
96 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIET Y 074 0 -74 5 9 /11/ $ 2 6 . 0 0 © 2 011 I E E E

TOOLS OF THE TRADE
Editor: Diomidis Spinellis
Athens University of Economics
and Business, dds@aueb.gr

Choosing and Using
Open Source Components
Diomidis Spinellis

THE DEVELOPERS OF the SQLite
open source database engine estimate
that it’s deployed in roughly half a bil-
lion systems around the world (users
include Airbus, Google, and Skype).
Think of the hundreds of thousands of
open source components, just one click
away from you. If you know how to
choose and use them effectively, your
project can benefi t mightily.

Choosing
Say you’re looking for a library to eval-
uate regular expressions, an embed-
dable scripting language, or an HTML
rendering engine, but your search re-
turns a dozen candidates. How do you
choose among them? It’s actually quite
easy: all you have to do is apply a few
simple criteria associated with the soft-

ware’s legal status, fi tness, and quality.
Start by considering the open source

software’s license. Some licenses, like
the BSD, Apache, and MIT ones, are
quite liberal and basically let you use
the software any way you want as long
as you attribute the original developer.
Others, like the GNU licenses, play well

with other software licensed as open
source but make life diffi cult for propri-
etary offerings. This is especially true if
you want to distribute your work to oth-
ers as a shrink-wrapped package, such
as Microsoft Offi ce, or as an embedded
software product, like a set-top box. In
such cases, the only GNU-licensed com-
ponents you can easily use are unmodi-
fi ed dynamically linked libraries li-
censed under the so-called GNU Lesser
General Public License (LGPL). You get
considerable more leeway with GNU-
licensed software if you don’t distrib-
ute a product but instead offer a service
(like Google) or simply use your system
privately within your organization.

Next, you need to decide whether
you’ll adopt the component as a pre-
compiled binary or if you’re going to

build it from source. Precompiled bina-
ries shield you from the complexity of
building the software, which includes
obtaining and maintaining the appro-
priate tools, libraries, and confi gura-
tion settings. If you build from source,
you buy insurance that no matter what
happens with the software’s upstream

development, you have the basic capa-
bilities to proceed on your own. In this
case, additional factors will affect your
choice. What tools and libraries are re-
quired to build the software? Is it easy
to obtain and maintain them? Are they
compatible with the rest of your infra-
structure? Is your team comfortable
with the component’s technology, such
as its programming language?

Many components are often avail-
able in binary form, but only for widely
used platforms, such as Windows or
Linux. Building from source lets you
port the component to your own plat-
form; if your platform is unsupported,
you have to consider the cost of port-
ing. Porting from Unix-like platforms,
such as AIX, *BSD, GNU/Linux, Mac
OS X, and Solaris, is generally easy. But
porting from Windows can be tricky, as
is the porting of native GUI applica-
tions between proprietary incompatible
platforms. Components written in Java
or a widely available scripting language
travel well—those tied closely to a par-
ticular platform spell trouble.

Having narrowed down your search
to components you can actually use,
your next step involves a beauty contest
to select the best one. There’s no need
to embark on sophisticated research;
the quality differences between open
source components are either stark
enough to be obvious or small and
practically irrelevant. Ask colleagues

TOOLS OF THE TRADE

…continued on p. 95

Will you depend
on the whims of an autocrat?

	 MAY/JUNE 2011 | IEEE SOFTWARE � 95

TOOLS OF THE TRADE

whose opinion you respect. Work your
way down the candidate list by popu-
larity, which you can easily determine
from question and answer sites, the
number of downloads, or Google’s
search results. Start by looking at the
project’s documentation—it’s a fast
and easy way to separate the wheat
from the chaff. Is there a user man-
ual? Is it complete, readable, and well-
organized? Can you find technical doc-
umentation? Will it help you build and
modify the code? Some superb open
source products come only with medio-
cre documentation, but I’ve yet to see
a well-documented project that wasn’t
outstanding in all its aspects.

Now look at the project’s heartbeat,
its release history. How often do new re-
leases come out? How recent is the last
one? Does the project offer a separate
cutting-edge and stable release cycle? A
project that appears dormant for years
is a bad sign: its developers might have
lost interest and abandoned it. Thus,
when you need an update—for in-
stance, a new version of your platform
requires one—you’ll be unlikely to get
one from the project’s developers. While
there, also read the descriptions for each
release. Do developers fix existing bugs,
or are they just piling on new flashy fea-
tures? Do they respect their user base,
or do they break backward compatibil-
ity with each new release? Is the proj-
ect’s direction compatible with yours?

Your next stop involves the family
you’re marrying into, the project’s com-
munity. This is important because for
many open source projects, the com-
munity could be your first and only
line of support. Look at the project’s
contributor acknowledgments, forums,
mailing lists, issue tracker, wiki, and
commit log. Is there a real community
behind the project, or will you tie the
knot with a one-man show? Is the com-
munity working together as a team or
constantly fighting? Do developers co-
operate under a well-defined demo-
cratic process, or will you depend on

the whims of an autocrat? The project’s
users are also important. Are they sup-
portive, answering questions, and go-
ing out of their way to make newcom-
ers feel welcome, or are they insular,
arrogant, and rude?

If the code you’re looking for is go-
ing to be a strategic part of your offer-
ing, you should also examine the proj-
ect’s openness—the ease of pushing
upstream the changes that you’ve made
locally. Obstacles here mean you’ll face
the unpalatable choice between reinte-
grating your changes with each new re-
lease of the project or staying behind in
its release cycle. Is there a process for
your team’s developers to acquire com-
mit rights to the project’s code base?
Many firms establish a deep relation-
ship with an open source project they
depend on by having some of their en-
gineers become part of the project’s de-
velopment team.

If a component passes muster with
all the preceding simple tests, the fi-
nal step involves looking at the actual
code. Does it follow a consistent style?
Is it well commented? Does it use de-
scriptive names for identifiers and files?
Can it be easily built and installed? Is
the API well-designed, intuitive, and
easy to use? Pick parts of the code you
might need to adapt, and see how easily
you can understand them. If you find
the code too complex, chances are that
the problem lies with the code, not with
your lack of familiarity.

Using
Once you’ve singled out the component
you wish to adopt, you need to decide
how to reuse it. The choices range from
copying a few lines into your project’s
source code base to having a complete
system running on a separate box in the
datacenter. In between lie the options
of reusing complete classes or files, us-
ing a prebuilt library, or having your
code communicate with a separately
running process. Focus on the project’s
recommended choice, but if you face

trouble, explore the other possibilities.
Although it’s tempting, try to avoid

modifying the open source code to fit
your needs; you don’t want to end up
maintaining another large component
on your own. Instead, satisfy your re-
quirements by tweaking configuration
settings or by adapting your own code.
If you can’t avoid modifying the proj-
ect’s software, keep changes to a mini-
mum, keep them localized, have them
follow the project’s code style, and con-
tribute them back to the project. Work
through your version control system
(you use one, right?), and import each
new release of the open source project
on a separate vendor branch. This al-
lows you to easily reintegrate your local
changes with each new release. Then
plan how you’re going to track the open
source project’s progress. At the very
least, you should handle security up-
dates in the same way you handle your
own. Finally, decide whether you’ll
track a project’s stable branch or a cut-
ting-edge one and the process through
which you’ll stay current.

W alking down the aisle with
an open source compo-
nent is simple, and, if you

follow the rules, it will be the beginning
of a long, prosperous relationship.

DIOMIDIS SPINELLIS is a professor in the Depart-
ment of Management Science and Technology at
the Athens University of Economics and Business
and the author of Code Quality: The Open Source
Perspective (Addison-Wesley, 2006). Contact him at
dds@aueb.gr.

…continued from p. 96

Post your comments online
by visiting the column’s blog:

www.spinellis.gr/tools

