
96 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIET Y 074 0 -74 5 9 /11/ $ 2 6 . 0 0 © 2 011 I E E E

TOOLS OF THE TRADE
Editor: Diomidis Spinellis
Athens University of Economics
and Business, dds@aueb.gr

Faking It
Diomidis Spinellis

THIS COLUMN IS about a tool we no
longer have: the continuous rise of CPU
clock frequencies. We were enjoying
this trend for decades, but in the past
few years, progress stalled. CPUs are
no longer getting faster because their
makers can’t handle the heat of faster-
switching transistors. Furthermore, in-
creasing the CPU’s sophistication to
execute our instructions more cleverly
has hit the law of diminishing returns.
Consequently, CPU manufacturers now
package the constantly increasing num-
ber of transistors they can fi t onto a
chip into multiple cores—processing el-
ements—and then ask us developers to
put the cores to good use.

If you haven’t tried it, let me as-
sure you that writing parallel code is
a fi endishly diffi cult task. First, you
have to battle against your conscious
thought processes, which are sequen-
tial. Whether we write a cookbook or
an aircraft checklist, we think in steps
that execute in sequence. (Sometimes
forever, as instructed on my shampoo
bottle: “lather, rinse, repeat.”) Second,
even if you succeed in devising a scheme
to split a problem among many cores,
you’ll fi nd that the total speedup is
typically much less than you expected.
This happens because, as Gene Amdahl

stated, the total speedup is limited by
the sequential fraction of your program,
which typically includes many synchro-
nization tasks. Finally, it’s very easy to
mess up the synchronization between
the multiple elements. Race conditions,
deadlocks, and livelocks are only some
of the bugs that show up when you try
to put multiple cores to work.

The Road Ahead
You’ll get a chance to appreciate all
these problems if you program for
multiple cores the hard way, by ex-
plicitly using multiple threads or even
a higher-level API, such as OpenMP.
An alternative approach involves using
a programming language that can eas-
ily exploit multiple cores. Functional
programming languages have an edge
here because the building blocks of
the programs you write in don’t step
on each other’s toes. If you’re famil-
iar with Java, you can try switching
to Scala, which adds support for func-
tional constructs to Java’s framework.
Or you might decide to go all the way
and use a pure functional language,
such as Haskell. This might make sense
if you’re starting from scratch and your
system performs heavy data processing
with little interaction. If your work is
tied to existing APIs, try a functional
language tied to a popular framework,
like Clojure (JVM) or F# (.NET). And
since you’re switching to a new pro-
gramming language, you might as well
try Erlang, which was explicitly de-
signed to support concurrency.

Yet, the choice between using a
treacherous API and learning a new
programming paradigm or language is
hardly appetizing. Fortunately, there’s a
third way. It involves faking your appli-
cation’s multicore-handling dexterity by
handing over this responsibility to other
software. As with all conjuring tricks, it
isn’t always possible to pull this off, but
when you can, the results are spectacu-
lar. With little effort (and some cash),
you can achieve remarkable speedups.

Multiple Processes
At the highest level, it’s easy to put
multiple cores to work if your applica-
tion serves Web requests or dishes out
SQL statements. Web application serv-
ers divide their work into threads or
processes and thereby exploit all pro-
cessing cores at their disposal. The only
thing you need to do is to make your
application run within the application
server’s framework, such as Java EE.
The other easy case involves having a
commercial relational database man-
agement system handle your SQL que-
ries. The query optimization engine of
such systems often fi nds ways to split
a query among all available cores—for
instance, each WHERE clause fi ltering a
table can be assigned to a separate core.
Under this scenario, your main respon-
sibility is to let the database do as much
of your work as possible. Never write
explicit procedural code for what you
can express in SQL statements.

TOOLS OF THE TRADE

…continued on p. 95

Post your comments online
by visiting the column’s blog:

www.spinellis.gr/tools

	 SEPTEMBER/OCTOBER 2011 | IEEE SOFTWARE � 95

TOOLS OF THE TRADE

Another high-level way to utilize
multiple cores is to let the operating sys-
tem do it for you by splitting your pro-
cessing among independent processes.
Your application might match the pipes-
and-filters architecture, which has one
process generating the output that the
next one will consume (see “Working
with Unix Tools,” IEEE Software, vol.
22, no. 6, 2005, pp. 9–11). The pipeline
syntax, popularized by the Unix shell,
lets you painlessly join multiple pro-
cesses together in a series, without hav-
ing to think about allocating your work
among the cores. Any modern operating
system worth its salt will do this auto-
matically for you. Let’s say you want to
change a file’s compression format from
bzip2 into gzip. By running the pipeline

 bzip2 -dc file.bz2 | gzip -c >file.gz

the decompression program bzip2 will
run concurrently with the compres-
sion program gzip. This puts my lap-
top’s two-core CPU to work with a
utilization of around 65 percent. In
one instance, the 34 percent speedup
over a sequential execution shaved off
41 seconds from the conversion of a
0.5-Gbyte file.

If a process will work sequentially
through some discrete data chunks
(say, files, lines, or other records) then
you can easily split the work among
multiple cores using GNU parallel. All
you do is feed your data chunks into it,
and it runs as many jobs as needed to
keep your CPU 100 percent busy. For
instance, if you want to create thumb-
nails from your camera pictures, you’d
invoke the JPEG decompression and
compression programs through the
parallel command as follows:

ls *.jpg | parallel ‘djpeg -scale 1/16 {} | cjpeg
>thumb/{}’

(You can also achieve this by using the
more common Unix xargs -P command.)
On my laptop, this shrank the time

needed to process 266 photos from 1
minute to 36 seconds. If your input is in
one large file, parallel can split it among
cores as needed. As an example, I ran
the following command, which parsed
a 1.1-Gbyte Web server log to print
the client’s software, on an eight-core
machine:

parallel --pipe print_user_agent <access_log

With parallel, the command executed
in 22 seconds, versus the 1 minute 15
seconds of the serial version, or 3.4
times faster.

Unfortunately, we can’t model all
processing tasks as linear processes
that can be run as pipelines or as inde-
pendent processes in parallel. In many
cases, the various steps have dependen-
cies. For us developers, the most famil-
iar case is the building of software: to
link object files, you need to compile
them first. Other examples include the
production of digital media, such as
books and films, and also many data
analysis tasks. In such cases, you can
profit by specifying the dependencies
between the various files and the ac-
tions required to build one from the
other as a Makefile that the Unix make tool
can process. Modern versions of make
accept a -j argument, which instructs
the tool to run many jobs in parallel as
long as their dependencies allow it.

And Multiple Threads
The parallel command works by apply-
ing a process on chunks of data. You
can do the same trick within your ap-
plication by employing the map-reduce
and filter-reduce techniques. These al-
low you to apply a function on the ele-
ments of a container (such as a vector)
to either change each one of them (map)
or select some of them (filter). You can
then also use another function to re-
duce the results into a single element.
If the function is at least moderately ex-
pensive, this operation can be profitably
split through application-level threads

among multiple cores. (Google uses the
same idea at a massively larger scale
to index the Web.) As an example, if
you were reimplementing PowerPoint,
you could code the slide-sorter view by
mapping each image into a thumbnail
and then reducing all thumbnails into a
single image. The QtConcurrent C++ li-
brary has functions that perform all the
tasks I’ve described. The only thing you
need to do is to use a container compat-
ible with QtConcurrent and write the
map, filter, or reduce functions.

M any common, parallelizable,
heavy-processing tasks are
available in libraries hand-

tuned to exploit the capabilities of mul-
ticore CPUs. Processor vendors, includ-
ing AMD and Intel, offer libraries with
functions covering audio and video en-
coding and decoding; image, speech,
and general signal processing; cryp-
tography; compression; and render-
ing. More specialized libraries are also
available—for example, the NAG Nu-
merical Components Library for SMP
and multicore provides parallelized im-
plementations of numerical computing
and statistical algorithms. If you can
express your problem in terms of, say,
matrix operations (that’s the case for
a surprising variety of problems), then
your application’s efficiency will benefit
simply by linking it to the library.

As you can see, although writing
genuine parallel code is difficult, faking
it effectively can be quite easy.

DIOMIDIS SPINELLIS is a professor in the Depart-
ment of Management Science and Technology at
the Athens University of Economics and Business
and the author of Code Quality: The Open Source
Perspective (Addison-Wesley, 2006). Contact him at
dds@aueb.gr.

…continued from p. 96

Selected CS articles and columns
are also available for free at
http://ComputingNow.computer.org.

