
22 IEEE SoftwarE | publIShEd by thE IEEE computEr SocIEt y 074 0 -74 5 9 /13 / $ 31. 0 0 © 2 013 I E E E

Editor: Diomidis Spinellis
Athens University of Economics
and Business, dds@aueb.gr

Portability:
Goodies vs.
the Hair Shirt
Diomidis Spinellis

I don’t know what the language of the
year 2000 will look like, but I know it
will be called Fortran. —Tony Hoare

Writing code that can run on any
platform used to be a gold standard, as
attested by the tens of books with the
word “portable” in their title. But stay-
ing true to the faith of portable soft-
ware is becoming more challenging as
mighty ecosystems amass resources to
tempt us into their platform-specific
version of heaven. We can write non-
portable code out of laziness or igno-
rance because we can’t be bothered to
verify or check that our code follows a
standard. We can also decide to write
nonportable code following a prag-
matic cost-benefit analysis. Let’s follow
this approach and examine portabil-
ity as a tool, looking at what we gain

through it, the price we pay for it, and
how we can cope with the challenge of
staying faithful to it.

the goodies
The key reason to favor portable code
is that it opens up the selection of re-
sources available to a project. An ideal
portable project can be compiled using
diverse compilers and libraries, store
its data on an arbitrary relational da-
tabase, and be hosted by a variety of
application servers and operating sys-
tems, which in turn run on several
CPU architectures. These choices free
us from vendor lock-in, allowing us
to select the best technology in each
area based on quality and price. In
addition, as our project and business
evolve, we can move from one technol-
ogy to another to keep the infrastruc-
ture we use in sync with our needs.
Thus, the first iteration of our proj-
ect can be based on widely available
commercial off-the-shelf components,
but when its market share grows, we
can choose to lower its unit costs by
running it on an embedded platform
that’s based on a specialized processor
and an open source operating system.
Or, conversely, we can initially store
our data in the open source MySQL
database because we could install it

for free, but as our performance re-
quirements grow, we might decide to
splash out for a more powerful com-
mercial offering.

Vendor independence also strength-
ens our negotiating position. Merely
having the option to choose a different
vendor allows us to ask for better pric-
ing, additional functionality, bug fixes,
and improved service. Guess what hap-
pens when a vendor knows that we’re
locked to their offerings? I’ve been
there, and, trust me, it’s an ugly place.

Platform neutrality minimizes our
project’s technology risks. In our fast-
evolving sector, companies and tech-
nologies flourish and die at an amaz-
ing rate. If you’re wed to a proprietary
technology, you face the constant risk
of a messy unanticipated divorce when
the technology’s vendor stops support-
ing it. In contrast, with portable code,
you can choose the most beneficial
technology at each point of time. Stan-
dardized technologies also tend to last
longer, supporting your technology in-
vestment in the long term. Consider as
examples Fortran and C versus some
of the 1980s proprietary darlings such
as Clipper, SQLWindows, and Nat-
Star. There’s no magic behind this phe-
nomenon: selection bias ensures that
mature technologies get standardized

Tools of The Trade

Post your comments online
by visiting the column’s blog:

www.spinellis.gr/tools

 July/auguSt 2013 | IEEE SoftwarE 23

Tools of The Trade

and widely adopted, and thus they out-
last proprietary offerings.

Adopting widely used technologies
will also help you in other, nontechnical
areas. You’ll be able to choose cowork-
ers or employees from a deeper pool:
advertizing a post for a Java program-
mer will yield many more candidates
than opening one for an AcmeScript
developer. Similarly, you’re more likely
to find good books, a vibrant support
community, and training courses if you
stick to standardized offerings.

the hair Shirt
Sadly, striving for portability can some-
times be a thankless calling. In some
domains, such as native applications
with a graphical user interface, what
you can write with portable code is
laughable, if not entirely useless. At
best, you might have to choose be-
tween delivering a system that requires
platform-specific libraries (as is the case
with Java’s Standard Widget Toolkit) or
one that doesn’t quite follow the plat-
form’s native look and feel (think of Ja-
va’s Swing). Performance will also suf-
fer because vendors tend to offer their
hottest code through nonportable bind-
ings, like those of Microsoft’s DirectX.

As another example, vendor-specific
database bindings tend to perform bet-
ter than vendor-agnostic ODBC/JDBC
bridges. Adding insult to injury, por-
table code can be less expressive than
code written using some nonportable
extensions. Consider the nifty process
and command substitution features of
the bash Unix shell. To do the same
things with the standard Unix Bourne
shell requires ugly contortions involv-
ing temporary files and back-tick es-
caping. Similarly, you can simulate
some of Oracle’s analytical database
query functions by means of nested
queries. However, the result can be un-
readable and could well perform worse
than a query using the nonportable
extensions.

draw Your Lines
With most systems software imple-
menting a standard and then helpfully
also adding everything but the kitchen
sink to it, writing portable code can be
treacherous. An obvious solution is to
disable all extensions; many compilers
offer a flag that makes them standards-
compliant. When this isn’t possible or
feasible, another practical solution is
to code for one system using as docu-
mentation the official standard or that
of another one. For instance, when

writing code for MySQL, read the
documentation for the corresponding
SQLServer commands. To avoid hid-
den gotchas, strive to continuously
compile, run, and test your code on a
variety of platforms.

Wearing the portability hair shirt
will deprive you and your customers
from many benefits. One way around
this conundrum is to draw boundaries
around the nonportable code to iso-
late it from the rest of the application.
If you’re lucky, you may find a library
or even a complete platform that of-
fers you the functionality you need. For
instance, HTML 5 lets you deploy so-
phisticated GUI applications through
any modern Web browser. If you can’t
find a suitable portability layer, you’ll
have to do the heavy lifting by hand.
Create a separate directory or file for
the routines of each platform’s code.
If your language supports it, define the
code’s interface and implement a sepa-
rate class for each platform. Often, ven-
dors will provide a particular nonport-

able extension that uses slightly varying
syntax or semantics, so the extra work
might not be onerous.

a nother approach is to admit
defeat and go wild writing
code that gives the best na-

tive experience. Keep in mind that we
program to serve our business and cus-
tomers, not just to satisfy our lofty ide-
als. Writing platform-specific code isn’t
as crazy as it sounds, even if you have

to support multiple incompatible plat-
forms. The idea is to let each platform’s
code base develop separately rather
than introducing a platform’s complex-
ity into a single code base, for a unified
base could well become exponentially
complex. Worse, when some platforms
(inevitably) die, you might end up hav-
ing to maintain their complexity be-
cause it will be difficult to pry away
their code from the integrated system.
Choose your side!

diomidiS SpineLLiS is a professor in the De-
partment of Management Science and Technology
at the Athens University of Economics and Business
and the author of the books Code Reading and Code
Quality: The Open Source Perspective (Addison-
Wesley, 2003, 2006). Contact him at dds@aueb.gr.

See www.computer.org/software
-multimedia for multimedia
content related to this article.

We program to serve our business
and customers, not just to satisfy
our lofty ideals.

