
96 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIET Y 074 0 -74 5 9 /12 / $ 31. 0 0 © 2 012 I E E E

Editor: Diomidis Spinellis
Athens University of Economics
and Business, dds@aueb.gr

TOOLS OF THE TRADE

THE REFACTORINGS THAT a good
integrated development environment
(IDE) can perform are impressive. Yet,
there are many reasons to master some
cheap-and-cheerful alternative ap-
proaches. First, there will always be
refactorings that your IDE won’t sup-
port. Also, although your IDE might
offer excellent refactoring support for
some programming languages, it could
fall short on others. Modern projects
increasingly mix and match imple-
mentation languages, and switching
to a specialized IDE for each language
is burdensome and ineffi cient. Finally,
IDE-provided refactorings resemble
an intellectual straightjacket. If you
only know how to use the ready-made
refactorings, you’ll miss out on oppor-
tunities for other code improvements.

In this column, I describe how you
can harness the sophistication of your
editor and the power of command-line
tools to perform many simple refactor-
ings on your own. As a bonus, you’ll
see that you can write and run most of

them in less time than is required to fi re
up your favorite IDE.

Within Files
The basic tool for performing a refac-
toring within a fi le is the editor’s sub-
stitution command used in conjunction
with regular expressions (see “Dear
Editor,” IEEE Software, vol. 22, no.
2, 2005, pp. 14–15). In this section’s
examples, I’m using the common Unix
substitution syntax s/old/new/ and the
vi editor’s regular expression syntax;
other editors offer similar functional-
ity. Splitting a simple method call into
two can be as easy as typing

s/getX()/getX().getY()/g

However, if the original method has
arguments that must now be passed by
the second method, you need to get cre-
ative and include the bracket in the sub-
stitution pattern in order to move the
arguments to getY:

s/getX(/getX().getY(/g

Regular expressions aren’t powerful
enough to parse a typical programming
language, so you’ll often have to resort
to tricks like this one to handle brack-
ets and braces. Another useful regular
expression substitution technique in-
volves capturing part of the old pattern
and reusing it in the new string. For in-

stance, if you want to change calls to
the function raiseRating, where its fi rst
argument is a variable representing an
object, into method calls, you might
give a command like

s/raiseRating(\([̂ ,]*\),/ \1.raiseRating(/g

Here, the text within the fi rst \(\) pair
will get stored in a regular expression
variable, which you can then employ in
the substitution pattern using \1. The
[^,]* idiom inside the brackets matches
everything up to the fi rst comma.
Again, this isn’t bullet-proof—some
legitimate expressions might contain a
comma—but it works 95 percent of the
time (or does 95 percent of the job).

Capitalizing on the regularity of
the text you process can save a lot of
pain. The following will transform
named HTML headers into list-item
hyperlinks:

s/<h2>]*\)>\(.*\)<\ /a><\ /
h2>/ \2<\ /a><\ /li>/

I use it regularly to keep the questions
and answers in my FAQ documents in
sync. It works only because I write the
headings on a single line, but the near-
est robust alternative (XSLT) would re-
quire prohibitively more work.

Refactoring on the Cheap
Diomidis Spinellis

Post your comments online
by visiting the column’s blog:

www.spinellis.gr/tools
continued on p. 94

94	 IEEE SOFTWARE | WWW.COMPUTER.ORG/SOFTWARE

TOOLS OF THE TRADE

Across Files
Quite often, you’ll want to apply substi-
tution commands not to a single file but
to all files in a directory or throughout
your project. The canonical way to do
this under Unix (and also Mac OS X
and Microsoft Windows with an instal-
lation of Cygwin) is to use the stream
editor sed. This can take as an argument
some editing commands and apply them
to the files you specify. Modern versions
of sed can perform a substitution in
place. Thus, with a command like

sed –i –e ‘s/Employee/Person/g’ proc*.scala

you can change Employee into Person on
all Scala files in the current directory
whose name starts with proc. You can
precede the substitution command s by
one or two regular expressions to spec-
ify the lines or a range of lines on which
the command will apply. If you wanted
to change getWidget into getWidgetReference
in all C++ lines containing const_iterator,
you’d run

sed –i -e ‘/const_iterator/s/getWidget/
getWidgetReference/g’ *.cpp

Moreover, if you wanted to change
bProxy to buildProxy only within javadoc
block comments in all Java files in the
current directory, you’d run

sed –i -e ‘/ \ / **$/,/ *\ /$/s/bProxy/
buildProxy/g’ *.java

The Perl and Ruby scripting lan-
guages also offer in-place substitution
functionality through command-line
invocation options, and their expres-
sion evaluators allow you to perform
more sophisticated processing. The fol-
lowing command changes the first ar-
gument of setFlags from decimal to hexa-
decimal in all the C and C++ files in the
current directory:

perl –pi.bak –e ‘s/setFlags\((\d+)/
sprintf(“setFlags(0x%x”, $1)/ge’ *.c *.cpp

Large projects typically reside in
multiple directories. The Unix find
and xargs commands are the building
blocks for applying commands to large
hierarchies. Find will print a list of files
that match the criteria you specify. You
then pass those through a pipeline to
xargs, which will invoke the command
you specify in batches of as many files
as the operating system allows. The
typical invocation for a global substi-
tution through all the project’s files is
something like

find project_directory -type f –print0 |
xargs -0 sed –i -e ‘s/old/new/g’

(The –print0 and -0 options allow you
to process file names with embedded
spaces.) You can restrict the files onto
which you apply the substitution by
passing a -name argument to find; here is
how you would change intr_handle_t into
pci_intr_handle_t only in files with names
starting with pci_:

find /usr/src/sys -type f –name pci_*.c |
xargs sed -i –e ‘s/intr_handle_t/pci_intr_
handle_t/g’

On File Paths
Some refactorings involve changing file
names or moving files around. You can
easily accomplish this by using find to
list the corresponding files and sed to
craft the text of a command that will
accomplish the action you want. You
then pipe the generated commands
into the shell (sh), which will execute
them as if you typed them interac-
tively. Depending on your setup, you’ll
want the commands you create to ei-
ther manipulate the files directly or to
call up your version control system to
perform the corresponding action. The
following command will add an fs pre-
fix to all file names residing in directo-
ries ending in fs:

find . -type f |
sed -n –e ‘s/ \(.*\)fs\ / \(.*\)/mv “\1fs\ / \2”
“\1fs\ /fs_\2”/p’ |
sh

It acts by generating an mv (rename)
command for all matching path names.
(As invoked, sed will read lines from its
standard input and only print the lines
for which the substitution succeeds.)
If you wanted to issue commands to
the Subversion version control system,
you’d specify svn rename instead of mv.
With similar commands, you can move
files around the project’s directory hi-
erarchy or remove files that are no lon-
ger needed.

Profiting
There are many habits that can increase
your effectiveness in the tasks I’ve out-
lined here. First, as befits someone who
works on the cheap, you must be stingy
and lazy. With the ability to easily undo
changes either within your editor or
through your version control system,
don’t sweat coming up with the perfect
regular expression that will succeed
in every imaginable case. Try out sim-
ple commands that could conceivably
work and see if they’re good enough. If
not, the compiler or a visual inspection
should catch the errors, and you can try
a slightly more sophisticated version of
the command. In particular, the regu-
lar expression repetition operators *
and + aren’t matching as greedily as you
might fear. If you specify a well-chosen
string after them, the regular expres-
sion engine will backtrack and have the
repetition operator match only the part
needed for the whole expression to suc-
ceed. Many commands in this column
utilize this property.

Furthermore, be ready to tolerate a
few missed or extraneous changes. If
you can easily locate them, correcting
them by hand is often faster than craft-
ing the exact command that will work
on all cases. Remember, your goal is to
be productive; you’re writing throw-

continued from p. 96

	 JANUARY/FEBRUARY 2012 | IEEE SOFTWARE � 95

TOOLS OF THE TRADE

away code that no one else will ever see
again, so you might as well enjoy em-
ploying a few shortcuts.

Be opportunistic in the com-
mands you craft, taking advantage of
style, coding, and API conventions to
achieve your results. Thus, if you can
narrow down on the correct method
to change because it happens to always
appear as an argument to another
method, don’t be shy about specifying
that in your command.

Regular expressions are nifty, but
they aren’t sufficiently powerful for all
the tasks you’ll face. Also, the com-
mands can quickly become overwhelm-
ingly complex. You can solve both prob-
lems by running the substitutions step
by step. Dodge a sequence that confuses
the regular expression matcher by con-
verting it into something innocuous—
say, @v@—running the substitution,
and then converting it back to its origi-
nal form. Break complex substitutions
into small steps, verifying the results in

each step.
Finally, you can simplify your life

if you write code in a way that can aid
the refactorings I’ve described here. Be
consistent in naming your identifiers,
formatting your code, and the way you
split it across lines and files. There are
many good reasons for writing good
code: being able to refactor it on the
cheap is just the icing on the cake.

DIOMIDIS SPINELLIS is a professor in the Depart-
ment of Management Science and Technology at
the Athens University of Economics and Business
and the author of Code Quality: The Open Source
Perspective (Addison-Wesley, 2006). Contact him at
dds@aueb.gr.

STAFF
Lead Editor

Dale C. Strok
dstrok@computer.org

Content Editor
Brian Brannon

Manager, Editorial Services
Jenny Stout

Editors
Camber Agrelius,

Dennis Taylor, and Linda World

Publications Coordinator
software@computer.org

Production Editor/Webmaster
Jennie Zhu

Contributors
Alex Torres

Cover Artist
Eero Johannes

Director, Products & Services
Evan Butterfield

Senior Manager, Editorial Services
Lars Jentsch

Senior Business Development Manager
Sandra Brown

Membership Development Manager
Cecelia Huffman

Senior Advertising Coordinator
Marian Anderson

manderson@computer.org

CS PUBLICATIONS BOARD

David A. Grier (chair), Alain April, David Bader,
Angela R. Burgess, Jim Cortada,

Hakan Erdogmus, Frank E. Ferrante,
Jean-Luc Gaudiot, Paolo Montuschi,

Dorée Duncan Seligmann, Linda I. Shafer,
Steve Tanimoto, George Thiruvathukal

MAGAZINE
OPERATIONS COMMITTEE

Dorée Duncan Seligmann (chair), Erik Altman,
Isabel Beichl, Krishnendu Chakrabarty,

Nigel Davies, Lars Heide, Simon Liu,
Dejan Milojič ić , Michael Rabinovich,

Forrest Shull, John R. Smith, Gabriel Taubin,
Ron Vetter, John Viega, Fei-Yue Wang

Editorial: All submissions are subject to editing
for clarity, style, and space. Unless otherwise

stated, bylined articles and departments,
as well as product and service descriptions,

reflect the author’s or firm’s opinion. Inclusion in
IEEE Software does not necessarily constitute endorse-

ment by IEEE or the IEEE Computer Society.

To Submit: Access the IEEE Computer Society’s
Web-based system, ScholarOne, at

http://mc.manuscriptcentral.com/sw-cs. Be sure to se-
lect the right manuscript type when submitting. Articles
must be original and not exceed 4,700 words including

figures and tables, which count for 200 words each.

IEEE prohibits discrimination, harassment and
bullying: For more information, visit www.ieee.org/

web/aboutus/whatis/policies/p9-26.html.

IEEE Software (ISSN 0740-7459) is published bimonthly by the IEEE Computer Society. IEEE
headquarters: Three Park Ave., 17th Floor, New York, NY 10016-5997. IEEE Computer Society
Publications Office: 10662 Los Vaqueros Cir., Los Alamitos, CA 90720-1314; +1 714 821 8380;
fax +1 714 821 4010. IEEE Computer Society headquarters: 2001 L St., Ste. 700, Washington, DC
20036. Subscription rates: IEEE Computer Society members get the lowest rate of US$54 per year,
which includes printed issues plus online access to all issues published since 1984. Go to www.com-
puter.org/subscribe to order and for more information on other subscription prices. Back issues: $20
for members, $163 for nonmembers (plus shipping and handling).

Postmaster: Send undelivered copies and address changes to IEEE Software, Membership Process-
ing Dept., IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854-4141. Periodicals Postage
Paid at New York, NY, and at additional mailing offices. Canadian GST #125634188. Canada Post
Publications Mail Agreement Number 40013885. Return undeliverable Canadian addresses to PO
Box 122, Niagara Falls, ON L2E 6S8, Canada. Printed in the USA.

Reuse Rights and Reprint Permissions: Educational or personal use of this material is permitted
without fee, provided such use: 1) is not made for profit; 2) includes this notice and a full citation to
the original work on the first page of the copy; and 3) does not imply IEEE endorsement of any third-
party products or services. Authors and their companies are permitted to post the accepted version
of IEEE-copyrighted material on their own webservers without permission, provided that the IEEE
copyright notice and a full citation to the original work appear on the first screen of the posted
copy. An accepted manuscript is a version which has been revised by the author to incorporate
review suggestions, but not the published version with copy-editing, proofreading and formatting
added by IEEE. For more information, please go to: http://www.ieee.org/publications_standards/
publications/rights/paperversionpolicy.html. Permission to reprint/republish this material for com-
mercial, advertising, or promotional purposes or for creating new collective works for resale or
redistribution must be obtained from IEEE by writing to the IEEE Intellectual Property Rights Of-
fice, 445 Hoes Lane, Piscataway, NJ 08854-4141 or pubs-permissions@ieee.org. Copyright © 2012
IEEE. All rights reserved.

Abstracting and Library Use: Abstracting is permitted with credit to the source. Libraries are per-
mitted to photocopy for private use of patrons, provided the per-copy fee indicated in the code at
the bottom of the first page is paid through the Copyright Clearance Center, 222 Rosewood Drive,
Danvers, MA 01923.

Selected CS articles and columns
are also available for free at
http://ComputingNow.computer.org.

