
Index-based Persistent Document Identifiers∗†

Diomidis Spinellis
Department Management Science and Technology

Athens University of Economics and Business‡

December 4, 2004

Abstract

The infrastructure of a typical search engine can be used to calculate and
resolve persistent document identifiers: a string that can uniquely identify and
locate a document on the Internet without reference to its original location (URL).
Bookmarking a document using such an identifier allows its retrieval even if the
document’s URL, and, in many cases, its contents change. Web client applications
can offer facilities for users to bookmark a page by reference to a search engine
and the persistent identifier instead of the original URL. The identifiers are calcu-
lated using a global Internet term index; a document’s unique identifier consists
of a word or word combination that occurs uniquely in the specific document.
We use a genetic algorithm to locate a minimal unique document identifier: the
shortest word or word combination that will locate the document. We tested our
approach by implementing tools for indexing a document collection, calculating
the persistent identifiers, performing queries, and distributing the computation
and storage load among many computers.

“Users should beware that there is no general guarantee that a URL

which at one time points to a given object continues to do so, and does not
even at some later time point to a different object due to the movement of
objects on servers.”

— T. Berners-Lee et al. Uniform Resource Locators (URL). RFC 1738.

1 Introduction

Internet resources are typically specified using the string representation of “Uniform
Resource Locators” (URLs). URLs are a subset of the Uniform Resource Identifiers

∗Information Retrieval, 8(1):5–24, January 2005.
†This is a machine-readable rendering of a working paper draft that led to a publication. The pub-

lication should always be cited in preference to this draft using the reference in the previous footnote.
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright
and all rights therein are retained by authors or by other copyright holders. All persons copying this
information are expected to adhere to the terms and constraints invoked by each author’s copyright. In
most cases, these works may not be reposted without the explicit permission of the copyright holder.

‡Address: Patision 76, GR-104 34 Athina, Greece. email: dds@aueb.gr

1

(URIs) that provide an abstract identification of a resource location (Berners-Lee et al.,
1994). URLs are often used to identify resources in hypertext links, printed media such
as business cards, billboards, and publications, and in user-maintained collections such
as bookmarks and visited site history files.

The dynamic nature of the web—Chankhunthod et al. (1996) report the average
lifetime of an HTML text object to be 75 days—results in URLs that quickly decay and
become inaccessible (Pitkow, 1999; Ashman, 2000). According to our earlier work
(2003) around 27% of the URLs referenced in IEEE Computer and the Communica-
tions of the ACM articles from 1995–2000 were no longer accessible at the end of the
period. In addition, after four years almost 50% of the referenced URLs are inacces-
sible. Lawrence et al. (2001) have identified similar trends for published URLs. A
number of solutions have been proposed for handling this link integrity or referential
integrity problem. The solution classes that have been identified (Ashman, 2000) in-
clude prohibiting change, maintaining document versions, regularly updating all links,
aliasing a link’s end points, posting notifications of changes to document locations,
implementing forwarding mechanisms, automatically detecting and correcting broken
links, and creating all links dynamically. For links to published papers citation linking
(Hitchcock et al., 1999), provided as a service by publishers or public-service efforts
(Lawrence et al., 1999), may lead to publication formats that actively support hypertext
links across time.

Although URNs, PURLs and the Handle mechanism may offer a long-term solution,
they have up to now not been universally adopted. Thus, individual user bookmarks
and publicly distributed URLs quickly become obsolete as documents change names,
directories, or are hosted on different places. Although a search engine (Lawrence &
Giles, 1999; Takeda, 2000) can be used to relocate a document after a web server’s
“404—document not found” response, this is a tedious and error-prone procedure.
In this paper we describe a way to automate the searching task by providing a more
persistent alternative to a URL. Such an alternative can be used both to provide page
bookmarks that are relatively immune to URL changes and as a centralized, alternative
method for creating URNs without the active cooperation of the content creators.

Our scheme involves having a search engine calculate for every URL an augmented,
persistent version. The augmented URL, containing the original URL and words that
uniquely identify the document, will have a high probability to locate the original doc-
ument even if its contents have changed location. Users who save the persistent URL

to bookmark a page can later transparently retrieve the document through a search
engine’s infrastructure. If the default document retrieval mechanism fails, the search
engine will resolve the URL by searching for documents containing the words embed-
ded in the URL. In addition, web sites can use persistent URLs to point to pages outside
their administrative domain with a lower probability that these links will become un-
available when the respective page contents change location. As an example, given the
URL http://moving.org/target whose contents could be uniquely identified by the words
gloxinia and obelisk the corresponding persistent URL would be of the form: http://-
resolve.com/find?orig=http://moving.org/target&w=gloxinia+obelisk (to make the ex-
ample clearer we have not URL-encoded the original URL). When the user tries to
access the above URL the search engine infrastructure at resolve.com will first try to
retrieve the document at http://moving.org/target. If that fails, it will search its (up to
date) index for a document containing the words gloxinia and obelisk. If one of the
two above actions succeeds the user will be redirected to the document’s original or

2

revised location, otherwise a “404 Not found” error will be returned.
The remainder of this paper outlines the current process of document retrieval

and the associated errors (Section 2), describes our algorithm for calculating unique
document discriminants (Section 3), and sketches a prototype implementation of the
concept (Section 4). In Section 5 we discuss the method’s performance in terms of
retrieval accuracy, time and space requirements, and scalability. The paper concludes
with a presentation of possible extensions and applications of our technique.

2 Web Document Retrieval

In general, URLs consist of a scheme (e.g. http, ftp, mailto) followed by a colon and a
scheme-specific part. The syntax of the scheme-specific part can vary according to the
scheme. However, URL schemes that involve direct use of an IP-based protocol to an
Internet host use the following common syntax:

//<user>:<password>@<host>:<port>/<url-path>

The double slash indicates that the scheme data complies with the Internet scheme
syntax. The host is specified using the fully qualified domain name of a network host
or its IP address. The default port for the HTTP scheme is 80 and is usually omitted.

For a web page of a given URL to appear on a browser’s screen a number of different
technologies and protocols must work in concert. In addition, the changing realities of
the web and the Internet have vastly complicated the simple end-to-end request-reply
protocol that used to form the basis of the early HTTP transactions. Any failure along
the complicated chain of actions needed to retrieve a web page will lead to a failed
URL reference.

The path appearing in a URL will nowadays not necessarily match with a corre-
sponding local file on the server. Web servers provide a number of mechanisms for
managing namespaces. Some of them are: the creation of a separate namespace for
every local user, the definition of protection domains and access mechanisms, the sup-
port of aliases to map namespaces to local directories, and the dynamic creation of
content using technologies such the common gateway interface (CGI), servlets, and
server-modified pages (ASP, JSP, PSP). In addition, a feature of the HTTP protocol
called content negotiation allows a server to provide different pages based on technical
or cultural characteristics of the incoming request (e.g. bandwidth, display technology,
languages the user can understand).

The HTTP protocol defines 24 different errors that can occur within an HTTP ex-
change. In addition, some errors can occur before the client and server get a chance to
communicate. In practice, while verifying thousands of published URLs we encoun-
tered the following errors:

400 Bad request The syntax used for the request could not be understood by the
server. This may signify a badly formed URL often coupled with a browser
bug.

401 Unauthorized The request requires user authentication. Such an error can re-
sult when citations are given to URLs that exist within a domain of services
that require registration, or when such services move from a free access to a
registration-based model.

3

403 Forbidden The server is refusing to fulfill the given request, in this case however
proper authorization can not be used to retrieve the page. It is conceivable that
URLs that are not part of the public Internet end up as citations when the authors
fail to realize that they have special privileges to access certain repositories that
do not apply to the global Internet population. As an example, our organiza-
tion has transparent access to a collection of on-line journals with authentication
based on the client IP address. URLs to this collection provided by unsuspecting
users will typically generate a 403 error.

404 Not Found This infamous and quite common response signifies that the server
has not found anything matching the Request-URI. This error is typically gener-
ated when web site maintainers change file names that are part of the given URL

path or entirely remove the referenced material. Note that this protocol error can
be followed by customized content—typically HTML text that informs the user
of the problem and provides alternative navigation options.

500 Internal Server Error The server encountered an unexpected condition which
prevented it from fulfilling the request. This error can occur when a server is
wrongly configured, or, more commonly, if a program or database that is used to
serve dynamic content fails.

503 Service Unavailable The server is currently unable to handle the request due to
temporary overloading or maintenance of the server. Errors of this type some-
times appear on a misconfigured server, or servers overwhelmed by traffic.

504 Gateway Time-out The server, acting as a proxy or gateway did not receive a
timely response from the upstream server specified by the URI (e.g. HTTP, FTP)
or some other auxiliary server (e.g. domain name server—DNS) it needed to
access in attempting to complete the request. When HTTP requests are transpar-
ently intercepted by a proxy caching server, network connectivity problems are
likely to appear as 504 errors.

901 Host lookup failure The host name could not be mapped to an IP address. This
error (which is not part of the HTTP protocol) signifies a problem in retrieving the
IP address of the server using the DNS services. Likely causes include changes
of host names, and DNS server failures or connectivity problems.

Not all of the above problems can be solved by the provision of persistent URLs.
A persistent URL will help in cases where the original document has changed its name
(including the path to its name) resulting in a “404 Not found” error, and in cases where
the domain hosting the URL is renamed resulting in a “901 Host lookup failure” error.
Changes in a document’s access authorization are not a technical but a legal problem,
while the 500-class server errors are more appropriately handled by a robust network
infrastructure and mechanisms such as proxies, mirrors, archives, and content delivery
networks. In addition, persistent URLs can not deal with documents that are deleted
or modified, unless the corresponding URLs are designed to work in concert with an
appropriate archive repository.

4

3 Unique Document Discriminants

Our method for creating persistent URLs involves calculating a minimal set of iden-
tifying words that can be used to uniquely select a given document in a search en-
gine query. Consider three documents and their respective word contents 1 : ABCF,
2 : ABDF , and 3 : AKCDF. The minimal unique identifiers (discriminants) for these
documents are for document 1 : A∧B∧C, for document 2 : D∧B, and for document
3 : K. In calculating the minimal discriminants we also take into account the length of
each word to minimize the length of the respective search engine query. Given such a
discriminant a search engine query with that discriminant, will result in a single match-
ing element: the identified document, irrespective of the document’s location (URL).
As an example our application calculated that the words sedam protectable currently
uniquely identify the web page http://research.unc.edu/otd/inventors/overview.html.
Thus a search engine query for the above terms will result in a single result: the cor-
responding document. We theorize that for large collections and a regularly updated
search engine index, the discriminants will continue to uniquely and correctly identify
the document, even as new documents are added to the collection. The form submis-
sion mechanism of many search engines allows one to form a URL that will automati-
cally perform the above search and return the corresponding result; as an example the
Google search engine URL for the page we described would be http://www.google.-
com/search?&q=sedam+protectable. Furthermore, a simple addition of an appropriate
redirection header to the query results would even allow the entire operation to be
transparently performed.

The computing infrastructure of a large search engine is ideally placed to efficiently
perform both the calculation of the persistent URLs and their resolution. These two can
then be provided as an extra service to the engine’s users. In addition, the search
engine will draw additional traffic (and potentially advertising revenues) each time a
user accesses a bookmarked persistent URL or follows such a URL on the web.

The persistent URLs will most likely be less easy to remember than the URLs they
are derived from. However, these URLs will be primarily stored as bookmarks and
hyperlinks and automatically processed, rather than memorized and communicated by
humans. For this reason, it is not necessary to use natural terms for searching; any
terms that uniquely identify the document are suitable for this purpose.

The idea of locating documents by words those documents contain is not novel.
Phelps and Wilensky (2000) proposed the construction of robust hyperlinks by means
of the similarly working lexical signatures and suggested a heuristic technique for
calculating the signatures. Specifically, their method involves using terms that are rare
in the web (have a high inverse document frequency—IDF), while also favoring terms
with a high term frequency (TF) within the document, capping TF at 5 to avoid diluting
a term’s rarity. The IDF of each term is derived from a search engine, while the rest of
the signature calculation can be performed locally. Park et al. (2002) expanded on this
idea by evaluating four basic and four hybrid lexical signature selection methods based
on the TF, document frequency—DF, and IDF of those terms. For example, one of
their proposed methods TFIDF3DF2 involves selecting two words based on increasing
DF order, filtering out words having a DF value of one, and selecting three additional
words maximizing TIFF. An important contribution of their work is an evaluation of
the documents that the search engine returns in response to a lexical signature query in
terms of uniqueness, appearance of the desired document at the top of the result list,

5

and relevance of any other document links returned.
Our approach differs from the two methods we outlined in that it uses the search

engine as an oracle for evaluating the selected word set. A stochastic algorithm can
rapidly explore the search space (word combinations) to locate the ones that better
suit a selection criterion. This allows us, instead of having a fixed algorithm (such
TFIDF3DF2) identifying a document’s discriminants, to flexibly select from each doc-
ument the discriminant that maximizes an objective function. Although the objective
function we used is based on uniqueness and URL length, different functions such as
the relevance of the returned documents could also be used.

3.1 Discriminant Calculation

Trying all document’s term combinations to find a unique discriminant is a futilely ex-
pensive exercise. The number of n different terms that can be selected from a document
is given by

n

∑
i=1

nCi =
n

∑
i=1

n!
i!(n− i)!

= 2n−1

At 31 average unique terms per document of our data set this gives us 4 ·109 different
term combinations for each document. Although selecting fewer terms (in practice
we found that unique discriminants consisted on average of 1.47 terms) lowers the
above figure, the complexity’s exponential nature makes the exhaustive search pro-
hibitively expensive on larger documents; selecting 2 out of 1000 terms results in
1000C2 = 499,500 combinations (out of the total 1030 possible ones).

An efficient deterministic solution to the problem would be preferable to the ex-
haustive search we outlined above. However, as we will show in the following para-
graphs, the problem is intractable, NP-complete.

3.2 Intractability Proof

We will prove that the problem of locating a discriminant that identifies k documents
is NP-complete by demonstrating that a tractable P-time solution to the problem could
be used to solve the subset sum problem, known to be NP-complete (Garey & Johnson,
1979). We can formally express our problem as follows: Let D = {T1, . . . ,Tn} (our
document) be a set of terms T . Each term Ti is expressed as a set of the documents
it occurs in. Let D′ ⊆ D be a document’s discriminant. The number of documents k
that the discriminant D′ with m = |D′| identifies is expressed as the cardinality of the
intersection of the corresponding sets:

k =

∣∣∣∣∣
m⋂

i=1

D′i

∣∣∣∣∣

A unique discriminant is one for which k = 1.
Similarly, the subset sum problem can be expressed as follows: Let A = {a1, . . . ,an}

be a set of positive integers. Given an integer s find a set A′ ⊆ A with m = |A′| so that

s =
m

∑
i=1

ai

6

If the n elements of the set A have values 0 . . .m we can solve the subset sum
problem in terms of the discriminant cardinality problem by using set intersection in
the place of addition. For each element ai ∈ A we construct a set

Bi =




b0,1
. . .

bm,n



−




b0,i
...

bm−ai,i




and let B = {B1 . . .Bi}. The sets we constructed have the property that given a set of
positive integers Q = {q | q ∈ {1 . . .n}}

∣∣∣∣∣∣
|Q|⋂
i=1

Bqi

∣∣∣∣∣∣
=
|Q|
∑
i=1

aqi

Using our hypothetical discriminant cardinality P-time algorithm we find a B ′ ⊆ B such
that

s =

∣∣∣∣∣
n⋂

i=1

B′i

∣∣∣∣∣
The ai elements that correspond to the B′ subset will satisfy the subset sum problem

s =
n

∑
i=1

ai | ai ∈ A′

Having shown that the subset sum problem—known to be NP-complete—can be re-
duced to the discriminant cardinality problem we have proved that the discriminant
cardinality problem is also NP-complete.

3.3 Genetic Algorithm

We therefore use a non-deterministic, stochastic algorithm to search the term space.
Genetic algorithms (GAs) (Holland, 1975; Goldberg, 1989; Forrest, 1996) are global
optimization techniques that avoid many of the shortcomings exhibited by local search
techniques on difficult search spaces, such as our unique discriminant selection prob-
lem. Goldberg (1994) describes a number of diverse GA applications, while Karr
(1993) presents their use for modeling, design, and process control. GAs rely on mod-
eling the problem as a population of organisms. Every organism represents a possible
valid solution to the problem. Organisms are composed of alleles representing parts
of a given solution. Standard genetic recombination operators are used to create new
organisms out of existing ones by combining alleles of the existing organisms. In addi-
tion, mutations can randomly change the composition of existing organisms. Typically,
the algorithm evaluates all the organisms of the population and creates new organisms
by combining existing ones based on their fitness. This procedure is repeated until the
variance of the population reaches a predefined minimum value or another heuristic
criterion is satisfied.

GAs base their operation on a fitness function that evaluates an organism’s suitabil-
ity. The fitness function Ō(x) we want to maximize depends inversely on the number

7

of documents ND a particular discriminant x identifies and, less, on its length L as
determined by the number of words NW and the length of each word Li:

1
Ō(x)

= 100(ND(x)−1)+
NW (x)

∑
i=1

Li +1

As an exception to the above function definition, organisms that fail to identify a single
document (ND(X) = 0) are given a fitness rank of 0.

An important characteristic of a genetic algorithm’s implementation concerns the
representation of each candidate solution. A good representation should ensure that
the application of standard crossover recombination operators (where a new organism
is composed from parts of two existing ones) will result in a valid new representation.
The first organism implementation we used was an ordered set of terms. Thus, for a
document containing the words [ABCDEF] two organisms could be [ACF] and [BE].
Following experimentation, we found that a boolean vector sized to represent all pos-
sible terms of a document—with discriminant terms represented by true values—was
a more efficient implementation allowing our code to function in a third of the origi-
nal runtime. Using a boolean vector scheme, the two above organisms would now be
represented as [TFTFFT] and [FTFFTF].

Using the integers 0 and 1 for representing the true and false boolean values, the
genetic algorithm for selecting the minimal unique discriminant out of N different
terms can be described in the following steps:

1. [Initialize a population of size S.] Set P0...S,0...N← �rand[0 . . .1]�.
2. [Evaluate population members creating the organism fitness vector T .] For i←

0 . . .S: set Ti← Ō(Pi).

3. [Create roulette selection probability vector R .] Set Ri← ∑i
j=0(Tj/∑S

k=0 Tk).

4. [Create new population using crossovers from the previous population.] For i←
0 . . .S: select q and r using the roulette selection probability vector so that Rq ≤
rand[0 . . .1) < Rq+1 and Rr≤ rand[0 . . .1) < Rr+1, if rand[0 . . .1) < crossover rate,
set c←�rand[0 . . .N)�, set P′i,0...c←PRq,0...c, set P′i,c+1...N←PRr,c+1...N; otherwise
set P′i ← PRq.

5. [Introduce mutations.] For i← 0 . . .S: for j← 0 . . .N: if rand[0 . . .1) < mutation rate,
set P′i, j←�rand[0 . . .1]�.

6. [Keep fittest organism for elitist selection strategy.] Select f so that Tf ≥ T0...S,
set P′�rand[0...S)� ← Pf .

7. [Make new population the current population.] Set P← P′.

8. [Loop based on the population’s variance.] If ∑P
i=0 |Tf −Ti|> minimum variance

go to step 2; otherwise the algorithm terminates with the optimal document dis-
criminant in Pf .

The implementation of genetic algorithms can be tuned using a number of different
parameters. In our implementation we used the parameters that Grefenstette (1986)
derived using meta-search techniques namely:

8

• a population size S of 50,

• a crossover rate of 0.6,

• a mutation rate of 10−4,

• a generation gap of 1 (the entire population is replaced during each generation),

• no scaling window, and

• an elitist selection strategy (the organism with the best performance survives
intact into the next generation).

The random floating point numbers 0 < R < 1 used for selecting the crossover points,
the mutation rates, and the selection of organisms were produced using the subtractive
method algorithm (Knuth, 1981, 171–173).

In addition we used some domain-specific heuristics:

• we select candidate terms from a subset of the terms with the lowest frequencies
across the complete document collection,

• we bias a term’s selection according to its global frequency, and

• we ensure that the globally most frequently used terms are not used as candi-
dates.

All the above heuristics are based on the premise that less frequently used terms are
more likely to be part of a unique document discriminant.

4 Prototype Implementation

We implemented a set of programs that process a (presumably all-encompassing) set
of web pages, and calculate for each page a minimal set of search terms (words) that
can be used to uniquely identify that page within the set. To test our implementation
we took advantage of the data set provided during the 2002 Google search engine (Brin
& Page, 1998) programming contest. The package provided to the contest participants
included a programming framework for processing a pre-parsed document collection
(the so called ripper program) and a large collection of web documents. The breadth
and architecture of the ripper programming framework strongly indicate that applica-
tions based on it could be easily ported to run on the actual Google infrastructure. The
5.9 GB data set we used consists of 916,429 pre-parsed HTML documents containing
about 28 ·106 terms.

4.1 Implementation Overview

We calculate the discriminants in two steps:

1. We create an index of all documents where each term occurs; in actual practice
a search engine will always have this data structure at hand.

9

2. For each document we use the genetic algorithm to try combinations of the
terms it contains until we find one that does not occur in another document.
The processing relies on the index calculated by the previous phase.

As usual the devil is in the details, especially when dealing with the 1 million doc-
uments we processed and the 3 · 109 documents currently indexed by typical search
engines.

Our application consists of tools for calculating unique discriminants on a single
node (useful for proving the concept, trying out the data subset, and experimenting
with the algorithms), and in an environment of multiple nodes (for processing the data
set of a commercial search engine). In addition, we implemented simple tools for
querying the results and obtaining the corresponding URLs.

4.2 Indexing

The index of a large text collection will not typically fit into a computer’s fast main
memory, while a disk-based structure will probably prove too slow for a realistic ap-
plication scenario. Some applications have dealt with the problem by compressing
the data in-memory (Moffat, 1992; Spinellis, 1994), but this approach would still not
accommodate our problem’s scope and resource constraints.

We handled the problem by accumulating a term-to-document index in memory
and monitoring the memory subsystem’s performance. Once the system begins to
persistently page (indicating that the memory’s capacity has been reached and perfor-
mance will rapidly degrade due to thrashing), the index is flushed to disk as a sorted
file. When all documents have been processed, the partial results are merged into a
single file (idxdata) containing terms and documents where each term occurs. An
index file (idxdata.idx) allows rapid serial access to individual terms without hav-
ing to traverse a term’s document list. In addition, a separate file (idxdata.hash)
allows rapid hash-code based access to individual terms. As the string hash function,
we use the one recently proposed for very large collections by Zobel (2001). The
hash file is created after the merge phase and can thus be optimally sized, using the
Rabin-Miller prime number probabilistic algorithm (Schneier, 1996, pp. 259–260), to
minimize collisions.

4.3 Stand-alone Operation

The data-flow diagram of our system’s stand-alone operation appears in Figure 1. A
new handler of the Google ripper named index reads-in preparsed documents and cre-
ates (in stages by merging intermediate results) an index of the documents where each
term resides (idxdata) and two files for accessing that index (idxdata.idx and
idxdata.hash). A fourth file, topnodes is set to contain the frequencies of the
100,000 most frequently used terms; it is used as a cache during the discriminant cal-
culation phase.

The second phase is also implemented as a separate ripper handler named book-
mark. This reads the terms of each document, selects the least frequently used ones,
and creates the bookmarks file containing for each document its URL and the set
of terms forming its unique discriminant. The bookmark.idx file created allows

10

ripper --index

idxdata
idxdata.idx

idxdata.hash
topnodes

ripper --bookmark

bookmarks

bookmarks.idx

cgi_query

HTML results

cmd_query

Text results

Preprocessed
pages

HTML form
Command-line

arguments

Figure 1: Data-flow diagram of the stand-alone operation.

11

the location of a given document URL and discriminant based on the corresponding
document identifier.

Two query programs we wrote, cgi_query and cmd_query, will search the
term index against the conjunction of a set of specified words and display as search
results the matching document URLs and the corresponding unique discriminants. The
CGI application presents the discriminants as a URL; the end-user can bookmark this
URL and thus visit our search engine to locate the document in the future. The HTML

results also contain a link to a Google search with the same discriminant as a search
expression. This search will not in general provide unique results since Google’s in-
dexed collection is three orders of magnitude larger than the one we processed. One
of the discriminants we tried did however identify and correctly locate one page that
was moved (renamed): a Google search for the page http://www.umass.edu/research/-
ogca/new.htm uniquely identified through the discriminant “ogca fy02” now yields
http://www.umass.edu/research/ogca/news/oldnews.htm.

4.4 Distributed Operation

As is apparent from Figure 2, the system’s distributed operation is a lot more com-
plicated than the stand-alone case. It does however provide a framework for creating
discriminants for orders of magnitude larger collections using a large number of com-
modity processing nodes. The work distribution strategy is based on two premises:

1. Documents are uniformly distributed across all processing nodes. Each node
calculates and serves the discriminants for its documents.

2. Each node is assigned a consecutive subset of terms (e.g. barometer–beholding).
It is responsible for serving queries (documents that contain a given term) for the
terms it is assigned.

To divide the term load across the nodes, we run a stand-alone instance of ripper
--index on a small representative subset of documents. A separate text file contains
a list of all processing nodes. The program divide:

• examines the term index and divides it uniformly across processing nodes,

• assigns a separate numeric initial document-id to each node, and

• copies the generated files to all nodes.

On each node we then run an instance of ripper --index to process the node-
specific preprocessed pages. The program scatter is then run on each node to
split and copy the resulting term index according to the terms assigned to each node.
Each node will thus receive its share of terms as indexed by all other nodes. The
make_index program merges the node-specific terms generated by all nodes into
a single unified index file for the given node. This file is accessed by the node’s
index_server program to provide term document occurrences to other nodes. The
ripper_distr program run on each node communicates with the index_server
responsible for a given term to obtain the global list of a term’s documents. To reduce
network communication overhead initial term frequencies (our algorithm uses a subset
of a document’s least frequently occurring terms for selecting the unique discriminant)

12

ripper --index

Sample Results

idxdata

idxdata.idx

idxdata.hash

topnodes

ripper --index

Local Page Subset

idxdata

idxdata.idx

idxdata.hash

topnodes

ripper_distr --bookmark

Local Bookmark Subset

bookmarks bookmarks.idx

cgi_query_distr
cmd_query_distr

HTML results
textual results

Node-specific
preprocessed

pages

Sample of
preprocessed

pages

Processing
node list

divide

Local Range Subset
(e.g. Terms aa*-ac*)

idxdata

idxdata.idx

idxdata.hash

topnodes

index_serverscatter

bookmark_server

docid

termnodes

docidnodes

All nodes

Node-specific

docid

termnodes

docidnodes

Terms for each node

part.nodename*

Node-specific terms

part.nodename*

make_index

HTML form /
command-line

Each node

tcp

tcp

tcp

Figure 2: Data-flow diagram of the distributed operation.13

1E0

1E1

1E2

1E3

1E4

1E5

0 50 100 150 200 250 300 350 400 450

N
um

be
r

of
 d

is
cr

im
in

an
ts

Term length (characters)

Term Length Distribution

Figure 3: Discriminant term length distribution

are obtained from the local term file; we assume that the local term frequency distri-
bution corresponds to the global one. The generated unique document discriminants
can then be accessed by the distributed versions of the query programs by using a doc-
ument’s identification number for locating the node where the respective discriminant
is used.

5 Evaluation

Important aspects of algorithms expected to process the global web include, apart from
the quality of the results, their requirements on processing time and space, and their
scalability.

5.1 Discriminant Performance

After processing the Google sample document collection we found that we needed
an average of 1.47 terms to uniquely identify a document. The average length of each
discriminant (Figure 3) was 10.77 characters which, as a document identifier, compares
extremely favorably with the 43.9 characters of the collection’s average document URL

length (excluding the initial http://. The number of terms for each document’s
discriminant was distributed as shown in Table 1. The algorithm failed to identify a
discriminant for less than 1% of the documents processed.

The property of the calculated discriminants to uniquely identify a document, while
not absolute, was we believe acceptable for its intended uses. About 50% of the dis-
criminants our system calculated will locate a single document, while another 10%
identify two documents. In total 76% of the discriminants will locate less than 10

14

Number of terms # documents Document %
0 (no discriminant found) 5,107 0.56
1 531,713 58.02
2 331,638 36.19
3 41,132 4.49
4 5,956 0.65
5 783 0.08
6 80 0.01
7 16 0.00
8 3 0.00

Table 1: Discriminant term number distribution.

1E0

1E1

1E2

1E3

1E4

1E5

1E6

1E0 1E1 1E2 1E3 1E4 1E5 1E6

N
um

be
r

of
 d

is
cr

im
in

an
ts

Matched documents

Discriminant Uniqueness

Figure 4: Distribution of document matches across the calculated discriminants.

15

documents in the sample document collection (Figure 4). These figures can be further
improved by tuning various GA parameters such as the number of terms of the candi-
date set, the number of common terms to eliminate, and the size of the organism pool.
Many of the pages for which a unique identifier was not calculated contain very little
textual material. As an example our system’s spectacular failure to create a unique
identifier for the page http://humanities.uchicago.edu/depts/maph/ (it was identified by
the term ‘humanities’, which also matches another 29,497 pages) can be easily ex-
plained by the fact that this home page consisted entirely of text and pictures presented
in graphical hypertext form using image maps.

5.2 Algorithm Performance

On average the GA was run for 10.6 generations to calculate each discriminant. How-
ever, the distribution of the GA generations that were required was highly skewed: the
corresponding mode was 2, median 5, and the standard deviation 16.5. To evaluate the
performance of the GA over the heuristic selection of words, we calculated discrimi-
nants for a subset of 13,000 documents using a procedure that followed the selection
traits of the GA, but not its evolutionary strategy. Specifically, for every document we
created S = 50 organisms and let those mutate G times, where G was the number of
generations the GA had run for that document. The initial organism was not random,
but as was the case for the GA, was created using the allele probability selection vec-
tor. The results from this quasi-random selection were 34% worse than those obtained
from the GA operation. In 58% of the cases the two methods yielded the same result.
Although the advantage offered by the GA may not seem impressive, we believe that
(a) only the GA will scale to handle the three orders of magnitude larger collection of
the global web, and, (b) the GA can be easily adapted to work with more demanding
objective functions, whereas the heuristic techniques can not.

5.3 Time Requirements

We indexed the sample document collection (916,429 documents 3,152,415 unique
lowercased terms) on a 733MHz, Celeron CPU, 128MB RAM, 40GB IDE disk machine
in 18,605 real, 7,064 user, and 1,533 system seconds, at a throughput of 29.26 docu-
ments / s. The process used 18 intermediate indexed files each of about 75MB in size
(the first one was 190MB) with an intermediate file being dumped every six minutes.
The hashed term database performed adequately, but not spectacularly with 2,111,778
total term name collisions (resulting on an average of 1.49 disk index accesses per
term) and 173 maximum term name collisions.

The time to perform the unique discriminant calculations varied, because we split
the workload among 20 different machines. The time required on 733MHz, Celeron
CPU, IDE disk machine for processing the file pprepos.00 (16,564 documents) was
58,721 real, 184,054 user, and 9,604 system seconds giving a processing time of 3.54
s / document. Systems with a SCSI disk subsystem performed better.

We unfortunately lacked appropriate resources (a large farm of networked process-
ing nodes of similar technical characteristics) to perform rigorous experiments on the
distributed implementation of our system. We were however able to obtain a lower
bound of the expected performance by running the programs on a small number of

16

workstations. By extrapolating from our results, we calculated the expected distrib-
uted operation time T ′ given a standalone time of T as T ′ ≥ T ×2.2.

5.4 Space Requirements

The indexing operation utilizes the maximum amount of main memory available, but
is constrained by design to stop its memory usage growth once thrashing occurs. In
our case, it processed without a problem the complete sample data set on machines
with 128MB RAM. The off-line space requirements are comprised of the space needed
to store the term index and its hash file; this was for the sample document collection
826,504,382 bytes for the index and 50,438,784 bytes for the hash file, giving an over-
head of approximately 957 bytes per document.

The space requirements of the discriminant calculation phase are more difficult
to judge. When performing calculations over the sample collection we observed a
maximum resident set size 62,140KB. This number is likely to grow with a larger
document set, but not by much, since it reflects the space needed to store the document
instances of a document’s least frequent terms. Given that prior to the candidate set
selection, only term frequencies are stored in memory, the term selection process can
be easily adjusted to dynamically select terms that will load in the main memory a fixed
number of document occurrences, thereby providing a concrete bound to the memory
usage.

5.5 Scalability

Will our approach gracefully scale to cover a search engine’s complete page collection?
We consider as a test case Google’s 2 · 109 page collection and for our estimates we
use a number of 8,000 processing nodes reported in the technical press as comprising
Google’s infrastructure (Wagner, 2001).

Computing the term index will therefore require:

2 ·109×0.02
8,000

s = 83minutes

The communications overhead will be roughly equivalent to that of copying the index
files across the network; given an index file size of

11,000× 2 ·109

8,000
= 2.75 ·109bytes

this will add an overhead of 8 minutes using a switched 100Mbit network with a 50%
utilization rate. Merging the intermediate files is unlikely to present a problem; at one
point an error in our thrash monitoring code resulted in 1,700 intermediate files which
were merged without a problem.

The time to compute the discriminants will be larger. At 3.54 s / document the
calculation of all discriminants will require

3.54× 2 ·109

8,000
= 885,000s = 10days

One should keep in mind that this process will be required to run very infrequently for
the entire document collection and can then be run incrementally as new documents

17

are added (the entire point of the unique discriminants is that they remain valid with a
very high probability even as the structure of the web changes).

Note that all our time figures are based on the results we obtained using low-end
733MHz Celeron PCs with IDE hard disks. In addition, the indexing phase can be omit-
ted and the discriminant calculation phase can be easily adjusted to use a search en-
gine’s existing term index structure. The discriminant calculation algorithm only needs
access to an oracle that answers the question of how many documents are matched by
a given term combination. We assume that a search engine’s infrastructure is engi-
neered and tuned to efficiently answer the above query and should therefore preferably
be used by our algorithm.

6 Conclusions and Further Work

In the previous sections we outlined how our application utilizes search engine tech-
nologies to address an important shortcoming of today’s web in a scalable, and efficient
manner. The alternative document identifiers we calculate are not only resilient to URL

changes, but also almost a fourth of the size of conventional URLs.
However, the document identifiers we provide are not suitable as universal replace-

ments for the URLs currently employed. In document retrieval terms their use involves
a trade-off of noise over silence. Our calculation method is not perfect and there are
cases where our algorithms will either fail to calculate a discriminant for a web page
(e.g. when the page does not contain any text), or will calculate a discriminant that
will match multiple pages. In addition, changes to the web contents and a search en-
gine’s coverage can make identifiers that were calculated to be unique match additional
documents. Although we have not studied the temporal behavior of the discriminants
we calculate, an obvious pathological case involves documents cloned from a given
source document through small additions or changes. This cloning is a common op-
eration and is related to the scale-free topology of the web (Barabási et al., 2000).
Cloned documents will very probably match the discriminant calculated for their orig-
inal ancestor. Based on the above, we believe that unique discriminants are most suited
for situations where a human can make an informed choice for using them and remains
in the loop during their use. As an example, personal bookmarks are particularly well
suited for being stored using unique discriminants (or include unique discriminants as
a fail over mechanism). Bookmarks are highly prone to aging since they are typically
not formally maintained; in addition, once a bookmark matching several documents is
followed, the user can intelligently choose between the different pages.

During our work, we noted a number of improvements that could be employed for
optimizing the algorithm’s performance and for further increasing the usefulness of the
obtained results. These include:

• Optimize the GA, tuning its configuration by replacing the generic parameters
we used with parameters selected for the given problem and the properties of
the web. In an examination of the discriminants we calculated, we found some
instances of duplicate discriminants and multiple documents identified by the
same discriminant that could have been easily avoided.

• Experiment with different stochastic algorithms such as simulated annealing
(Cerny, 1985; Van Laarhoven & Aarts, 1987; Koulamas et al., 1994) and tabu

18

search techniques (Glover, 1990).

• Explore the possibility of using our results for locating duplicate documents.
Since our algorithm tries very hard to find unique discriminants, failure to find
unique discriminants could signify the existence of virtually duplicate docu-
ments. This technique can be strengthened by resetting the random number
generator seed values before processing each document.

• Investigate the impact of cloning and modification on the temporal effectiveness
of discriminants, experimenting with different objective functions based on the
notion of similarity and search engine ranking.

• Study and improve the distributed algorithm operation on a large network of
hosts.

• Associate with each URL and discriminant a unique multi-byte hash code that
will accurately identify the precise location of pages that have not moved.

We end our description, by noting how the realization of the application we outlined
was made possible only through the combination of multiple computer science disci-
plines: information retrieval was the domain where our problem was formulated, al-
gorithms and data structures provided the framework to obtain the solution, operating
system concepts allowed us to bound the indexing memory requirements, complex-
ity theory gave us the theoretical background for searching for algorithmic solutions,
stochastic approaches were used for sidestepping the problem’s NPC characteristics,
and networking and distributed systems technology provided the framework for de-
veloping the distributed implementation. Increasingly, the immense scale of the web
is necessitating the use of multidisciplinary approaches to tackle information retrieval
problems.

Acknowledgements

During the system’s implementation phase I benefited from fruitful discussions with
Elisa Fragkaki, Stavros Grigorakakis, Vasilis Kapouleas, and Michalis Vazirgiannis.
The string hashing expression used in the hashing functor was written by Justin Zo-
bel. The prime number generator used for sizing the hashed database contains code
developed by Bradley Smith and Greg Heileman at the University of New Mexico.
The distributed version of the system relies on the socket++ library developed by
Gnanasekaran Swaminathan and patched for Linux and FreeBSD by Lauri Nurmi. Fi-
nally, I would like to thank the paper’s anonymous referees for their insightful and
astute comments on an earlier version of this paper.

References

Ashman, H., Electronic Document Addressing: Dealing with Change, ACM Comput-
ing Surveys, 32(3), 201–212 (2000).

Barabási, A.-L., Albert, R., & Jeong, H., Scale-free characteristics of random net-
works: the topology of the world-wide web, Physica, A(281), 69–77 (2000).

19

Berners-Lee, T., Masinter, L., & McCahill, M., RFC 1738: Uniform Resource Loca-
tors (URL), 1994 (Dec.). Updated by RFC1808, RFC2368 (Fielding, 1995; Hoff-
man et al., 1998). Status: PROPOSED STANDARD.

Brin, S., & Page, L., The Anatomy of a Large-Scale Hypertextual Web Search Engine,
Computer Networks, 30(1–7), 107–117 (1998), Seventh International World Wide
Web Conference Proceedings (WWW7).

Cerny, V., Thermodynamical Approach to the Traveling Salesman Problem: an Ef-
ficient Simulation Algorithm, Journal of Optimization Theory and Applications,
45, 41–51 (1985).

Chankhunthod, A., Danzig, P. B., Neerdaels, C., Schwartz, M. F., & Worrell, K. J., A
Hierarchical Internet Object Cache, in USENIX Technical Conference Proceed-
ings, Usenix Association, Berkeley, CA, 1996.

Fielding, R., RFC 1808: Relative Uniform Resource Locators, 1995 (June). Updates
RFC1738 (Berners-Lee et al., 1994). Updated by RFC2368 (Hoffman et al.,
1998). Status: PROPOSED STANDARD.

Forrest, S., Genetic Algorithms, ACM Computing Surveys, 28(1), 77–83 (1996).

Garey, M. R., & Johnson, D. S., Computers and Intractability: A Guide to the Theory
of NP-Completeness, W. H. Freeman and Company, 1979.

Glover, F., Tabu Search — Part I, ORSA Journal on Computing, 1, 190–206 (1990).

Goldberg, D. E., Genetic Algorithms: In Search of Optimization & Machine Learning,
Addison-Wesley, 1989.

Goldberg, D. E., Genetic and Evolutionary Algorithms Come of Age, Communications
of the ACM, 37(3), 113–119 (1994).

Grefenstette, J. J., Optimization of Control Parameters for Genetic Algorithms, IEEE
Transactions on Systems, Man, and Cybernetics, 16(1), 122–128 (1986).

Hitchcock, S., Carr, L., Harris, S., Hey, J. M. N., & Hall, W., Citation linking: im-
proving access to online journals, pages 115–122 of Proceedings of the 2nd ACM
international conference on Digital libraries, 1999.

Hoffman, P., Masinter, L., & Zawinski, J., RFC 2368: The mailto URL scheme, 1998
(July). Updates RFC1738, RFC1808 (Berners-Lee et al., 1994; Fielding, 1995).
Status: PROPOSED STANDARD.

Holland, J. H., Adaptation in Natural and Artificial Systems, University of Michigan
Press, Ann Arbor, Michigan, 1975.

Karr, C. L., Genetic Algorithms for Modelling, Design, and Process Control, pages
233–238 of CIKM ’93. Proceedings of the Second International Conference on
Information and Knowledge Management, ACM, 1993.

Knuth, D. E., The Art of Computer Programming, second edn., Vol. 2: Seminumerical
Algorithms, Addison-Wesley, Reading, MA, 1981.

20

Koulamas, C., Antony, S. R., & Jaen, R., A Survey of Simulated Annealing Applica-
tions to Operations Research Problems, Omega International Journal of Manage-
ment Science, 22(1), 41–56 (1994).

Lawrence, S., & Giles, C. L., Searching the Web: General and Scientific Information
Access, IEEE Communications, 37(1), 116–122 (1999).

Lawrence, S., Giles, C. L., & Bollacker, K., Digital Libraries and Autonomous Citation
Indexing, IEEE Computer, 32(6), 67–71 (1999).

Lawrence, S., Pennock, D. M., Flake, G. W., Coetzee, F. M., Glover, E., Nielsen, F. Å.,
Kruger, A., & Giles, C. L., Persistence of Web References in Scientific Research,
IEEE Computer, 34(2), 26–31 (2001).

Moffat, A., Economical Inversion of Large Text Files, Computing Systems, 5(2), 125–
139 (1992).

Park, S.-T., Pennock, D., Giles, L., & Krovetz, R., Analysis of Lexical Signatures
for Finding Lost or Related Documents, pages 11–18 of Proceedings of the 25th
Annual International ACM-SIGIR Conference on Research and Development in
Information Retrieval, New York: ACM Press, for ACM, 2002.

Phelps, T. A., & Wilensky, R., Robust Hyperlinks: Cheap, Everywhere, Now, in Pro-
ceedings of Digital Documents and Electronic Publishing (DDEP00), 2000.

Pitkow, J. E., Summary of WWW Characterizations, World Wide Web, 2(1–2), 3–13
(1999).

Schneier, B., Applied Cryptography, second edn., Wiley, New York, 1996.

Spinellis, D., The Design and Implementation of a Legal Text Database, pages 339–
348 of Karagiannis, D. (ed), DEXA 94: 5th International Conference on Database
and Expert Systems Applications, Springer-Verlag, 1994. Lecture Notes in Com-
puter Science 856.

Spinellis, D., The Decay and Failures of Web References, Communications of the
ACM, 46(1), 71–77 (2003).

Takeda, M. K. K., Information Retrieval on the Web, ACM Computing Surveys, 32(2),
144–173 (2000).

Van Laarhoven, P. J. M., & Aarts, E. H. L., Simulated Annealing: Theory and Appli-
cations, D. Reidel, Dordrecht, The Nethelands, 1987.

Wagner, M., Google Defies Dot-com Downturn, TechWeb, Apr. (2001), Online
http://www.techweb.com/wire/story/TWB20010427S0011 (current June 2002).

Zobel, J., Heinz, S., & Williams, H. E., In-memory Hash Tables for Accumulating Text
Vocabularies, Information Processing Letters, 80(6), 271–277 (2001).

21

