
82	 I E E E S O F T W A R E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y � 0 74 0 - 74 5 9 / 1 0 / $ 2 6 . 0 0 © 2 0 1 0 I E E E

A
classic Web comic illustrates how idle
Wikipedia browsing can lead us from the
Tacoma Narrows Bridge to Fatal Hilarity
(and worse; see http://xkcd.com/214). The
comic doesn’t show the path leading from
A to B, and finding it is an interesting chal-

lenge—think how you would engineer a system
that could answer such questions. I believe that this

problem and a solution I’ll present
here demonstrate some program-
ming tools and techniques that
will become increasingly impor-
tant in the years to come.

Challenges
Questions whose answer requires
sophisticated processing of huge
datasets come up increasingly of-
ten in our networked, interlinked,

and (increasingly) DNA-sequenced world. Attack-
ing such problems with traditional techniques, such
as loading data into memory for processing or que-
rying a relational database, is cumbersome and inef-
ficient because during recent years, several develop-
ments have conspired to create a perfect storm.

First, dataset sizes that used to be seen only in
high-end scientific computations are turning up all
around us. Facebook has half a billion active us-
ers, Wikipedia’s graph contains 95 million links,
the Netflix Prize competition involved 100 million
movie ratings, Twitter records billions of tweets
each year, and DNA pyrosequencing platforms gen-
erate 40 million nucleotide data in an hour.

All this data must be stored persistently on disk
files, yet the disk-based data structures we currently
employ are often inadequate for running sophisti-
cated algorithms on them. A relational database is

perfect for storing a company’s ledger but falls short
when we need to perform something as simple as
a graph traversal, let alone recommend a movie,
group related friends, or patch together DNA
fragments.

A major stumbling block is performance. The
file systems and databases we use are optimized to
handle sequential retrievals and relational joins but
inadequate when it comes to optimizing data struc-
tures for running more complex algorithms. At best,
some systems let us view our disk-based data as key
value pairs, often forcing us to pay the penalty of a
few system calls for the privilege of each such ac-
cess. Huge datasets, abysmal disk throughput, and
application-specific access patterns require us to op-
timize data access operations in ways that are be-
yond what a relational database or even a noSQL
system can offer. The current situation, where fast
RAM is used to cache and buffer data structures
stored on slow disks, is clearly a case of putting the
cart before the horse.

Technologies
Surprisingly, very few modern languages, libraries,
and applications take advantage of the advances
made in computer architecture and operating sys-
tems during the past three decades. Granted, the de-
signers of those innovations go to extreme lengths
to hide their complexity by maintaining backward
compatibility with older systems. However, the end
result is that, barring CPU speed and memory size
limitations, most of today’s code could run unal-
tered on a 1970s-era PDP-11. Yet we’re now in a po-
sition where we can perform all our processing with
readable and efficient RAM-based algorithms, us-
ing clunky disks and file systems only for their large
capacity and to secure the data’s persistence.

Diomidis Spinellis

Farewell to Disks

tools of the trade
E d i t o r : D i o m i d i s S p i n e l l i s n A t h e n s U n i v e r s i t y o f E c o n o m i c s a n d B u s i n e s s n d d s @ a u e b . g r

	 November/December 2010 I E E E S O F T W A R E � 83

TOOLS OF THE TRADE

Modern 64-bit architectures allow us
to address in RAM all the data our appli-
cation could ever need. Therefore, there’s
no need to maintain separate data struc-
tures on disk. Doing away with disk-based
structures saves us from using expensive
seek and read system calls to access them.
Even better, in RAM, we can use powerful
abstractions, such as objects and pointers,
rather than error-prone, weakly-typed keys
and file offsets.

In addition, memory-mapped files can
secure the persistence of our RAM data
while virtual memory lets us cope with data
sizes larger than the available RAM. Both
are features provided by all modern oper-
ating systems, allowing us to map the con-
tents of an arbitrarily large file into a pro-
cess’s address space. When our program
reads data in that area, it’s paged-in on
demand from the file; when our program
stores something, the RAM’s contents are
(eventually) transferred back to the file. The
processor’s memory management unit and
the operating system’s paging mechanism
cooperate so that all this happens trans-
parently without requiring us to litter our
code with pesky disk read/write operations.
Clever caching algorithms ensure that the
data we most need is available in RAM,
while the rest is stored on the disk.

Current implementations of memory
mapping require us to preallocate all the
space our application might need. Again,
however, this isn’t a problem for modern
operating systems because through sparse-
file implementations they can store effi-
ciently huge empty files. The operating sys-
tem stores on disk only the portions of the
file that are filled with actual data and pro-
vides our application with the illusion that
the rest of the file contains zeroes. For ex-
ample, an empty half-terabyte file occupies
just 4 Kbytes on a Windows NTFS and 28
Kbytes on a Linux ext3 file system.

When we want to share memory-
mapped files among many processes, we
can select between three efficient alterna-
tives. If we can do with read-only access,
the hardware can enforce this constraint,
ensuring that no process cheats. The op-
erating system can also arrange a shared
memory setup, in which all processes can
concurrently view and modify the same
data. A more sophisticated “copy on write”
scheme shares the data among the processes
while providing each one with the illusion

of operating on its unique copy. In this case,
the hardware detects write operations and
the operating system clones the correspond-
ing pages to an area private to the process
that performed the write. Copy-on-write is
an extremely powerful feature that we can
use to create data snapshots and ensure the
data’s consistency.

In Practice
Luckily, modern programming languages
and platforms are powerful enough to ab-
stract the influential technologies I’ve de-
scribed in a way that makes them trans-
parent to the application developer. On the
column’s blog site (www.spinellis.gr/tools),
you’ll find a short program that can store
Wikipedia’s graph on a persistent disk im-
age and then allow you to search for the
shortest path among two entries, thus an-
swering the challenge I described in the in-
troduction. Although the program uses the
disk for persistence and to overcome the
RAM-size limitations of the machine I’m
using, it operates as if the data were tran-
siently stored in RAM. The program’s two
key parts, the loop for storing the graph on
disk and the graph’s breadth-first-search al-
gorithm, don’t contain a single reference to
files or records.

I’ve written the program in C++ using
existing Boost and Standard Template Li-
brary features to provide the functional-
ity I’ve described. This demonstrates that
all the facilities for programming in the
way I advocate in this column are already
available. Specifically, I’m using the Boost.
Interprocess library to create a memory al-

location pool backed by a memory-mapped
file. I’m then passing the pool’s allocator as
a type parameter to a string class used for
storing the node names, a set container that
stores the nodes, and a linked list contain-
ing the edges. This parameterization makes
all the graph’s data reside transparently on
disk. Internally, the containers abstract the
pointers they’re using into an offset-based
implementation so that the backing file can
be mapped on an arbitrary memory address
between successive process invocations. A
Java-based implementation of the approach
I’m describing might require changes to the
underlying virtual machine but would be
even more transparent to the application
programmer.

P rocessing all our data in RAM opens
again many problems that database
systems already solve: the atomicity,

consistency, isolation, and durability prop-
erties of the transactions; the management
of data and its schema using a standardized
language; the portability of data between
diverse architectures and applications; and
the implementation of concurrency, dis-
tributed processing, and ingenious perfor-
mance optimizations. Yet I believe that this
is the right move because it provides us with
a unified programming and performance
model for all our data operations irrespec-
tive of where the data resides. Advanced
programming language features will be us-
able for manipulating all data in a power-
ful and safe manner, while data structures
and optimizations will be directly available
to all programmers. Crucially, implement-
ing RAM-based data structures with good
data locality properties will benefit not only
disk-backed stores but also boost the utili-
zation of the processor’s L1 and L2 caches.

Although I can’t change the way we
handle our data with a two-page column, I
hope I’ve whetted your appetite to consider
a RAM-based approach the next time you
encounter a problem that cries for it.

Diomidis Spinellis is a professor in the Department of
Management Science and Technology at the Athens University
of Economics and Business. Currently, he serves as the Secre-
tary General responsible for information systems at the Greek
Ministry of Finance. Contact him at dds@aueb.gr.

Post your comments online by visiting the column’s
blog: www.spinellis.gr/tools

Barring CPU speed
and memory size
limitations, most

of today’s code could
run unaltered

on a 1970s-era PDP-11.

