
96 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIET Y 074 0 -74 5 9 /11/ $ 2 6 . 0 0 © 2 011 I E E E

TOOLS OF THE TRADE
Editor: Diomidis Spinellis
Athens University of Economics
and Business, dds@aueb.gr

Agility Drivers
Diomidis Spinellis

When the facts change, I change my mind. What do you do, sir? — John Maynard Keynes

A MANAGEMENT PRACTICE is ma-
ture when even government bureaucra-
cies decide to adopt it. The March 2011
publication of the UK’s information
and communications technology strat-
egy marks this moment by advocating
that “the application of agile ICT de-
livery methods [...] will improve gov-
ernment’s capability to deliver projects
successfully and realise benefi ts faster”
(www.cabinetoffice.gov.uk/content/
government-ict-strategy). This begs a
question: Were we misguided in the
decades when we advocated stringent
control of requirements and a tightly
milestone-driven development process?
Interestingly, no—we were right then,
and we’re right now. Things have
changed, which is why we can today
smugly apply agile practices and reap
impressive dividends.

Numerous new factors drive agil-
ity by increasing our productivity. Our
growing ability to swiftly put together
sophisticated software affords us the
luxury to listen to our customers, to try
out new things, to collaborate across
formal boundaries, to make mistakes, to
redesign as we move along—in short, to
be agile. Knowing these factors helps us
realize when we can afford to be agile
and when not. (Hint: agile development

of a plane’s fl ight control software from
the ground up is still not a good idea.)

Technology
On the technological front, two key
drivers come from the system software
we can use: the operating system and
database management systems. Al-
though I admire the conceptual clarity
and simplicity of 1970s-era Unix, the
truth is that a modern operating sys-
tem distribution offers many facilities
that transform past major projects into
a weekend job. These facilities include
standardized networking, interprocess
communication, graphical user inter-
face support, sophisticated typeface
and 3D rendering, and load balancing
across many CPUs. Database manage-
ment systems (perhaps thankfully) have
not advanced as much on the function-
ality they offer, but they have become
ubiquitous. If you’re carrying a smart-
phone, you probably have one or more
relational database management sys-
tems (RDBMSs) running inside your
pocket. Therefore, if a program re-
quires structured access to persistent
data, it can readily call a database; de-
velopers no longer need to waste time
laboriously crafting bespoke data for-
mats and access methods.

One level up come libraries. Gone
are the days when each self-respecting
program contained one or more sorting
subroutines and other “utility” func-
tions. Now the Java platform comes
with no less than 3,776 classes and inter-
faces. From an AbstractAnnotationValueVisitor

to a ZipOutputStream, it’s all there. Other
platforms, from Perl to .NET, are simi-
larly feature-rich, making many soft-
ware development tasks a simple mat-
ter of gluing together existing classes.
If a class isn’t part of the platform, it’s
likely to be available as an add-on com-
ponent. If the task at hand requires a
large dataset (say, the Earth’s map)
or relies on constantly changing facts
(think fl ight information), someone will
have probably developed a correspond-
ing Web service we can use.

This brings me to application in-
teroperability. After a few false starts
(remember DCOM and Corba?) we
seem to have sorted out how one ap-
plication can readily communicate
with another when they’re a continent
apart. Without laborious prearrange-
ments, the Internet and RESTful inter-
faces provide us hassle-free access to
data, from the movement of stocks to
that of tectonic plates. This paradigm
is so prevalent that public-facing ap-
plications failing to provide a Web ser-
vice interface are perceived as crippled.
Libraries (again) make using these ser-
vices a joy. With less than a screenful of
code, I can obtain a book’s cover image
from Amazon.com, send out a tweet to
thousands of readers, and even use a
SOAP interface.

A standardized presentation layer
for our applications is also slowly
evolving. While Ajax is by no means
a perfect application development

TOOLS OF THE TRADE

…continued on p. 95

Post your comments online
by visiting the column’s blog:

www.spinellis.gr/tools

	 JULY/AUGUST 2011 | IEEE SOFTWARE � 95

TOOLS OF THE TRADE

framework, it offers a neat way to run
applications from any desktop, and the
establishment of HTML5 is likely to
improve things even further.

Programming languages have kept
pace with our requirements, providing
impressive features that used to be the
subject of academic research—threads,
nimble type systems, duck typing, mod-
ules, metaprogramming, and support
for object-oriented and functional pro-
gramming are only some of the goodies
that let us churn out more sophisticated
and powerful code each day. Further
pushing the productivity envelope are
scripting languages, which allow us to
express in a couple of lines what used
to be a student’s final-year project.

But all these impressive technologies
I’ve outlined here come at a cost. They
require resources to develop, effort to
master, muscle to run, and patience to
endure their (inevitable) shortfalls. Yet
even in this regard, we’re blessed with
many countervailing forces.

CPU power clock rates and mem-
ory capacities have increased by many
orders of magnitude. The first IBM
PC came with a 4.77-MHz CPU, a
360-Kbyte floppy disk, and 64 Kbytes
of RAM. During the past decade, hav-
ing satisfied the needs of the most de-
manding office worker, the resources
available on a modern desktop now
provide us the power to run all the agil-
ity-enabling technologies I’ve outlined
and also the tools to conquer their com-
plexity. These include IDEs that provide
refactoring support and online help for
all methods of Java’s 3776 classes, opti-
mizing compilers and runtime systems
that make our readable code run ef-
ficiently, unit-testing frameworks that
take the fear out of refactoring, light
markup methods like Javadoc that fi-
nally materialize literate programming,
and languages with an interactive top
level that promote experimentation and
bottom-up development. Tools such as
wikis, instant messaging applications,
version control systems, and bug track-

ers smooth the collaboration with col-
leagues across the hall or around the
world. In addition, various cloud plat-
forms allow the rapid and scalable de-
ployment of user applications and de-
veloper facilities at a reasonable cost.

... and the Environment
Technology isn’t the only force driv-
ing agile development practices. So-
cial factors are equally important.
Software developers are no longer re-
trained mathematicians or physicists,
but computer science graduates who
are also increasingly participating in
cross-disciplinary programs. It’s only
natural to expect more from such peo-
ple, including the ability to closely col-
laborate with clients on solutions that
address their real needs. Changes in
the management culture, with flatter
hierarchies, less formal reporting, and
emphasis on teamwork, also help shift
the software project management focus
from the milestone-based handover of
responsibility into collaboration with
colleagues, in-house business and mar-
keting departments, and customers.

Moreover, developers can tap
into a variety of resources for help.
Programming-by-googling is becoming
the standard way of writing code as de-
velopers use the Web to find code ex-
amples, suggestions for handling cryp-
tic error messages, peer advice from
professional forums, and, most im-
portantly, open source code. This last
resource is an agility enabler through
the vast number of readily accessible,
useful components coupled with their
(sometimes deceptively) hassle-free pro-
curement and licensing. Do you want
to add PDF generation or speech output
to your application? You can download
and link such components to your code
in a matter of minutes.

Then come two mutually opposing
forces. On the one hand, the ubiquitous
availability of user-friendly, polished,
and versatile consumer-oriented IT ap-
plications has increased the expecta-

tions of all users. They want their ERP
to be as fast as Google’s search and its
interface as intuitive as their iPhone’s.
That’s a tall order for a traditional de-
velopment method and a clear call for
agility. On the other hand, these and
other consumer applications are lower-
ing users’ expectations regarding fea-
tures and reliability. Millions are dis-
covering that sending 140-character
messages over a platform that occasion-
ally overloads (indicated by a whale
lifted aloft by birds) is a perfectly ac-
ceptable, even addictive, way to com-
municate. Agile practices are ideal for
swiftly delivering such good-enough so-
lutions in an environment that can tol-
erate the occasional failure. Finally, the
ubiquitous availability of IT infrastruc-
tures makes the scale of today’s de-
ployments considerably larger. IT sup-
port that used to target accounting and
management is today covering all the
organization’s employees and custom-
ers. This increases the risk of centrally
planned, rigidly executed projects, fur-
ther driving the need for agility.

I ’m sure that by now you’re con-
vinced that the landscape of mod-
ern software development has

changed vastly over the years in ways
we haven’t yet fully appreciated. It’s
therefore natural to adjust the way we
develop software. Where agility drivers
are present, it’s a shame to preserve the
status quo. Realizing that better out-
comes are possible, we must adjust our
development processes, demand more
from our software suppliers, and de-
velop in-house capacity to organically
grow applications and services that will
delight and even captivate our users
and customers.

DIOMIDIS SPINELLIS is a professor in the Depart-
ment of Management Science and Technology at
the Athens University of Economics and Business.
Currently he is serving as the Secretary General
responsible for information systems at the Greek
Ministry of Finance. Contact him at dds@aueb.gr.

…continued from p. 96

