
26 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIET Y 074 0 -74 5 9 /11/ $ 2 6 . 0 0 © 2 011 I E E E

Editor: Diomidis Spinellis
Athens University of Economics and Business
dds@aueb.gr

TOOLS OF THE TRADETOOLS OF THE TRADE
Editor: Diomidis Spinellis
Athens University of Economics
and Business, dds@aueb.gr

Lessons from Space
Diomidis Spinellis and Henry Spencer

We can lick gravity, but sometimes the paperwork is overwhelming. —Wernher von Braun

TWILIGHT SAW THE landing of Atlantis at
the Kennedy Space Center on 21 July 2011,
marking the end of the 30-year Space Shut-
tle program and leaving the Soyuz series of
spacecraft as the only remaining major op-
tion for sending humans into space. With a
history of 1,700 fl ights over an almost half-
century lifetime, the Soyuz rocket and space-
craft are arguably a tremendously successful
spacefl ight design. Given the parallels be-
tween the complexity of human spacefl ight
and large software systems, what can we as
developers learn from the Soyuz program?

Go for the 80 Percent
There’s no question that the Space Shuttle
design was more sophisticated and techni-
cally ambitious than that of Soyuz. So was
the design of the Multics operating system,
the PL/I language, and the OSI network-
ing standards. Yet today’s astronauts fl y on
Soyuz and much of the world runs on Unix,
C, and the Internet. It seems that limiting a
project’s scope and complexity early on can
have a dramatic payoff in its success and
longevity.

Soyuz is an “80 percent solution.” It’s
not everything its original designers wanted,
never mind what its current users want, but
it does what’s needed and most of what’s
wanted. Its capacity is a fraction of the Space
Shuttle’s (see Figure 1); it’s cramped, not re-
usable, and can’t run Spacelab missions or
deploy satellites. However, its bare-bones
design reduced construction and operation
costs along with the opportunities for prob-
lems, while still making Soyuz adaptable to
the variety of roles it was called to fulfi ll.

The complexity of software-based sys-
tems is often staggering, so a frugal design’s
payoffs can be equally dramatic. Complexity
feeds on itself. A lean and mean design results
in a faster time to market, a smaller number
of developers or contractors, a simpler man-
agement structure, sleeker processes, shorter
build cycles, and fewer and shorter meetings
(hurray!). Such a design also promotes agil-
ity; a small speedboat can run circles around
a weighty freighter. In today’s rapidly chang-
ing business environment, you’re a lot safer
with a design you can adapt in a matter of
days or even ditch without qualms to start
afresh.

However, too many software systems are
built like the Space Shuttle, with a long list
of ambitious goals and a resulting system
that’s badly compromised by trying to do too
much. Gold-plated requirements frequently
distract management and engineers, divert-
ing talent and precious resources from those
functions with the highest payoffs. Unfortu-
nately, all too often the upfront cost of large-
scale procurement processes promotes the
all-but-the-kitchen-sink approach to require-
ments, penalizing small and nimble projects.
The next time you see a fully confi gurable
report generator in an information system’s
specifi cations, ask yourself whether a simple
data export facility would suffi ce.

From the hardware perspective, today’s
stalled CPU clock speeds and memory access
times as well as the power constraints of mo-
bile devices also require us to reduce bloat.
Lean designs can have lower processing and
data throughput needs and can thus be more
responsive and energy effi cient.

TOOLS OF THE TRADE

Post your comments online
by visiting the column’s blog:

www.spinellis.
gr/tools

 NOVEMBER/DECEMBER 2011 | IEEE SOFTWARE 27

TOOLS OF THE TRADE

Leave Margins
The Space Shuttle’s development was
badly hampered when a performance
shortfall required drastic weight reduc-
tion measures throughout the orbiter
(such as deleting built-in work plat-
forms that would have made mainte-
nance quicker and cheaper). As best we
can tell, Soyuz had a big enough design
margin that it never went through such
a traumatic experience.

The real shining example of the im-
portance of margins, though, was the
Apollo spacecraft and its Saturn V
rocket. A fundamental decision had to
be made early in the rocket develop-
ment: How big was the payload? Con-
sequently, the spacecraft designers had
to commit to a weight limit quite early
in their development process.

After considerable thought, they
promised chief rocket developer Wer-
nher von Braun that the final space-
craft would weigh 75,000 pounds at
most, its definite absolute maximum.
He could confidently build the rocket
to carry that much payload. Von Braun
thought about the history of earlier
Apollo weight estimates, decided that
he just didn’t believe it, and told his de-
partment heads that while the official
payload was 75,000 pounds, the real
requirement was 90,000 pounds! This
was going to make the rocket substan-
tially bigger; among other changes, the
first stage needed five engines, not four.

The wisdom of this became clear a
few years later. The Apollo 11 space-
craft, after stringent weight-reduction
efforts, weighed just over 109,000
pounds at launch. Making the Saturn V
lift that much was difficult, but it would
have been utterly impossible if von
Braun had taken the spacecraft build-
ers’ original rash promise at face value.

Software development works in
the same way: estimates of execution
speed, memory use, and development
time early in a project are notoriously
overoptimistic. This happens because
the knowledge we acquire during the

project’s development increases in
scope and complexity. Clearly, the ear-
lier a working prototype can be had,
the better, so that estimates can be
based on actual data. Also, adding gen-
erous margins to early estimates (and
any subsequent revisions) will almost
always ease the pain of development
and deployment.

If It Ain’t Broke, Don’t Fix It
Since 1967, the Soyuz spacecraft cur-
rently ferrying passengers to the In-
ternational Space Station has evolved
through more than a dozen variants.
The Soyuz rocket family goes even
further back in time, deriving its de-
sign from the 1960 Vostok launcher,
which in turn was based on the 1957
R-7 inter continental ballistic missile.
Despite a limitation or two, Soyuz
does its job well, and the Russians have
seen no need to replace it. (The Buran
spacecraft was never meant as a Soyuz
replacement—it was a purely military

project.) NASA has tried to replace the
shuttle several times; the only reason it
didn’t was because it never managed to
bring any of those plans to fruition.

Soyuz and its rocket have been up-
graded several times; they’re descen-
dants of the ones that flew nearly half
a century ago, not exact copies. But the
improvements have been incremental
and the transitions gradual. There have
been no sudden “flag day” switchovers
when the old system is decommissioned
and the new one must work the first time
it’s tried, and no long gaps between sys-
tems. The software analogy is obvious:
gradual evolution with a working pro-
gram at each step, rather than massive
rewrites. There are at least three good
reasons for sticking to a good design
rather than continually starting afresh.

First, software architecture and de-
sign remain art as much as science. Al-
though we can easily spot signs of a
deficient design, such as excessive cou-
pling, we can only tell a good one once

FIGURE 1. The Space Shuttle orbiter and the 1986–2003 Soyuz model drawn to scale. The

Soyuz isn't reusable and doesn't offer the same capacity, but its bare-bones design reduced

both costs and opportunities for problems.

28 IEEE SOFTWARE | WWW.COMPUTER.ORG/SOFTWARE

TOOLS OF THE TRADE

it’s proven itself in practice. Given that
a miniscule subset of all possible de-
signs will turn out to be truly stellar,
it’s sensible to recognize them as such
and stick with them.

Then we have the people aspect. De-
signs do not exist in a vacuum; they
depend on people who know how to
make them tick and nurture them in the
right direction. All too often, develop-
ers fresh on a project end up trying to
hit a screw with a proverbial hammer.
This happens because only a small part
of the knowledge embodied in complex
artifacts is documented and taught.
The rest is hidden within the designs
and the teams that build them. Relying
on existing designs and teams allows
us to capture that tacit knowledge and
avoid costly mistakes. It’s noteworthy
that the people who built Soyuz were
the same ones who built Voskhod,
Vostok, and Sputnik. One thing the
US space program hasn’t done well at
all is to keep successful teams together
and give them more missions. Devising
a mentoring program and meaningful
career ladders for software developers
is similarly important and challenging.

Finally, incremental improvements
in software also help us keep the eco-
system we nurtured: our customer
base and third-party contributors. Mi-
crosoft played this card with gusto as
it stubbornly built the first versions of
Windows on top of the creaking MS-
DOS infrastructure, beating to the
marketplace IBM’s initially more ambi-
tious OS/2 project.

Modularize and Specialize
In contrast to the Space Shuttle orbiter,
which combines engines, habitation,
and reentry functionality, the Soyuz
program followed a modular design. A
Soyuz spacecraft consists of an orbital
module, which accommodates the crew
during its mission; a small reentry mod-
ule, which by decelerating through air-
braking, a parachute, and retro-rockets,
returns the crew back to Earth; and

the service module, which contains in-
strumentation, propulsion, and the so-
lar array. This assembly is launched by
means of the three-stage Soyuz rocket.

Splitting the Soyuz structure be-
tween the rocket, orbital, reentry, and
service modules let the designers opti-
mize each part for its intended functions
and avoid dangerous and costly inter-
dependencies. The interface between a
capsule and its rocket can be quite sim-
ple; the Apollo project had fewer than
100 wires connecting it to its Saturn
rocket and just 36 wires between the
Apollo command/service module and
the lunar module. The Shuttle orbiter,
more tightly integrated with the exter-
nal tank and the solid rocket boosters,
had more than 1,000 wires between it
and the rest of its stack, requiring an
entire work shift just to mate the electri-
cal connectors during shuttle stacking.
Worse, this is the difference between
something one engineer can easily un-
derstand and something no single hu-
man has ever fully understood.

Soyuz’s modular design also al-
lowed its builders to create the Progress
cargo hauling variant, and Zond, which
removed the orbital module and beefed
up the reentry-module heat shield, pro-
viding a minimal manned spacecraft for
a round-the-moon flight. This versatility
yielded economies of scope and scale fur-
ther driving the Soyuz program’s success.

The analogies with software designs
are obvious and the outcomes similar.
Microsoft paid the price for the tight
integration between the Windows ker-
nel, the user interface, and Internet
Explorer through an endless stream of
critical security vulnerabilities. Con-
trast this with the modular design of
Unix tools that connect through the
simple pipes-and-filters architecture,
which has kept them popular for almost
as long as Soyuz. Various software eco-
systems, such as those of Emacs, Perl,
TeX, Java, Eclipse, the iPhone, and
the Unix package managers, also owe
their success and popularity to a well-

defined modular structure for add-ons.
A less obvious lesson concerns the

handling of critical functionality. Cus-
tomizing the Soyuz orbital module (a
common requirement) doesn’t affect
the life-critical descent module. Simi-
lar opportunities abound in software
and can promote flexibility. For in-
stance, it’s often a good idea to split a
design’s core and its interface using a
scripting language. This aids perfor-
mance, security, and reliability. The
software analogy goes even deeper.
One way people have successfully
tackled the problem of safety-critical
software is to split the software be-
tween two computers: one does noth-
ing but run the hardware and enforce
the safety invariants, while the other,
with its fancy displays and complex
data acquisition, can give orders to the
hardware only through the first. Keep-
ing the safety-critical hard-real-time
code on a separate computer isolates
it from misbehavior by the rest of the
code much more effectively than any
level of software precautions.

D esigning a software system
like the Shuttle—a gleaming,
integrated whole meant to

fully meet a long list of requirements—
is appealing, not least because it often
fits the customer’s preconceptions well.
In real life, though, it’s often wiser to
emulate Soyuz instead: a simple, modu-
lar solution that solves the most impor-
tant problems and can evolve to handle
future changes.

DIOMIDIS SPINELLIS is a professor in the Depart-
ment of Management Science and Technology at
the Athens University of Economics and Business
and the author of Code Quality: The Open Source
Perspective (Addison-Wesley, 2006). Contact him at
dds@aueb.gr.

HENRY SPENCER is a freelance consultant for
software development and spacecraft engineering,
and an amateur space historian. His code is in orbit
on five satellites—possibly more by the time you
read this—built by the University of Toronto’s Space
Flight Laboratory.

