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We can lick gravity, but sometimes the paperwork is overwhelming. —Wernher von Braun

TWILIGHT SAW THE landing of Atlantis at 
the Kennedy Space Center on 21 July 2011, 
marking the end of the 30-year Space Shut-
tle program and leaving the Soyuz series of 
spacecraft as the only remaining major op-
tion for sending humans into space. With a 
history of 1,700 fl ights over an almost half-
century lifetime, the Soyuz rocket and space-
craft are arguably a tremendously successful 
spacefl ight design. Given the parallels be-
tween the complexity of human spacefl ight 
and large software systems, what can we as 
developers learn from the Soyuz program?

Go for the 80 Percent
There’s no question that the Space Shuttle 
design was more sophisticated and techni-
cally ambitious than that of Soyuz. So was 
the design of the Multics operating system, 
the PL/I language, and the OSI network-
ing standards. Yet today’s astronauts fl y on 
Soyuz and much of the world runs on Unix, 
C, and the Internet. It seems that limiting a 
project’s scope and complexity early on can 
have a dramatic payoff in its success and 
longevity.

Soyuz is an “80 percent solution.” It’s 
not everything its original designers wanted, 
never mind what its current users want, but 
it does what’s needed and most of what’s 
wanted. Its capacity is a fraction of the Space 
Shuttle’s (see Figure 1); it’s cramped, not re-
usable, and can’t run Spacelab missions or 
deploy satellites. However, its bare-bones 
design reduced construction and operation 
costs along with the opportunities for prob-
lems, while still making Soyuz adaptable to 
the variety of roles it was called to fulfi ll. 

The complexity of software-based sys-
tems is often staggering, so a frugal design’s 
payoffs can be equally dramatic. Complexity 
feeds on itself. A lean and mean design results 
in a faster time to market, a smaller number 
of developers or contractors, a simpler man-
agement structure, sleeker processes, shorter 
build cycles, and fewer and shorter meetings 
(hurray!). Such a design also promotes agil-
ity; a small speedboat can run circles around 
a weighty freighter. In today’s rapidly chang-
ing business environment, you’re a lot safer 
with a design you can adapt in a matter of 
days or even ditch without qualms to start 
afresh.

However, too many software systems are 
built like the Space Shuttle, with a long list 
of ambitious goals and a resulting system 
that’s badly compromised by trying to do too 
much. Gold-plated requirements frequently 
distract management and engineers, divert-
ing talent and precious resources from those 
functions with the highest payoffs. Unfortu-
nately, all too often the upfront cost of large-
scale procurement processes promotes the 
all-but-the-kitchen-sink approach to require-
ments, penalizing small and nimble projects. 
The next time you see a fully confi gurable 
report generator in an information system’s 
specifi cations, ask yourself whether a simple 
data export facility would suffi ce.

From the hardware perspective, today’s 
stalled CPU clock speeds and memory access 
times as well as the power constraints of mo-
bile devices also require us to reduce bloat. 
Lean designs can have lower processing and 
data throughput needs and can thus be more 
responsive and energy effi cient.
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Leave Margins
The Space Shuttle’s development was 
badly hampered when a performance 
shortfall required drastic weight reduc-
tion measures throughout the orbiter 
(such as deleting built-in work plat-
forms that would have made mainte-
nance quicker and cheaper). As best we 
can tell, Soyuz had a big enough design 
margin that it never went through such 
a traumatic experience.  

The real shining example of the im-
portance of margins, though, was the 
Apollo spacecraft and its Saturn V 
rocket. A fundamental decision had to 
be made early in the rocket develop-
ment: How big was the payload? Con-
sequently, the spacecraft designers had 
to commit to a weight limit quite early 
in their development process.

After considerable thought, they 
promised chief rocket developer Wer-
nher von Braun that the final space-
craft would weigh 75,000 pounds at 
most, its definite absolute maximum. 
He could confidently build the rocket 
to carry that much payload. Von Braun 
thought about the history of earlier 
Apollo weight estimates, decided that 
he just didn’t believe it, and told his de-
partment heads that while the official 
payload was 75,000 pounds, the real 
requirement was 90,000 pounds! This 
was going to make the rocket substan-
tially bigger; among other changes, the 
first stage needed five engines, not four.

The wisdom of this became clear a 
few years later. The Apollo 11 space-
craft, after stringent weight-reduction 
efforts, weighed just over 109,000 
pounds at launch. Making the Saturn V 
lift that much was difficult, but it would 
have been utterly impossible if von 
Braun had taken the spacecraft build-
ers’ original rash promise at face value.

Software development works in 
the same way: estimates of execution 
speed, memory use, and development 
time early in a project are notoriously 
overoptimistic. This happens because 
the knowledge we acquire during the 

project’s development increases in 
scope and complexity. Clearly, the ear-
lier a working prototype can be had, 
the better, so that estimates can be 
based on actual data. Also, adding gen-
erous margins to early estimates (and 
any subsequent revisions) will almost 
always ease the pain of development 
and deployment.

If It Ain’t Broke, Don’t Fix It
Since 1967, the Soyuz spacecraft cur-
rently ferrying passengers to the In-
ternational Space Station has evolved 
through more than a dozen variants. 
The Soyuz rocket family goes even 
further back in time, deriving its de-
sign from the 1960 Vostok launcher, 
which in turn was based on the 1957 
R-7 inter continental ballistic missile. 
Despite a limitation or two, Soyuz 
does its job well, and the Russians have 
seen no need to replace it. (The Buran 
spacecraft was never meant as a Soyuz 
replacement—it was a purely military 

project.) NASA has tried to replace the 
shuttle several times; the only reason it 
didn’t was because it never managed to 
bring any of those plans to fruition. 

Soyuz and its rocket have been up-
graded several times; they’re descen-
dants of the ones that flew nearly half 
a century ago, not exact copies. But the 
improvements have been incremental 
and the transitions gradual. There have 
been no sudden “flag day” switchovers 
when the old system is decommissioned 
and the new one must work the first time 
it’s tried, and no long gaps between sys-
tems. The software analogy is obvious: 
gradual evolution with a working pro-
gram at each step, rather than massive 
rewrites. There are at least three good 
reasons for sticking to a good design 
rather than continually starting afresh.

First, software architecture and de-
sign remain art as much as science. Al-
though we can easily spot signs of a 
deficient design, such as excessive cou-
pling, we can only tell a good one once 

FIGURE 1. The Space Shuttle orbiter and the 1986–2003 Soyuz model drawn to scale. The 

Soyuz isn't reusable and doesn't offer the same capacity, but its bare-bones design reduced 

both costs and opportunities for problems.
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it’s proven itself in practice. Given that 
a miniscule subset of all possible de-
signs will turn out to be truly stellar, 
it’s sensible to recognize them as such 
and stick with them.

Then we have the people aspect. De-
signs do not exist in a vacuum; they 
depend on people who know how to 
make them tick and nurture them in the 
right direction. All too often, develop-
ers fresh on a project end up trying to 
hit a screw with a proverbial hammer. 
This happens because only a small part 
of the knowledge embodied in complex 
artifacts is documented and taught. 
The rest is hidden within the designs 
and the teams that build them. Relying 
on existing designs and teams allows 
us to capture that tacit knowledge and 
avoid costly mistakes. It’s noteworthy 
that the people who built Soyuz were 
the same ones who built Voskhod, 
Vostok, and Sputnik. One thing the 
US space program hasn’t done well at 
all is to keep successful teams together 
and give them more missions. Devising 
a mentoring program and meaningful 
career ladders for software developers 
is similarly important and challenging.

Finally, incremental improvements 
in software also help us keep the eco-
system we nurtured: our customer 
base and third-party contributors. Mi-
crosoft played this card with gusto as 
it stubbornly built the first versions of 
Windows on top of the creaking MS-
DOS infrastructure, beating to the 
marketplace IBM’s initially more ambi-
tious OS/2 project.

Modularize and Specialize
In contrast to the Space Shuttle orbiter, 
which combines engines, habitation, 
and reentry functionality, the Soyuz 
program followed a modular design. A 
Soyuz spacecraft consists of an orbital 
module, which accommodates the crew 
during its mission; a small reentry mod-
ule, which by decelerating through air-
braking, a parachute, and retro-rockets,  
returns the crew back to Earth; and 

the service module, which contains in-
strumentation, propulsion, and the so-
lar array. This assembly is launched by 
means of the three-stage Soyuz rocket.

Splitting the Soyuz structure be-
tween the rocket, orbital, reentry, and 
service modules let the designers opti-
mize each part for its intended functions 
and avoid dangerous and costly inter-
dependencies. The interface between a 
capsule and its rocket can be quite sim-
ple; the Apollo project had fewer than 
100 wires connecting it to its Saturn 
rocket and just 36 wires between the 
Apollo command/service module and 
the lunar module. The Shuttle orbiter, 
more tightly integrated with the exter-
nal tank and the solid rocket boosters, 
had more than 1,000 wires between it 
and the rest of its stack, requiring an 
entire work shift just to mate the electri-
cal connectors during shuttle stacking. 
Worse, this is the difference between 
something one engineer can easily un-
derstand and something no single hu-
man has ever fully understood.

Soyuz’s modular design also al-
lowed its builders to create the Progress 
cargo hauling variant, and Zond, which  
removed the orbital module and beefed 
up the reentry-module heat shield, pro-
viding a minimal manned spacecraft for 
a round-the-moon flight. This versatility 
yielded economies of scope and scale fur-
ther driving the Soyuz program’s success.

The analogies with software designs 
are obvious and the outcomes similar. 
Microsoft paid the price for the tight 
integration between the Windows ker-
nel, the user interface, and Internet 
Explorer through an endless stream of 
critical security vulnerabilities. Con-
trast this with the modular design of 
Unix tools that connect through the 
simple pipes-and-filters architecture, 
which has kept them popular for almost 
as long as Soyuz. Various software eco-
systems, such as those of Emacs, Perl, 
TeX, Java, Eclipse, the iPhone, and 
the Unix package managers, also owe 
their success and popularity to a well-

defined modular structure for add-ons.
A less obvious lesson concerns the 

handling of critical functionality. Cus-
tomizing the Soyuz orbital module (a 
common requirement) doesn’t affect 
the life-critical descent module. Simi-
lar opportunities abound in software 
and can promote flexibility. For in-
stance, it’s often a good idea to split a 
design’s core and its interface using a 
scripting language. This aids perfor-
mance, security, and reliability. The 
software analogy goes even deeper. 
One way people have successfully  
tackled the problem of safety-critical 
software is to split the software be-
tween two computers: one does noth-
ing but run the hardware and enforce 
the safety invariants, while the other, 
with its fancy displays and complex 
data acquisition, can give orders to the 
hardware only through the first. Keep-
ing the safety-critical hard-real-time 
code on a separate computer isolates 
it from misbehavior by the rest of the 
code much more effectively than any 
level of software precautions.

D esigning a software system 
like the Shuttle—a gleaming, 
integrated whole meant to 

fully meet a long list of requirements—
is appealing, not least because it often 
fits the customer’s preconceptions well. 
In real life, though, it’s often wiser to 
emulate Soyuz instead: a simple, modu-
lar solution that solves the most impor-
tant problems and can evolve to handle 
future changes.
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