
90 IEEE SoftwarE | publIShEd by thE IEEE computEr SocIEt y 074 0 -74 5 9 /13 / $ 31. 0 0 © 2 013 I E E E

Editor: Diomidis Spinellis
Athens University of Economics
and Business, dds@aueb.gr

The Importance
of Being Declarative
Diomidis Spinellis

A declArAtive progrAmming
style focuses on what you want your
program to do rather than how to per-
form the task. Through diverse pro-
gramming techniques, libraries, and
specialized languages, you end up with
code that sidesteps nitty-gritty imple-
mentation details, dealing instead with
a task’s big picture. For instance, in-
stead of writing the following C code to
calculate a number’s factorial

 int result = 1;
 for (int i = 1; i <= n; ++i)
 result = result * i;

in Haskell, you might simply write
product [1..n]. Let’s see why you should
strive to program declaratively, and
how to go about it.

Why?
By avoiding implementation details,
well-written declarative code is easier
to understand, modify, and maintain.

When you work with such code, you
can concentrate on an operation’s es-
sential parts without getting distracted
by details that are safely hidden away.
Modifications are easier, first because
what you need to change is easily dis-
cernible, and second, because there’s
less stuff to change. Shorter code is
also more reliable. Whenever I get the
opportunity to write declarative code,
I’m always pleasantly surprised by how
few errors the code has in comparison
to code I would have written in plain
C. More often than not, the code sim-
ply runs flawlessly on the first try. This
is fortunate, because declarative code’s
behind-the-scenes execution is often
complex and therefore difficult to debug.

The code you write in a declarative
style is often so readable that you can
share it with your project’s domain
experts, even if their IT knowledge is
only rudimentary. You can thus dis-
cuss with them your implementation,
have them go over your code to verify
it, or even ask them to provide you
with their own code, based on existing
examples. When implementing a civil
engineering CAD system, I coded the
user interface in a declarative fashion
using a custom-built language. Today,
a civil engineer on our team with no
C/C++ programming experience rou-
tinely changes the corresponding files
to polish the user experience.

Interestingly, once you start working
with declarative code, you can benefit
handsomely in ways that aren’t directly
related to the code’s execution. Given
that good declarative code is essentially
a system’s specification written in a
machine-readable fashion, you can au-
tomatically process that code to verify
properties of its operation, generate test
cases, or create parts of the system’s
documentation. In one case, I helped
replace imperative Visual Basic code
that modeled some financial instru-
ments with Haskell code that declara-
tively specified their behavior. With the
declarative code in hand, we could then
implement the models, perform risk
analyses, and even generate the formu-
las for the corresponding contracts.

Sadly, as the saying goes, there’s no
such thing as a free lunch. Declarative
code is often slower and takes more
space than a corresponding imperative
implementation. This happens because
the compiler or runtime system that
gives you the benefits of a declarative
style is general enough to handle all the
possible cases you throw at it. Conse-
quently, it often misses the opportuni-
ties for task-specific optimizations and
shortcuts you could apply to the prob-
lem at hand. For instance, some imple-
mentations of my earlier declarative
factorial example might waste space by
first generating a list of all numbers and

Tools of The Trade

Post your comments online
by visiting the column’s blog:

www.spinellis.gr/tools

 January/fEbruary 2013 | IEEE SoftwarE 91

Tools of The Trade

then multiplying the terms. However,
once you have your code written in a
declarative fashion, it’s often easier to
spot opportunities for higher-level op-
timizations, such as replacing a naive
data structure with a sophisticated one
or parallelizing a task. For large data-
sets, these optimizations are a lot more
profitable than any bit twiddling you
could perform in low-level code.

How?
You can program more declaratively
by making suitable choices about many
parts of your system’s implementa-
tion: code, data types, libraries, and
languages. Advances in compilers and
model-driven development, the avail-
ability of powerful libraries as open
source software, and powerful hard-
ware make such choices particularly
attractive.

You don’t have to program in an ex-
otic language to write declarative code.
Small choices, such as the naming of
your methods and variables, matter.
Name a method based on what it does,
rather than how it performs its action.
Thus, getReplacement is a better name than
getMaxElement. The same goes for variable
names: passengerSet is a better name than
passengerHashTable. Suitable formatting can
also make a difference. For instance, al-
though cascading if, else if statements are
technically nested within each other,
we typically indent them at the same
level to stress that these are equal alter-
native choices. You can also profitably
line up parts of separate expressions to
indicate that these are related.

If you’re coding an algorithm, have
your code match the algorithm’s pub-
lished description down to the choice
of the variable names. Resist the temp-
tation to optimize, until you have data
that shows that the implementation
hinders the program’s performance. Al-
gorithms are often specified using high-
level constructs and operations, such
as intersections and unions of sets. If

your language supports such types, use
them; otherwise, provide them. In all
cases, choose (or implement) high-level
data types that match your problem;
don’t work directly with arrays, point-
ers, or bits, striving to obtain efficiency
through direct manipulation of low-
level data. If your language supports
interfaces (or abstract classes), code in
terms of them, thus removing another
implementation detail from your code.
Judicious use of operator overloading
can also make your code more declara-
tive, allowing you, for example, to ma-
nipulate matrices using algebraic nota-
tion, rather than nested method calls.

In other cases, you can specify your
problem’s properties as data (perhaps
in a table) and have a simple algorithm
go through it to respond to its input. As
an example, when implementing con-
trol software for a rolling mill, instead
of writing a separate routine for each
product type, I created a table with
each product’s parameters. The logi-
cal extension of such a design choice
is to devise or adopt a more expressive
domain-specific language where you
can code your program’s operation us-
ing the nomenclature associated with
your application area. For instance,
instead of laboriously counting pix-
els and calling methods to instantiate
fonts and draw lines, you can specify a
page’s appearance in terms of borders,
markers, and positioning through the
CSS language. Or, to parse complex
textual input, simply provide its gram-
mar to a parser generator tool like Yacc
or ANTLR. If a suitable language isn’t
available, don’t shy away from building
one, perhaps using the macro or meta-
programming facilities of the language
you’re using.

Third-party or platform-specific li-
braries can also help you be more de-
clarative by providing high-level abstrac-
tions or a domain-specific language. For
example, by adopting OpenGL, you can
describe a 3D scene in terms of concrete

objects, lights, and a camera. When ana-
lyzing text strings, specifying the pat-
tern you’re interested in with a regular
expression is a lot more readable and
maintainable than calling your lan-
guage’s string-manipulation methods.
And if you want to run complex queries
on your program’s data, consider gluing
to it an embedded SQL engine, such as
SQLite or HSQLDB. Again, declara-
tive SQL queries win hands-down over
hand-coded loops on arrays.

When you have the choice, pick the
highest-level language you can afford
and that’s suitable for the task at hand.
Higher-level languages offer more and
better abstractions and make it easier
to be declarative. Consider the task of
escaping from a deeply nested error. In
C, you’ll play dice with God by calling
setjmp/longjmp to explicitly manipulate the
stack frame. In Java, you simply throw
an exception. Consider the manage-
ment of concurrency. In Java, you ex-
plicitly manage threads (from a shared
pool to avoid thrashing) and commu-
nicate using carefully managed shared
memory structures. In Erlang, you fire
(and forget) thousands of processes and
handle communication through mes-
saging supported by the language’s syn-
tax. Finally, consider finding customers
who signed up last year and were late
on two bill payments. A SQL query is
the only sane way to perform this task.
It clearly pays to be declarative.

diomidis spinellis is a professor in the Depart-
ment of Management Science and Technology at
the Athens University of Economics and Business
and the author of the books Code Reading and Code
Quality: The Open Source Perspective (Addison-
Wesley, 2003, 2006). Contact him at dds@aueb.gr.

See www.computer.org/software
-multimedia for multimedia
content related to this article.

