
96 iEEE SoftwarE // pUBliShED BY thE iEEE coMpUtEr SociEt Y 074 0 -74 5 9 /11/ $ 2 6 . 0 0 © 2 011 I E E E

Tools of The Trade
Editor: Diomidis Spinellis
Athens University of Economics and Business
dds@aueb.gr

elytS edoC
Diomidis Spinellis

sURe, YoU CAn write English right
to left. You can also write software
code to look like a disc or even a train
(see www.ioccc.org/1988/westley.c
and 1986/marshall.c). However, you
can’t then complain when you have
to fi ght with your magazine’s editor
or production staff about accepting
your column’s title for publication, or
if your colleagues refuse to touch your
code with a 10-foot pole. Writing code
in a readable and consistent style is dif-
fi cult, uninteresting, tedious, underap-
preciated, and, extremely important.

Why
Our code’s style encompasses format-
ting, things like indentation and spac-

ing, commenting, program element
order, and identifi er names. Although
most style choices won’t affect the
compiled code or the program’s run-
time behavior, style is a key aspect of
the code’s maintainability. And be-
cause we write code once, but over its
life, we read it many times, it pays to

keep our code in a style that’s easy to
analyze, comprehend, review, test, and
change.

Expertly styled code is more expres-
sive because, like a master’s painting,
it communicates at many levels. In-
dentation and blank lines delineate the
code’s structure. A well-written com-
ment might indicate how it works. At
the statement and expression level,
spacing can group together related ele-
ments. Aptly named identifi ers suggest
the meaning of methods and variables,
without forcing us to look them up.
Similar elements that are placed in an
orderly sequence allow us to quickly
check for missing entries and insert
new ones.

Many levels of communication en-
gage more parts of our brain, making
us more productive. For instance, it
might take us a few seconds to parse
some deeply nested if statements, but
the pattern-matching part of our brain
will instantaneously recognize the
nesting through its indentation.

Other times, we might visually dis-
tinguish the parts of a long, repeti-
tive expression or statement sequence,
allowing our mind to tune on the
rhythm, follow the logic, and rapidly
detect discrepancies. Similarly, when
we write some code or design patterns
in their commonly used style, our col-
leagues can immediately recognize
their function without wasting time
to analyze them. The fi rst time I saw
a linked list iteration in C, I rolled my
eyes, but now this loop construct in
its standard form appears to me just
as friendly as Java’s iterator. However,
any creative deviation from the com-
monly used style would bring me back
to eye rolling, and nobody wants to
see that.

The naming of identifi ers is another
case where programming style can
make a big difference. A meaningful
name helps you comprehend the iden-
tifi er’s function. If it’s accurate, you’ll
avoid misunderstandings, and if it’s
also concise, you’ll avoid useless typ-
ing. If it follows an appropriate nam-
ing convention, you’ll immediately re-
alize its role (for instance, is it a class
or a variable name?). And, most impor-
tantly, if all names in a program con-
sistently follow the same conventions,
you’ll also be able to work in reverse—
guess an identifi er’s name from its per-
ceived function!

Tools of The Trade

…continued on p. 95

I’ve yet to see a top programmer
who isn’t meticulous about the code’s
style, or polished code that doesn’t
form part of an remarkable product.

 March/april 2011 \\ iEEE SoftwarE 95

Tools of The Trade

In many style issues, style guidelines
offer you no choice—you simply follow
the rote. Yet, these restrictions are as
important as clever creative choices of
names and layout schemes. As our po-
ets realized centuries ago, form liber-
ates. Once you start following specific
code guidelines, they put on autopilot
many trivial but agonizing decisions,
such as how to align braces or breakup
an overly long line. Then, when you
write your code, you’re not distracted
by useless style decisions; when you
read it, you aren’t put off by inconsis-
tencies or weird formatting choices
popping out of the blue. The placement
of all the code’s nonessential elements,
such as spaces in expressions, becomes
boringly predictable. Note that mean-
ingless style deviations are simply sig-
nals in the code that carry no data.
Information theory has a specific term
for such signals: noise.

Noise aside, code style is also a
powerful signaling mechanism. We hu-
mans often jump to conclusions based
on proxy signals. We readily associate
a bank’s granite building with stabil-
ity and trustworthiness, an aerody-
namic car body with a powerful en-
gine, and a person’s symmetric features
with reproductive fitness. Similarly,
when I hunt for bugs, I focus more on
the messy code than on the tidy one,
and, more often than not, my instinct
proves right. This skin-deep impres-
sion then moves from the code to the
programmer who wrote the software
and the organization that sponsored it.
Although you might find such conclu-
sions frivolous, let me assure you that,
in practice, they work wonders. I’ve yet
to see a top programmer who isn’t me-
ticulous about the code’s style, or pol-
ished code that doesn’t form part of an
remarkable product.

How
Having seen the many benefits you
can derive from improving your code’s
style, I’m sure you’re wondering how

to go about it. Rule number one is that
you should leave nothing to chance.
Place each symbol in your code delib-
erately, following the code’s design,
formatting guidelines, and your own
conscious decisions. Learn the style
guidelines for each language you use
(these days, you can’t get away with
programming in ad single language)
and apply them religiously. In the be-
ginning, you’ll find that consciously
thinking about formatting while you
code is distracting and slows you down.
Change becomes especially hard when
breaking your personal habits to fol-
low the established custom. However,
you’ll see that in a matter of weeks,
these changes will become second na-
ture to you, your code will shine, and
(on the downside) deviations in other
peoples’ code will begin to annoy you.

If the style guide leaves something
unanswered (say, the way you for-
mat a particular SQL extension that
your system supports), choose an an-
swer, document it, and then stick to
it. A style choice that meshes cleanly
with other style decisions is ideal, but
don’t sweat too much over it. Consis-
tency is more important than particu-
lar choices. For the same reason, when
editing third-party code, don’t im-
pose your own style on it. Derive the
style the rest of the code is using from
nearby fragments and follow suit. Pro-
gramming should be an ego-less team
activity, where, as in chorus, each of us
contributes without being individually
heard.

As with English writing, you can
mightily improve your programming
style by reading. Books show you
what others have to say on the sub-
ject. Look for Brian W. Kernighan and
P.J. Plauger’s classic, The Elements of
Programming Style, study chapters 11,
31, and 32 of Steve McConnell’s Code
Complete, and read cover to cover the
style guidelines for the languages you
use (there are many good online refer-
ences as well as books). More impor-

tantly, read exemplar code written by
organizations or individuals you ad-
mire. Read their code thoughtfully, fo-
cusing just on the style to see how they
handle constructs that puzzle you.

Don’t rely on code-formatting tools
to correct your code after you write it.
First, they lack the judgment needed
to creatively format the most difficult
cases: the ones where good formatting
matters most in order to comprehend
the code. Second, batch reformatting
makes you write messy code, depriv-
ing you the advantage of working with
code that always shines. Finally, mass
reformatting wrecks havoc with ver-
sion control systems, lumping together
functional with formatting changes.
Formatting tools are, however, useful
when you first clean-up your style hab-
its or adopt inconsistently formatted
third-party code.

A month ago, a friend bitterly
complained about code that
looked like a town hit by a

tornado. If you write such code, many
will be grateful if you mend your ways.
And then move on; expert program-
ming entails a lot more than nicely for-
matted code.

DiomiDis spinellis is a professor in the Depart-
ment of Management Science and Technology at
the Athens University of Economics and Business
and the author of Code Quality: The Open Source
Perspective (Addison-Wesley, 2006). Contact him at
dds@aueb.gr.

…continued from p. 96

Post your comments online
by visiting the column’s blog:

www.spinellis.gr/tools

