
90	 I E E E S O F T W A R E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y � 0 74 0 - 74 5 9 / 1 0 / $ 2 6 . 0 0 © 2 0 1 0 I E E E

tools of the trade
E d i t o r : D i o m i d i s S p i n e l l i s n A t h e n s U n i v e r s i t y o f E c o n o m i c s a n d B u s i n e s s n d d s @ a u e b . g r

A
mechanical engineer who sees the symbol
 in a diagram will immediately realize
that a feature is specified to be perpen-
dicular to another. In contrast, a software
engineer looking at a diagram’s line end-
ing with the symbol  will at best won-

der whether it denotes aggregation, as in Unified
Modeling Language (UML), a “zero or one” car-

dinality, as in IDEF1X, or some-
thing else invented by a creative
academic. Worse, many develop-
ers will simply scratch their head
in bewilderment.

A standardized and widely
used diagramming notation is a
sign of a profession’s maturity. It
simplifies the life of the diverse
group of people who read the
drawings, it improves the qual-

ity of the drawings, and it benefits the profession
through network effects. Sadly, in the field of soft-
ware engineering we’ve got a long way to travel.
Before writing this column, I examined the dia-
grams printed in the proceedings of the prestigious
International Conference on Software Engineering
and in this magazine. More often than not, the
diagrams employed an ad hoc notation of the au-
thors’ invention.

To improve this sad state of affairs, I propose
that every one of us should make a concerted ef-
fort to use the same graphic notation for draw-
ing all our diagrams. If you don’t think that
this idea is preposterous, hear the next part: I
furthermore propose that for our diagrams we

should adopt the graphic notation techniques of
UML. If you’ve managed to remain calm up to
this point and you’re not yet busily writing an
angry letter to the magazine’s editor, please read
on to see what we’ll gain from standardizing to
a single notation, and then let me explain why
UML isn’t so bad compared to your favorite
alternative.

Immediate Dividends
The prime benefit of standardizing to UML di-
agrams is that we’ll become more effective in
reading and understanding those diagrams. Our
mind is a superb pattern-matching engine. A
standardized notation will quickly embed itself
in our subconscious as patterns that we’ll imme-
diately recognize for their meaning rather than
their shape. As an example, when looking at a
dashed line ending in an open arrow, you’ll read
that as “depends on” in much the same way as
you now read 3.1415 as p. Therefore, over time
we’ll become more proficient in reading UML di-
agrams, and each time we encounter a diagram
we’ll save the time needed to familiarize our-
selves with its notation.

Our diagrams will also be more expressive,
because we’ll be able to use UML’s (some say
excessively) rich set of standardized notations.
In diagrams you’ll find relationships like a de-
pendency, an aggregation, or a realization ex-
pressed using a specific line type and arrow end-
ing, rather than having to second-guess what a
generic arrow actually means. Moreover, by us-
ing predefined shapes we eliminate the legends

Diomidis Spinellis

flowchart, n.: The innumerate misleading the illiterate. —Stan Kelly-Bootle, The Devil’s DP Dictionary

UML Everywhere

	 September/October 2010 I E E E S O F T W A R E � 91

TOOLS OF THE TRADE

that often accompany ad hoc notations,
freeing up space for the actual diagram.
And UML’s size shouldn’t worry us any
more than the richness of the English
vocabulary. As any teenager can tell
you, a few hundred words (or a small
subset of UML) is adequate for most
practical purposes.

Using UML will also benefit us might-
ily when we draw diagrams. First of all,
after a short learning period, we’ll all be
able to concentrate on how our diagrams
can best convey our ideas, rather than on
inventing new notations. Also, by adopt-
ing a diagramming standard, we’ll strive
to improve our expressiveness and clarity
through the best use of UML’s notations
in much the same way as we (should) con-
tinuously try to improve our use of the
English language.

Furthermore, using a rich standard
language like UML forces us to be pre-
cise not only in the way we express our
thoughts in the diagram, but also in
how we think about the problem. Slop-
piness in diagramming notation allows
for shoddy designs. When a randomly
drawn arrow or shape can mean any-
thing, many of us won’t bother to pin
down its precise meaning, and impor-
tant aspects of a design will escape our
attention.

Besides precision, skillful diagram-
ming also drives the essential simplifi-
cation of reality—and thereby abstrac-
tion. This enhances our expressiveness
through a process that the cartoonist
Scott McCloud (in his book Under-
standing Comics: The Invisible Art)
terms “amplification through simplifica-
tion”: omitted details increase the dia-
gram’s applicability.

Moreover, the universal adoption
of UML will elevate our design dia-
grams to a form of literary expression.
In much the same way that Shakespeare
wouldn’t flourish in the age of cave
drawings, with ad hoc notations we de-
prive ourselves of the power of commu-
nicating through a shared, sophisticated
language. And with UML diagrams all
around us—in magazines, conference
presentations, and design proposals—
we could read and learn from a rich
set of examples. It’s one thing to read a
colleague’s first draft of a use-case di-
agram, and another to learn from the

UML diagrams of the Great Masters.

Second-Order Effects
As more people adopt UML diagrams,
network effects will kick in and act as
a virtuous self-reinforcing mechanism.
Increasingly, more of our profession’s
members will be able to understand dia-
grams in much the same way as a build-
ing’s technician can read the installa-
tion’s engineering blueprints. Although
we might demand from an experienced
software engineer to be proficient in
several modeling notations, it’s unfair
to expect the same from a budding de-
veloper, tester, or graphic designer. By
standardizing to UML, we can eas-
ily train all software professionals and
other stakeholders with an appropri-
ate course on UML notations. This
will greatly improve the way we com-
municate, because (and please give me
some credit for avoiding this cliché un-
til now) “a picture is worth a thousand
words.”

In addition, the widespread use of
UML should result in what educators,
psychologists, and sociologists call in-
ternalization: we will accept UML’s
notation as our own way of thinking
about designs. This process will yield
profound changes in the way we design
software. When our mental processes
deal directly in UML, we’ll be able to
devise and understand increasingly so-
phisticated designs. These days most of
us would find such designs too complex
to comprehend, because our mind must
translate a diagram or code into a dis-
tinct, imprecise mental picture of the
design.

Finally, as everybody takes up UML,
we’ll also be able to use the quality of a
model’s diagrams as a signaling mecha-
nism for identifying good designs. Just
as a spam email’s spelling and gram-
mar mistakes make you realize that the
amazing business opportunity it de-
scribes is simply a con, you’ll be able to
quickly estimate a design’s quality from

the way it uses UML’s graphic notation.

That Said ...
This has been a difficult column for me
to write. Whenever I bring up this topic,
I usually receive lukewarm or even hostile
reactions.

I know that UML has many short-
comings (see, for example, http://
en.wikipedia.org/wiki/Unified_Model-
ing_Language#Criticisms). I find it a
shame that it hasn’t successfully solved the
problem of design tool interoperability,
and I personally find some of the graphi-
cal choices made for its notation difficult
to work with. However, I’m convinced
that using a standard notation is always
better than using an ad hoc one (which is
the most common alternative). In the lon-
ger term, I’m also sure that we’ll reap huge
benefits from adopting a single notation
instead of battling with many competing
ones.

W hy use UML and not your favorite
(and more elegant) language that’s
better suited to your application

domain while also being supported by
an extremely powerful tool and a match-
ing singing and dancing programming
language? The answer is simple: the user
base (unequivocally established through
a Google search) and network effects. In
the field of technology, we often see that
these considerations trump all others (Be-
tamax versus VHS is a classic example).
Also, frankly, it’s difficult to believe that
a different line-ending shape can have an
immense effect on a designer’s productiv-
ity. So, for the benefit of our profession,
let’s put our differences aside and agree to
use UML’s notation, concentrating on the
substance of our designs rather than their
appearance.

Diomidis Spinellis is a professor in the Department of
Management Science and Technology at the Athens University
of Economics and Business. Currently he is serving as the
Secretary General responsible for information systems at the
Greek Ministry of Finance. Contact him at dds@aueb.gr.

Weighing in
If you would like to give your opinion or read further discussion on this topic,

please visit the “Tools of the Trade” blog at www.spinellis.gr/tools.

