
18 IEEE SoftwarE | publIShEd by thE IEEE computEr SocIEt y 074 0 -74 5 9 /13 / $ 31. 0 0 © 2 013 I E E E

Editor: Diomidis Spinellis
Athens University of Economics
and Business, dds@aueb.gr

Systems Software
Diomidis Spinellis

SyStemS Software iS the low-level
infrastructure that applications run on:
the operating systems, language run-
times, libraries, databases, application
servers, and many other components
that churn our bits 24/7. It’s the mother
of all code.

In contrast to application software,
which is constructed to meet specific
use cases and business objectives, sys-
tems software should be able to serve
correctly any reasonable workload.
Consequently, it must be extremely re-
liable and efficient. When it works like
that, it’s a mighty tool that lets applica-
tions concentrate on meeting their us-
ers’ needs. When it doesn’t, the failures
are often spectacular. Let’s see how we
go about creating such software.

writing
As an applications programmer, the
first rule to consider when writing a
vitally required piece of systems soft-
ware is “don’t.” To paraphrase the
unfortunate 1843 remark of the US

Patent Office Commissioner Henry
Ellsworth, most of the systems soft-
ware that’s required has already been
written. So, discuss your needs with
colleagues and mentors, aiming to pin
down the existing component that will
fit your needs. The component could
be a message queue manager, a data
store, an embedded real-time operat-
ing system, an application server, a
service bus, a distributed cache—the
list is endless. The challenge is often
simply to pin down the term for the
widget you’re looking for.

Once you start writing, focus on the
data structures and algorithms you’ll
adopt. You’re building infrastructure
and therefore you can make few, if any,
assumptions about your workload. Use
reasonably efficient algorithms to avoid
surprising your clients with resource
hoarding and unwelcomed bottlenecks.
If a design can let you serve requests in
nearly constant time, your clients will
expect you to implement such a behav-
ior. In such a case, it’s unreasonable for
the time you take to service a request
to increase with the number of elements
you’ve served.

The data structures you choose
should also gracefully accommodate
the workload without placing any ar-
tificial limits on it. That’s not as easy
as it sounds: you’re most likely to pro-
gram in C and lack access to the so-
phisticated container libraries available
in higher-level application frameworks.
Use dynamically expanding buffers,

memory pools, or linked lists to handle
arbitrary amounts of data.

Error-checking is a related problem.
The C language doesn’t offer excep-
tions, which you’re obliged to catch,
so functions return error codes, which
you should check scrupulously. If you
fail to do that, your code might lose
data or crash and burn. As an example,
at the time of writing, the GNU time
and Windows route commands will si-
lently lose their output if redirected to a
full disk. Recovery from most errors is
difficult, but your code should handle
those well-documented cases in which
the proper response to an error or short
result is to retry the operation.

Then come the nitty-gritty details
that affect efficiency. Be a good citi-
zen by having your code block when it
has nothing to do. Looking around for
work in a polling loop wastes precious
resources. Instead, determine who
might have something for your process,
and use the POSIX select and poll calls
to wait until such work becomes avail-
able. Design your system’s communica-
tion patterns using this pattern, so that
a lack of work will idle all its processes.

Modern memory is at least an order
of magnitude slower than the CPU, so
stay away from it. Avoid repeatedly
processing data in memory. Cache
intermediate results, and try to obtain
all the data you need from a memory
location with a single access. Where
possible, sidestep memory copying. For
instance, the POSIX mmap system call

Tools of The Trade

Post your comments online
by visiting the column’s blog:

www.spinellis.gr/tools

 may/JunE 2013 | IEEE SoftwarE 19

Tools of The Trade

allows you to transfer data between
files and your application without
having the operating system copy it
to its buffers, while the readv and writev
calls allow you to combine data from
multiple buffers into a single I/O
request. These two things save you the
cost of copying data into a single buffer
or that of multiple system calls (another
fine way to waste CPU time). Thus,
you exploit the goodies that modern
hardware and operating systems offer
you to make your code more efficient.

Although intricate dependencies on
lower layers are fair game for systems
software, horizontal ones aren’t. Sys-
tems software should be free-standing
as much as possible; your client soft-
ware is likely struggling to balance
multiple conflicting requirements. Ar-
riving at the party with your own long
list of uninvited guests isn’t polite.
Therefore, eschew dependencies on ob-
scure libraries, tricky-to-install compo-
nents, and large frameworks that might
not be available by default. Make your
software play well with package man-
agement systems, allowing its painless
installation and updating.

In contrast to application software,
where the lack of a thick manual can
be a virtue, systems software should be
accurately and comprehensively doc-
umented. The documentation is the
contract you draw with clients; strive
to write precisely how your tool will
behave, how it can be configured, and
how it can fail.

testing
Testing systems software can be tricky
because it often contains complex al-
gorithms that are subjected to gruel-
ing stress levels. Instead of the leisurely
input that many application programs
receive from the keyboard and mouse
over a working day, systems software
typically has to deal with machine-
generated input arriving through a fire
hose over a period of months. Worse,

input coming from the outside world
can even be maliciously crafted for di-
verse nefarious purposes.

You can accelerate stress testing your
software by configuring your testing
environment to exercise its edge cases.
For instance, if your software’s dynam-
ically grown buffers are 64-Kbytes, test
its behavior when they’re just 16 bytes.
If you expect to service 10 clients,
check what happens when you service
500. On top of that, write a test har-

ness to feed your software with a huge
number of test requests of all shapes
and sizes.

You can go a step further by ac-
tively downgrading the environment
in which your software runs. We saw
the importance of error checking; you
can verify how you handle errors by in-
troducing faults behind your software’s
back using tools like the libfiou library
(http://blitiri.com.ar/p/libfiu/) or Chaos
Monkey.

Debugging
Debugging systems software when rare,
nondeterministic errors crop up is just
as difficult as testing it. These aptly-
named heisenbugs will appear only
when input, timing conditions, and the
software’s internal state line up. Re-
producing such errors can take days of
stress testing. Good luck tracing them
by single-stepping through a debugger.
Worse, a decent debugger might not
even be available, either because your
code runs on a resource-constrained
system or because your code is part of

the infrastructure in which the debug-
ger would normally run,

The solution to this problem involves
instrumenting your software with copi-
ous amounts of configurable logging.
This will present the software’s internal
state, data structures, and how one step
leads to another. Hopefully, you can re-
produce the error with logging turned
on and then locate its cause by trawl-
ing through the detailed log records. I
recently had a case where just 3 out of

7 million requests were mishandled.
I was fortunate, for I could find a rare
misalignment issue in the logs. Some col-
leagues were less lucky and had to hook
a logical analyzer in the computer’s guts
to locate an operating system error.

S o, with mean and lean code,
paranoid testing, and compre-
hensive logging, you’ll write

the systems software that your applica-
tions deserve.

DiomiDiS SpinelliS is a professor in the Depart-
ment of Management Science and Technology at
the Athens University of Economics and Business
and the author of the books Code Reading and Code
Quality: The Open Source Perspective (Addison-
Wesley, 2003, 2006). Contact him at dds@aueb.gr.

See www.computer.org/software
-multimedia for multimedia
content related to this article.

Accelerate stress testing your software,
by configuring the testing environment
to exercise its edge cases.

