos);
if (endName < 0) {

[...]
}
String n = value.substring(pos + 2, endName);

Examining the code reveals that the reported error is, once again, a false positive,
because the preceding calls to indexOf and charAt ensure that valuewill start
at pos with the sequence ${, and therefore endName will be at least pos + 2.
On the other hand, the report illustrates a slight case of inefficiency: the search for
the closing brace could well start at pos + 2, as follows.

int endName = value.indexOf(’}’, pos + 2);

Again, as program functionality increasingly moves to APIs, so do the performance
bottlenecks. Locating and reporting problems, such as the above (and worse), would
be a valuable extension to our approach.

19



5.5 Bugs in the FindBugs Program

As we wrote earlier, the version of FindBugs we used did not perform control flow
analysis. Much to our surprise, by examining a number of mistakenly reported er-
rors, we discovered that it also arrived on completely unwarranted values for some
of the arguments. For example, in the following excerpt from Eclipse, FindBugs
established that arg had the value of -eclipseTask.

String arg = getArgument(commands, "-eclipseTask");
[...]
String className= arg.substring(index + 1);

Although we did correct some argument type inference errors in FindBugs by
submitting corresponding patches, it is clear that our API verification framework
stretches FindBugs beyond the quality limits of its current implementation. Our
verifier guards against such wrong inferences, but clearly more work is needed in
this area.

6 Discussion

The implementation of our API verification framework, and its application on real-
world code, taught us a number of valuable lessons. Some apply to our framework
in general, while others are associated with FindBugs, which we chose as our im-
plementation platform.

The imperative code we used for expressing the API verification functionality proved
to be efficient in terms of code size and performance, reliable, and easy to apply. In
Section 4.3 we wrote that implementing a verification method takes on average 14
lines of Java code. Learning to write verification code proved remarkably easy: this
paper’s second author wrote about half the verification functions, having as a guide
only the source code of the existing ones. The compactness of the verification meth-
ods also contributed to their reliability: most worked on the first try. In contrast,
while testing our methods we found that the existing regular expression verification
functionality provided by FindBugs (BadSyntaxForRegularExpression),
being written at a lower level of abstraction, contained a number of tests for the
replace methods that were incorrect.

One could argue that developers, who often find it difficult to write down correct
specifications, are unlikely to write down code to verify those specifications. Fur-
thermore, one could say that developers could, out of laziness, short-circuit the
verification code by always reporting that the corresponding API calls are correct.
Although both concerns are valid, we believe that because our approach uses the

20



same expression medium as that of the actual API implementation, namely im-
perative code constructs, developers will feel familiar with it, and will therefore
embrace it. In the context of the Java development community we are already
witnessing two similar cases where developers increasingly embed elements into
Java programs to enhance their code’s non-functional properties: comprehensibil-
ity, through JavaDoc comments, and testability, through JUnit test cases (Spinellis,
2006).

Intriguingly, tests of our verification functions also demonstrated that the API docu-
mentation of widely used interfaces sometimes is incomplete or wrong. For exam-
ple, we found that an invalid flags argument in Sun’s regular expression parsing
code will not throw an IllegalArgument exception, despite what the documen-
tation claims. On the other hand, the String.replaceAll method can throw
a NullPointer exception, but does not document it, while the list of error con-
ditions for the String.copyValueOf method appears to be incomplete. These
discrepancies show that the exercise of adding verification code to an existing API,
apart from aiding the reliability of the API’s client code, can also add rigor to the
API’s documentation and implementation.

The choice of using FindBugs as the platform for implementing the API verifica-
tion checker proved a mixed blessing. On the one hand it minimized the code we
needed to write, thus demonstrating that once API verification classes get written
and shipped with the corresponding API implementation, the verification of API

calls can be easily integrated into a number of tools. The integration with FindBugs
also provided us with an easy-to-use GUI, and allowed our approach to capitalize
on the familiarity of the many programming groups that already use FindBugs as
part of their build procedure. On the other hand, the inference engine of FindBugs
left a lot to be desired, leading to a large number of false positives, possibly ob-
scuring some real errors. The internationalized FindBugs interface also prompted
us to adopt a design where the API verification methods return a result from a fixed
number of errors. This allows the localization of the FindBugs interface, but limits
the expressiveness and flexibility of a verification method’s error report.

While writing the XPath verification methods we came across another problem of
our approach. Some class hierarchies are rooted at an interface specification, and
implement the interface in a number of different, but compatible, ways. In such
cases, we had to implement essentially similar method verifiers for each class im-
plementing the interface. This requirement is a limitation of Java’s reflection design
(Arnold et al., 2005); the only way to mitigate this problem within our framework
is to implement the verification methods at the interface level, and have multiple
verification method stubs forward the calls to the higher level actual verification
methods.

21



7 Conclusions and Further Work

Our API verification framework is clearly complementary to other existing code
verification approaches, such as runtime checks. Our approach can be integrated
in the compilation cycle to catch some bugs early on. Runtime checks can poten-
tially catch a wider range of errors, but they can be performed slightly later in the
development cycle: at the earliest during unit testing. Because our approach does
not depend on a specific tool, and it allows verification code to be embedded with
a library’s binary implementation, we hope that API implementers (or even third
parties) will gradually build a large set of verification methods that different verifi-
cation tools can tap.

On the implementation front, our approach can be extended with the addition of
verification methods for many more classes. We hope that the availability of our
implementation as open source software 1 will stimulate such an effort. In addition,
our framework’s efficacy can be enhanced by increasing the accuracy of FindBugs’s
abstract interpretation of Java bytecodes, or by integrating API verification with a
Java compiler, or a verification tool incorporating a theorem prover. Implementing
the API verification framework for other languages, such as C and C#, and other
APIs is also another worthwhile pursuit.

Our API verification framework also opens a number of interesting research ques-
tions. The representation of API call postconditions within the binary code of a
library is an interesting problem. Our current design allows verification methods to
check for preconditions. However, as we described in Section 5.3, the code driving
the verification methods could provide them with more accurate argument values, if
previously called verification methods could indicate the postconditions (e.g. their
return value) for the arguments they received.

Furthermore, one would like to be able to verify stateful interactions of API calls—
for example the double locking of a resource—again without incorporating API-
specific knowledge within the verifier. Such extensions could also allow the API

verifier to identify higher-level problems associated with the application’s perfor-
mance. Finally, given the availability of the API verification functions, one could
envisage them being used to check an application’s behavior at runtime (Pnueli
et al., 2006). Under such a scheme, Aspect-oriented technology (Kiczales et al.,
2001) could associate API calls with code that would first call the verification func-
tion (for a specific set of arguments) and then the actual API function. Such an ap-
proach would be especially useful for APIs whose functions can silently fail, such
as the Windows Win32 API and the Single UNIX Specification.

1 http://www.dmst.aueb.gr/dds/sw/api-verify.

22



8 Acknowledgments

We would like to thank the authors of FindBugs for the work they put into the plat-
form, and in particular Dave Brosius for his help in integrating our type-inference
patches that made it possible to implement our tool. We also thank the paper’s
anonymous referees for many detailed and perceptive comments.

References

Arnold, K., Gosling, J., Holmes, D., 2005. The Java Programming Language, 4th
Edition. Addison-Wesley, Boston, MA.

Artho, C., Barringer, H., Goldberg, A., Havelund, K., Khurshid, S., Lowry, M.,
Pasareanu, C., Rosu, G., Sen, K., Visser, W., Washington, R., 2005. Combining
test case generation and runtime verification. Theoretical Comput. Sci. 336 (2-3),
209–234.

Ball, T., Cook, B., Levin, V., Rajamani, S. K., 2004. SLAM and static driver veri-
fier: Technology transfer of formal methods inside Microsoft. Tech. Rep. MSR-
TR-2004-08, Microsoft Research, Redmond, WA.

Ball, T., Rajamani, S. K., 2002. The SLAM project: Debugging system software via
static analysis. In: POPL ’02: Proceedings of the 29th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages. pp. 1–3.

Barach, D. R., Taenzer, D. H., Wells, R. E., 1982. A technique for finding storage
allocation errors in C-language programs. SIGPLAN Notices 17 (7), 32–38.

Barringer, H., Finkbeiner, B., Gurevich, Y., Sipma, H. B. (Eds.), 2006. Proceedings
of the Fifth Workshop on Runtime Verification (RV 2005). Electronic Notes in
Theoretical Computer Science. 144(4).

Beck, K., Gamma, E., 1998. Test infected: Programmers love writing tests. Java
Report 3 (7), 37–50.

Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monni-
aux, D., Rival, X., 2003. A static analyzer for large safety-critical software. In:
PLDI ’03: Proceedings of the ACM SIGPLAN 2003 Conference on Program-
ming Language Design and Implementation. pp. 196–207.

Burdy, L., Cheon, Y., Cok, D. R., Ernst, M. D., Kiniry, J. R., Leavens, G. T., Leino,
K. R. M., Poll, E., Jun. 2005. An overview of JML tools and applications. Inter-
national Journal on Software Tools for Technology Transfer 7 (3), 212–232.

Bush, W. R., Pincus, J. D., Sielaff, D. J., 2000. A static analyzer for finding dynamic
programming errors. Software—Practice and Experience 30 (7), 775–802.

Chaki, S., Clarke, E., Groce, A., Jha, S., Veith, H., 2003. Modular verification of
software components in C. In: ICSE ’03: Proceedings of the 25th International
Conference on Software Engineering. pp. 385–395.

Chen, H., Wagner, D., 2002. MOPS: An infrastructure for examining security prop-

23



erties of software. In: CCS ’02: Proceedings of the 9th ACM Conference on
Computer and Communications Security. pp. 235–244.

Cok, D. R., Kiniry, J. R., 2005. ESC/Java2: Uniting ESC/Java and JML — progress
and issues in building and using ESC/Java2. In: Barthe, G., Burdy, L., Huis-
man, M., et al. (Eds.), Construction and Analysis of Safe, Secure, and Interop-
erable Smart Devices: International Workshop, CASSIS 2004. Springer-Verlag,
pp. 108–129, Lecture Notes in Computer Science 3362.

Copeland, T., 2005. PMD Applied. Centennial Books.
Corbett, J. C., Dwyer, M. B., Hatcliff, J., Laubach, S., Păsăreanu, C. S., Robby,

Zheng, H., 2000. Bandera: Extracting finite-state models from Java source code.
In: ICSE ’00: Proceedings of the 22nd International Conference on Software
engineering. pp. 439–448.

Cousot, P., Cousot, R., 1977. Abstract interpretation: A unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In:
POPL ’77: Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages. pp. 238–252.

Csallner, C., Smaragdakis, Y., 2005. Check ’n’ crash: Combining static checking
and testing. In: ICSE ’05: Proceedings of the 27th International Conference on
Software Engineering. pp. 422–431.

Dahm, M., 1999. Byte code engineering. In: Cap, C. H. (Ed.), JIT ’99, Java-
Informations-Tage 1999. Springer-Verlag, pp. 267–277.

Das, M., Lerner, S., Seigle, M., 2002. ESP: Path-sensitive program verification
in polynomial time. In: PLDI ’02: Proceedings of the ACM SIGPLAN 2002
Conference on Programming Language Design and Implementation. pp. 57–68.

DeLine, R., Fähndrich, M., 2001. Enforcing high-level protocols in low-level soft-
ware. In: PLDI ’01: Proceedings of the ACM SIGPLAN 2001 Conference on
Programming Language Design and Implementation. pp. 59–69.

DeLine, R., Fähndrich, M., 2004. The Fugue protocol checker: Is your software
Baroque? Tech. Rep. MSR-TR-2004-07, Microsoft Research, Redmond, WA.

Engler, D., Chen, D. Y., Hallem, S., Chou, A., Chelf, B., 2001. Bugs as deviant
behavior: A general approach to inferring errors in systems code. In: SOSP ’01:
Proceedings of the Eighteenth ACM Symposium on Operating Systems Princi-
ples. pp. 57–72.

Evans, D., Guttag, J., Horning, J., Tan, Y. M., 1994. LCLint: A tool for using spec-
ifications to check code. In: SIGSOFT ’94: Proceedings of the 2nd ACM SIG-
SOFT Symposium on Foundations of Software Engineering. pp. 87–96.

Evans, D., Larochelle, D., Jan./Feb. 2002. Improving security using extensible
lightweight static analysis. IEEE Software 19 (1), 42–51.

Fagan, M. E., 1976. Design and code inspections to reduce errors in program de-
velopment. IBM Syst. J. 15 (3), 182–211.

Findler, R. B., Clements, J., Flanagan, C., Flatt, M., Krishnamurthi, S., Steckler, P.,
Felleisen, M., Mar. 2002. DrScheme: A programming environment for Scheme.
Journal of Functional Programming 12 (2), 159–182.

Flanagan, C., Leino, K. R. M., 2001. Houdini, an annotation assistant for ESC/Java.
In: FME ’01: Proceedings of the International Symposium of Formal Methods

24



Europe on Formal Methods for Increasing Software Productivity. pp. 500–517.
Flanagan, C., Leino, K. R. M., Lillibridge, M., Nelson, G., Saxe, J. B., Stata, R.,

2002. Extended static checking for Java. In: PLDI ’02: Proceedings of the ACM
SIGPLAN 2002 Conference on Programming Language Design and Implemen-
tation. pp. 234–245.

Guttag, J. V., Horning, J. J. (Eds.), 1993. Larch: Languages and Tools for Formal
Specification. Springer-Verlag.

Hallem, S., Chelf, B., Xie, Y., Engler, D., 2002. A system and language for build-
ing system-specific, static analyses. In: PLDI ’02: Proceedings of the ACM SIG-
PLAN 2002 Conference on Programming Language Design and Implementa-
tion. pp. 69–82.

Havelund, K., Roşu, G., 2004. An overview of the runtime verification tool Java
PathExplorer. Formal Methods in System Design 24 (2), 189–215.

Hovemeyer, D., Pugh, W., 2004. Finding bugs is easy. In: OOPSLA ’04: Compan-
ion to the 19th Annual ACM SIGPLAN Conference on Object-Oriented Pro-
gramming Systems, Languages, and Applications. pp. 132–136.

Jackson, D., 1995. Aspect: Detecting bugs with abstract dependences. ACM Trans-
actions on Software Engineering Methodology 4 (2), 109–145.

Jim, T., Morrisett, G., Grossman, D., Hicks, M., Cheney, J., , Wang, Y., 2002. Cy-
clone: A safe dialect of C. In: USENIX Annual Technical Conference. pp. 275–
288.

JLint, 2004. JLint. Available online http://jlint.sourceforge.net/.
Johnson, S., 1977. Lint, a C program checker. Computer Science Technical Re-

port 65, Bell Laboratories, Murray Hill, NJ.
Johnson, S. C., Lesk, M. E., Jul.-Aug. 1987. Language development tools. Bell

System Technical Journal 56 (6), 2155–2176.
Jones, C., 1990. Systematic Software Development using VDM. Prentice Hall, En-

glewood Cliffs, NJ.
Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W., 2001.

Getting started with ASPECTJ. Commun. ACM 44 (10), 59–65.
Larus, J. R., Ball, T., Das, M., DeLine, R., Fähndrich, M., Pincus, J., Rajamani,

S. K., Venkatapathy, R., May/Jun. 2004. Righting software. IEEE Software
21 (3), 92–100.

Leavens, G. T., Baker, A. T., Ruby, C., 2005. Preliminary design of JML: A behav-
ioral interface specification for Java. Tech. Rep. TR #98-06-rev28, Department
of Computer Science, University of Iowa, Ames, IA.

Lindahl, T., Sagonas, K., 2004. Detecting software defects in telecom applications
through lightweight static analysis: A war story. In: APLAS 2004: Second Asian
Symposium on Programming Languages and Systems. Springer, pp. 91–106,
Lecture Notes in Computer Science 3302.

Mandelin, D., Xu, L., Bodı́k, R., Kimelman, D., 2005. Jungloid mining: helping to
navigate the API jungle. In: PLDI ’05: Proceedings of the 2005 ACM SIGPLAN
Conference on Programming Language Design and Implementation. pp. 48–61.

Marinov, D., Khurshid, S., 2001. TestEra: A novel framework for automated testing
of Java programs. In: ASE ’01: Proceedings of the 16th IEEE International Con-

25



ference on Automated Software Engineering. IEEE Computer Society, Washing-
ton, DC, USA, p. 22.

Meyer, B., 1997. Object-Oriented Software Construction, 2nd Edition. Prentice
Hall PTR, Upper Saddle River, NJ.

Pnueli, A., Zaks, A., Zuck, L. D., 2006. Monitoring interfaces for faults. Electronic
Notes in Theoretical Computer Science 144 (4), 73–89.

Reimer, D., Schonberg, E., Srinivas, K., Srinivasan, H., Alpern, B., Johnson, R. D.,
Kershenbaum, A., Koved, L., 2004. SABER: Smart analysis based error reduc-
tion. In: ISSTA ’04: Proceedings of the 2004 ACM SIGSOFT International Sym-
posium on Software Testing and Analysis. pp. 243–251.

Rutar, N., Almazan, C. B., Foster, J. S., 2004. A comparison of bug finding tools
for Java. In: ISSRE ’04: Proceedings of the 15th International Symposium on
Software Reliability Engineering (ISSRE ’04). pp. 245–256.

Spinellis, D., Feb. 2001. Notable design patterns for domain specific languages.
Journal of Systems and Software 56 (1), 91–99.

Spinellis, D., 2006. Code Quality: The Open Source Perspective. Addison-Wesley,
Boston, MA.

Szyperski, C., 2002. Component Software: Behind Object-Oriented Programming,
2nd Edition. Addison-Wesley, Reading, MA.

Viega, J., Bloch, J. T., Kohno, Y., McGraw, G., 2000. ITS4: A static vulnerability
scanner for C and C++ code. In: ACSAC ’00: Proceedings of the 16th Annual
Computer Security Applications Conference. p. 257.

Weiser, M., 1981. Program slicing. In: ICSE ’81: Proceedings of the 5th Interna-
tional Conference on Software Engineering. pp. 439–449.

Wright, A. K., Cartwright, R., Jan. 1997. A practical soft type system for Scheme.
ACM Trans. Prog. Lang. Syst. 19 (1), 87–152.

Id: api-verify.tex,v 1.45 2006/09/17 19:50:45 dds Exp

26


