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A 
classic Web comic illustrates how idle 
Wikipedia browsing can lead us from the 
Tacoma Narrows Bridge to Fatal Hilarity 
(and worse; see http://xkcd.com/214). The 
comic doesn’t show the path leading from 
A to B, and finding it is an interesting chal-

lenge—think how you would engineer a system 
that could answer such questions. I believe that this 

problem and a solution I’ll present 
here demonstrate some program-
ming tools and techniques that 
will become increasingly impor-
tant in the years to come.

Challenges
Questions whose answer requires 
sophisticated processing of huge 
datasets come up increasingly of-
ten in our networked, interlinked, 

and (increasingly) DNA-sequenced world. Attack-
ing such problems with traditional techniques, such 
as loading data into memory for processing or que-
rying a relational database, is cumbersome and inef-
ficient because during recent years, several develop-
ments have conspired to create a perfect storm.

First, dataset sizes that used to be seen only in 
high-end scientific computations are turning up all 
around us. Facebook has half a billion active us-
ers, Wikipedia’s graph contains 95 million links, 
the Netflix Prize competition involved 100 million 
movie ratings, Twitter records billions of tweets 
each year, and DNA pyrosequencing platforms gen-
erate 40 million nucleotide data in an hour.

All this data must be stored persistently on disk 
files, yet the disk-based data structures we currently 
employ are often inadequate for running sophisti-
cated algorithms on them. A relational database is 

perfect for storing a company’s ledger but falls short 
when we need to perform something as simple as 
a graph traversal, let alone recommend a movie, 
group related friends, or patch together DNA 
fragments.

A major stumbling block is performance. The 
file systems and databases we use are optimized to 
handle sequential retrievals and relational joins but 
inadequate when it comes to optimizing data struc-
tures for running more complex algorithms. At best, 
some systems let us view our disk-based data as key 
value pairs, often forcing us to pay the penalty of a 
few system calls for the privilege of each such ac-
cess. Huge datasets, abysmal disk throughput, and 
application-specific access patterns require us to op-
timize data access operations in ways that are be-
yond what a relational database or even a noSQL 
system can offer. The current situation, where fast 
RAM is used to cache and buffer data structures 
stored on slow disks, is clearly a case of putting the 
cart before the horse.

Technologies
Surprisingly, very few modern languages, libraries, 
and applications take advantage of the advances 
made in computer architecture and operating sys-
tems during the past three decades. Granted, the de-
signers of those innovations go to extreme lengths 
to hide their complexity by maintaining backward 
compatibility with older systems. However, the end 
result is that, barring CPU speed and memory size 
limitations, most of today’s code could run unal-
tered on a 1970s-era PDP-11. Yet we’re now in a po-
sition where we can perform all our processing with 
readable and efficient RAM-based algorithms, us-
ing clunky disks and file systems only for their large 
capacity and to secure the data’s persistence.
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Modern 64-bit architectures allow us 
to address in RAM all the data our appli-
cation could ever need. Therefore, there’s 
no need to maintain separate data struc-
tures on disk. Doing away with disk-based 
structures saves us from using expensive 
seek and read system calls to access them. 
Even better, in RAM, we can use powerful 
abstractions, such as objects and pointers, 
rather than error-prone, weakly-typed keys 
and file offsets.

In addition, memory-mapped files can 
secure the persistence of our RAM data 
while virtual memory lets us cope with data 
sizes larger than the available RAM. Both 
are features provided by all modern oper-
ating systems, allowing us to map the con-
tents of an arbitrarily large file into a pro-
cess’s address space. When our program 
reads data in that area, it’s paged-in on 
demand from the file; when our program 
stores something, the RAM’s contents are 
(eventually) transferred back to the file. The 
processor’s memory management unit and 
the operating system’s paging mechanism 
cooperate so that all this happens trans-
parently without requiring us to litter our 
code with pesky disk read/write operations. 
Clever caching algorithms ensure that the 
data we most need is available in RAM, 
while the rest is stored on the disk.

Current implementations of memory 
mapping require us to preallocate all the 
space our application might need. Again, 
however, this isn’t a problem for modern 
operating systems because through sparse-
file implementations they can store effi-
ciently huge empty files. The operating sys-
tem stores on disk only the portions of the 
file that are filled with actual data and pro-
vides our application with the illusion that 
the rest of the file contains zeroes. For ex-
ample, an empty half-terabyte file occupies 
just 4 Kbytes on a Windows NTFS and 28 
Kbytes on a Linux ext3 file system.

When we want to share memory-
mapped files among many processes, we 
can select between three efficient alterna-
tives. If we can do with read-only access, 
the hardware can enforce this constraint, 
ensuring that no process cheats. The op-
erating system can also arrange a shared 
memory setup, in which all processes can 
concurrently view and modify the same 
data. A more sophisticated “copy on write” 
scheme shares the data among the processes 
while providing each one with the illusion 

of operating on its unique copy. In this case, 
the hardware detects write operations and 
the operating system clones the correspond-
ing pages to an area private to the process 
that performed the write. Copy-on-write is 
an extremely powerful feature that we can 
use to create data snapshots and ensure the 
data’s consistency.

In Practice
Luckily, modern programming languages 
and platforms are powerful enough to ab-
stract the influential technologies I’ve de-
scribed in a way that makes them trans-
parent to the application developer. On the 
column’s blog site (www.spinellis.gr/tools), 
you’ll find a short program that can store 
Wikipedia’s graph on a persistent disk im-
age and then allow you to search for the 
shortest path among two entries, thus an-
swering the challenge I described in the in-
troduction. Although the program uses the 
disk for persistence and to overcome the 
RAM-size limitations of the machine I’m 
using, it operates as if the data were tran-
siently stored in RAM. The program’s two 
key parts, the loop for storing the graph on 
disk and the graph’s breadth-first-search al-
gorithm, don’t contain a single reference to 
files or records.

I’ve written the program in C++ using 
existing Boost and Standard Template Li-
brary features to provide the functional-
ity I’ve described. This demonstrates that 
all the facilities for programming in the 
way I advocate in this column are already 
available. Specifically, I’m using the Boost.
Interprocess library to create a memory al-

location pool backed by a memory-mapped 
file. I’m then passing the pool’s allocator as 
a type parameter to a string class used for 
storing the node names, a set container that 
stores the nodes, and a linked list contain-
ing the edges. This parameterization makes 
all the graph’s data reside transparently on 
disk. Internally, the containers abstract the 
pointers they’re using into an offset-based 
implementation so that the backing file can 
be mapped on an arbitrary memory address 
between successive process invocations. A 
Java-based implementation of the approach 
I’m describing might require changes to the 
underlying virtual machine but would be 
even more transparent to the application 
programmer.

P rocessing all our data in RAM opens 
again many problems that database 
systems already solve: the atomicity, 

consistency, isolation, and durability prop-
erties of the transactions; the management 
of data and its schema using a standardized 
language; the portability of data between 
diverse architectures and applications; and 
the implementation of concurrency, dis-
tributed processing, and ingenious perfor-
mance optimizations. Yet I believe that this 
is the right move because it provides us with 
a unified programming and performance 
model for all our data operations irrespec-
tive of where the data resides. Advanced 
programming language features will be us-
able for manipulating all data in a power-
ful and safe manner, while data structures 
and optimizations will be directly available 
to all programmers. Crucially, implement-
ing RAM-based data structures with good 
data locality properties will benefit not only 
disk-backed stores but also boost the utili-
zation of the processor’s L1 and L2 caches.

Although I can’t change the way we 
handle our data with a two-page column, I 
hope I’ve whetted your appetite to consider 
a RAM-based approach the next time you 
encounter a problem that cries for it.
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