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Faking It
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THIS COLUMN IS about a tool we no 
longer have: the continuous rise of CPU 
clock frequencies. We were enjoying 
this trend for decades, but in the past 
few years, progress stalled. CPUs are 
no longer getting faster because their 
makers can’t handle the heat of faster-
switching transistors. Furthermore, in-
creasing the CPU’s sophistication to 
execute our instructions more cleverly 
has hit the law of diminishing returns. 
Consequently, CPU manufacturers now 
package the constantly increasing num-
ber of transistors they can fi t onto a 
chip into multiple cores—processing el-
ements—and then ask us developers to 
put the cores to good use.

If you haven’t tried it, let me as-
sure you that writing parallel code is 
a fi endishly diffi cult task. First, you 
have to battle against your conscious 
thought processes, which are sequen-
tial. Whether we write a cookbook or 
an aircraft checklist, we think in steps 
that execute in sequence. (Sometimes 
forever, as instructed on my shampoo 
bottle: “lather, rinse, repeat.”) Second, 
even if you succeed in devising a scheme 
to split a problem among many cores, 
you’ll fi nd that the total speedup is 
typically much less than you expected. 
This happens because, as Gene Amdahl 

stated, the total speedup is limited by 
the sequential fraction of your program, 
which typically includes many synchro-
nization tasks. Finally, it’s very easy to 
mess up the synchronization between 
the multiple elements. Race conditions, 
deadlocks, and livelocks are only some 
of the bugs that show up when you try 
to put multiple cores to work.

The Road Ahead
You’ll get a chance to appreciate all 
these problems if you program for 
multiple cores the hard way, by ex-
plicitly using multiple threads or even 
a higher-level API, such as OpenMP. 
An alternative approach involves using 
a programming language that can eas-
ily exploit multiple cores. Functional 
programming languages have an edge 
here because the building blocks of 
the programs you write in don’t step 
on each other’s toes. If you’re famil-
iar with Java, you can try switching 
to Scala, which adds support for func-
tional constructs to Java’s framework. 
Or you might decide to go all the way 
and use a pure functional language, 
such as Haskell. This might make sense 
if you’re starting from scratch and your 
system performs heavy data processing 
with little interaction. If your work is 
tied to existing APIs, try a functional 
language tied to a popular framework, 
like Clojure (JVM) or F# (.NET). And 
since you’re switching to a new pro-
gramming language, you might as well 
try Erlang, which was explicitly de-
signed to support concurrency.

Yet, the choice between using a 
treacherous API and learning a new 
programming paradigm or language is 
hardly appetizing. Fortunately, there’s a 
third way. It involves faking your appli-
cation’s multicore-handling dexterity by 
handing over this responsibility to other 
software. As with all conjuring tricks, it 
isn’t always possible to pull this off, but 
when you can, the results are spectacu-
lar. With little effort (and some cash), 
you can achieve remarkable speedups.

Multiple Processes
At the highest level, it’s easy to put 
multiple cores to work if your applica-
tion serves Web requests or dishes out 
SQL statements. Web application serv-
ers divide their work into threads or 
processes and thereby exploit all pro-
cessing cores at their disposal. The only 
thing you need to do is to make your 
application run within the application 
server’s framework, such as Java EE. 
The other easy case involves having a 
commercial relational database man-
agement system handle your SQL que-
ries. The query optimization engine of 
such systems often fi nds ways to split 
a query among all available cores—for 
instance, each WHERE clause fi ltering a 
table can be assigned to a separate core. 
Under this scenario, your main respon-
sibility is to let the database do as much 
of your work as possible. Never write 
explicit procedural code for what you 
can express in SQL statements.
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Another high-level way to utilize 
multiple cores is to let the operating sys-
tem do it for you by splitting your pro-
cessing among independent processes. 
Your application might match the pipes-
and-filters architecture, which has one 
process generating the output that the 
next one will consume (see “Working 
with Unix Tools,” IEEE Software, vol. 
22, no. 6, 2005, pp. 9–11). The pipeline 
syntax, popularized by the Unix shell, 
lets you painlessly join multiple pro-
cesses together in a series, without hav-
ing to think about allocating your work 
among the cores. Any modern operating 
system worth its salt will do this auto-
matically for you. Let’s say you want to 
change a file’s compression format from 
bzip2 into gzip. By running the pipeline

 bzip2 -dc file.bz2 | gzip -c >file.gz 

the decompression program bzip2 will 
run concurrently with the compres-
sion program gzip. This puts my lap-
top’s two-core CPU to work with a 
utilization of around 65 percent. In 
one instance, the 34 percent speedup 
over a sequential execution shaved off 
41 seconds from the conversion of a 
0.5-Gbyte file.

If a process will work sequentially 
through some discrete data chunks 
(say, files, lines, or other records) then 
you can easily split the work among 
multiple cores using GNU parallel. All 
you do is feed your data chunks into it, 
and it runs as many jobs as needed to 
keep your CPU 100 percent busy. For 
instance, if you want to create thumb-
nails from your camera pictures, you’d 
invoke the JPEG decompression and 
compression programs through the 
parallel command as follows:

ls *.jpg | parallel ‘djpeg -scale 1/16 {} | cjpeg 
>thumb/{}’

(You can also achieve this by using the 
more common Unix xargs -P command.) 
On my laptop, this shrank the time 

needed to process 266 photos from 1 
minute to 36 seconds. If your input is in 
one large file, parallel can split it among 
cores as needed. As an example, I ran 
the following command, which parsed 
a 1.1-Gbyte Web server log to print 
the client’s software, on an eight-core 
machine:

parallel --pipe print_user_agent <access_log

With parallel, the command executed 
in 22 seconds, versus the 1 minute 15 
seconds of the serial version, or 3.4 
times faster. 

Unfortunately, we can’t model all 
processing tasks as linear processes 
that can be run as pipelines or as inde-
pendent processes in parallel. In many 
cases, the various steps have dependen-
cies. For us developers, the most famil-
iar case is the building of software: to 
link object files, you need to compile 
them first. Other examples include the 
production of digital media, such as 
books and films, and also many data 
analysis tasks. In such cases, you can 
profit by specifying the dependencies 
between the various files and the ac-
tions required to build one from the 
other as a Makefile that the Unix make tool 
can process. Modern versions of make 
accept a -j argument, which instructs 
the tool to run many jobs in parallel as 
long as their dependencies allow it.

And Multiple Threads
The parallel command works by apply-
ing a process on chunks of data. You 
can do the same trick within your ap-
plication by employing the map-reduce 
and filter-reduce techniques. These al-
low you to apply a function on the ele-
ments of a container (such as a vector) 
to either change each one of them (map) 
or select some of them (filter). You can 
then also use another function to re-
duce the results into a single element. 
If the function is at least moderately ex-
pensive, this operation can be profitably 
split through application-level threads 

among multiple cores. (Google uses the 
same idea at a massively larger scale 
to index the Web.) As an example, if 
you were reimplementing PowerPoint, 
you could code the slide-sorter view by 
mapping each image into a thumbnail 
and then reducing all thumbnails into a 
single image. The QtConcurrent C++ li-
brary has functions that perform all the 
tasks I’ve described. The only thing you 
need to do is to use a container compat-
ible with QtConcurrent and write the 
map, filter, or reduce functions.

M any common, parallelizable, 
heavy-processing tasks are 
available in libraries hand-

tuned to exploit the capabilities of mul-
ticore CPUs. Processor vendors, includ-
ing AMD and Intel, offer libraries with 
functions covering audio and video en-
coding and decoding; image, speech, 
and general signal processing; cryp-
tography; compression; and render-
ing. More specialized libraries are also 
available—for example, the NAG Nu-
merical Components Library for SMP 
and multicore provides parallelized im-
plementations of numerical computing 
and statistical algorithms. If you can 
express your problem in terms of, say, 
matrix operations (that’s the case for 
a surprising variety of problems), then 
your application’s efficiency will benefit 
simply by linking it to the library. 

As you can see, although writing 
genuine parallel code is difficult, faking 
it effectively can be quite easy.
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