
074 0 -74 5 9 /13 / $ 31. 0 0 © 2 013 I E E E September/OctOber 2013 | Ieee SOftware 19

Editor: Diomidis Spinellis
Athens University of Economics
and Business, dds@aueb.gr

Tools of The Trade

Differential Debugging
Diomidis Spinellis

If estImatIng the time needed for
implementing some software is diffi-
cult, coming up with a figure for the
time required to debug it is nigh on
impossible. Bugs can lurk in the most
obscure corners of the system, or even
in the crevices of third-party librar-
ies and components. Ask some devel-
opers for a time estimate, and don’t
be surprised if an experienced one

snaps back, “I’ll find the bug when I
find the bug.” Thankfully, there are
some tools that allow methodical de-
bugging, thereby giving you a sense
of progress and a visible target. A
method I’ve come to appreciate over

the past few months is differential
debugging. Under it, you compare a
known good system with the buggy
one, working toward the problem
source.

Finding yourself in a situation with
both a working and a buggy system is
quite common. It might happen after
you implement some new functional-
ity, when you upgrade your tools or

infrastructure, or when you deploy
your system on a new platform. In all
these cases, you might find yourself
facing a system that should have been
working but is behaving erratically
for some unknown reason.

Differential debugging works be-
cause, despite what are our everyday
experience suggests, deep down, com-
puters are designed to work determin-
istically: the same inputs produce iden-
tical results. Probe sufficiently deep
within a failing system, and, sooner
or later, you’ll discover the bug that
causes it to behave differently from the
working one.

Observing Behavior
It’s surprising how many times a sys-
tem’s failure reason stares us right in
the eye, if only we would take the time
to open its log file: “clients.conf: syntax error
in line 92”. In other cases, the reason is
hidden deeper, so we need to increase
the system’s log verbosity in order to
expose it. Many systems can adjust
the amount of information they log
through a command-line option, a con-
figuration option, or even at runtime
by sending them a suitable signal. So,
increase the logging levels on both the
known-good and the failing systems,
take a snapshot of each system’s log,
and compare the two.

If the system doesn’t offer a suffi-
ciently detailed logging mechanism, you
have to tease out its runtime behavior
with an external tool. Besides general-
purpose tools such as DTrace and
System Tap, some specialized tools I’ve
found useful are those that trace calls to
the operating system (strace, truss, Proc-
Mon), those that trace calls to the dy-
namically linked libraries (ltrace, Proc-
Mon), those that trace network packets
(tcpdump, Wireshark), and those that
allow the tracing of SQL database calls.
Many Unix applications, such as the R
Project for Statistical Computing, start
their operation through complex shell
scripts, which can misbehave in won-
derfully obscure ways. You can trace
their operation by passing the –x op-
tion to the corresponding shell. In most

Tools of The Trade

Be ready to dig deeper,
for this is where the bugs often lurk.

Post your comments online
by visiting the column’s blog:

www.spinellis.gr/tools

20 Ieee SOftware | www.cOmputer.Org/SOftware

Tools of The Trade

cases, the trace you obtain will be huge.
Thankfully, modern systems have both
the storage capacity to save the two logs
and the CPU oomph to process and
compare them.

Probing the environment
When it comes to the environments
in which your systems operate, your

goal is to make the two environments
as similar as possible. This will make
your logs and traces easy to compare,

or, if you’re lucky, lead you directly to
the cause behind the bug. Start with the
obvious things, such as the program’s
inputs and command-line arguments.
Verify, don’t assume. Actually com-
pare the input files of the two systems
against each other, or, if they’re big and
far away, compare their MD5 sums.

Then focus on the code. Start by

comparing the source code, but be ready
to delve deeper, for this is where the bugs
often lurk. Examine the dynamic librar-

ies associated with each executable by
using a command such as ldd (on Unix),
or dumpbin /dependents (when using Visual
Studio). See the defined and used sym-
bols using nm (on Unix), dumpbin /exports /
imports (Visual Studio), or javap (when de-
veloping Java code). If you’re sure the
problem lies in the code but can’t see
any difference, be prepared to dig even
deeper, comparing the assembly code
that the compiler generates.

But before you go to such an ex-
treme, consider other elements that
influence the setup of a program’s ex-
ecution. An underappreciated one is en-
vironmental variables, which even an
unprivileged user can set in ways that
can wreak havoc on a program’s ex-
ecution. Another is the operating sys-
tem. Your application might be failing
on an operating system that’s a dozen
years newer or older than the one
where it’s working okay. Also consider

The log files differ in trivial ways,
thus hiding the changes that matter.

NEW from

THE NEXT FRONTIER
Managing Data Con� dentiality
and Integrity in the Cloud
by Francisco Rocha, Salvador Abreu,
and Miguel Correia

CS authors present the architecture, main mecha-
nisms, and challenges of their proposed defense
against malicious insiders in the cloud.

ISBN 978-0-7695-4978-1 • 7” x 10” • 58 pp.

Order .PDF ($15):
http://bit.ly/12Rk6gP

Order Paperback ($19):
http://bit.ly/166DuZr

Tools of The Trade

 September/OctOber 2013 | Ieee SOftware 21

the compiler, the development frame-
work, third-party linked libraries, the
browser (ah, the joy), the application
server, the database system, and other
middleware. How to locate the culprit
in this maze is what we’ll tackle next.

techniques
Given that in most cases you’ll be
searching for a needle in a haystack,
it makes sense to trim down the
haystack’s size. Invest the time to find
the simplest possible test case in which
the bug appears. (Making the needle—
the buggy output—larger is rarely
productive.) A svelte test case will make
your job easier through shorter logs,
traces, and processing times. Therefore,
trim down the test case by gradually
removing either elements from it or
configuration options from the system
until you arrive at the leanest possible
setting that still exhibits the bug.

If the difference between the work-
ing and failing system lies in their
source code, a useful method is to con-
duct a binary search through all the
changes performed in between the two
versions so as to pinpoint the culprit.
Thus, if the working system is at ver-
sion 100 and the failing one is at version
132, you’ll first test version 116, and
then, depending on the outcome, ver-
sions 108 or 124, and so on. The ability
to perform such searches is one reason
why you should always commit each
change separately into your version
control system. Thankfully, some ver-
sion control systems offer a command
that performs this search automatically;
on Git, it’s the git bissect command.

Another highly productive option is
to process the two log files with Unix
tools to find the difference related to the
bug. The workhorse in this scenario is
the diff command, which will display the
differences between the two files. How-
ever, more often than not, the log files
differ in trivial ways, thus hiding the
changes that matter. There are many

ways to filter these out. If the leading
fields of each line contain varying ele-
ments, such as timestamps and process
IDs, eliminate them with cut or awk. Select
only the events that interest you—for in-
stance, files that were opened—using a
command like grep ‘open(‘. Or eliminate
noise lines (such as those thousands of
annoying calls to get the system’s time
in Java programs) with a command such
as grep –v gettimeofday. You can also elim-
inate parts of a line that don’t interest
you by specifying the appropriate regu-
lar expression in a sed command.

Finally, a more advanced technique
that I’ve found particularly useful if
the two files aren’t ordered in a way in
which diff can be productive is to extract
the fields that interest you, sort them,
and then find the elements that aren’t
common in the two sets. Consider the
task of finding which files were only
opened in only one of two trace files t1
and t2. In the Unix bash shell, the cor-
responding incantation for comparing
the second field (the file name) in lines
containing the string open(in would be

comm -3 <(awk ‘/open\(/{print $2}’ t1 | sort) \
<(awk ‘/open\(/{print $2}’ t2 | sort)

now brush up your Unix skills
by reading the November/
December 2005 installment

of this column (“Working with Unix
Tools,” pp. 11–12), and then go catch
some bugs!

DIOmIDIs sPInellIs is a professor in the Depart-
ment of Management Science and Technology at the
Athens University of Economics and Business and the
author of the books Code Reading and Code Quality:
The Open Source Perspective (Addison-Wesley, 2003
and 2006). Contact him at dds@aueb.gr.

See www.computer.org/software
-multimedia for multimedia
content related to this article.

hOw tO
Reach Us

wRIteRs

For detailed information on submitting articles,
write for our Editorial Guidelines

(software@computer.org) or access
www.computer.org/software/author.htm.

letteRs tO the eDItOR

Send letters to

 Editor, IEEE Software
 10662 Los Vaqueros Circle
 Los Alamitos, CA 90720
 software@computer.org

Please provide an email address
or daytime phone number with your letter.

On the weB

www.computer.org/software

sUBscRIBe

www.computer.org/software/subscribe

sUBscRIPtIOn
change Of aDDRess

Send change-of-address
requests for magazine subscriptions

to address.change@ieee.org.
Be sure to specify IEEE Software.

memBeRshIP
change Of aDDRess

Send change-of-address requests for
IEEE and Computer Society membership to

member.services@ieee.org.

mIssIng
OR DamageD cOPIes

If you are missing an issue or you
received a damaged copy, contact

help@computer.org.

RePRInts Of aRtIcles

For price information or to order reprints,
send email to software@computer.org

or fax +1 714 821 4010.

RePRInt PeRmIssIOn

To obtain permission to reprint an article,
contact the Intellectual Property Rights Office

at copyrights@ieee.org.

