
18	 I E E E S O F T W A R E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 	 0 74 0 - 74 5 9 / 1 0 / $ 2 6 . 0 0 © 2 0 1 0 I E E E

A
lthough programming is a form of liter-
ary expression, the relationship between
code and its documentation is uneasy at
best. As Figure 1 shows, among the thou-
sands of projects that FreeBSD maintain-
ers have considered important enough to

port to the platform, the number of comments per
100 lines varies substantially. Clearly, as develop-

ers, our views on how we should
document our code are anything
but consistent. Yet, there are uni-
versal principles, nifty tools, and
useful practices that can benefit
us all.

Principles
The golden rule of program-
ming—DRY (don’t repeat your-
self)—is particularly important

when we document our code. When commenting,
we’re always a couple of keystrokes away from
disaster: restating the code’s function in English.
And that’s when problems start. When the code
changes, and change it will, the comment is likely
to be left behind. At that point, we have an ap-
parently helpful comment stating something other
than what the code does. Enter confusion. De-
velopers are more likely to respect and maintain
comments that carry their weight, comments that
help them navigate the code by outlining an algo-
rithm, elaborating a data structure, or document-
ing unexpected edge cases. Useless comments are
worse than missing ones, because they occupy
screen real estate and sidetrack developers.

It’s much easier to follow the DRY principle
when the code and its documentation live together
in the same file. This was the original idea behind

the literate programming movement. Some might
claim that movement failed to gain traction. The
truth is that its main principles are now part of
modern programming platforms. Languages and
libraries supporting higher levels of abstraction
bring code closer to our design by hiding un-
needed implementation details. Look at legacy
software and you’ll find it riddled with code im-
plementing (often substandard) data structures
and algorithms. Modern code simply reuses effi-
cient containers, databases, and services.

Self-documenting code is sometimes a taste-
less joke, yet the principle is sound. Comments
should be our last resort for documenting code.
In particular, bad code should be rewritten, not
documented. This reduces evil duplication and
spreads the benefits throughout the code. For in-
stance, although the comment above the zgedi Lin-
pack subroutine explaining that it “computes the
determinant and inverse of a matrix” is useful,
a descriptive name would make all the instances
where it’s called more readable. The same goes
for development processes: these should be auto-
mated rather than documented as manual steps.
A Readme file outlining the 15 steps required for
releasing a software’s new version is useful, but
build rules that automate those steps would be
divine.

This brings me to one last important prin-
ciple: comments aren’t only for code. Any soft-
ware artifact we produce deserves our love and
comments. This includes shell scripts, makefiles,
link specifications, batch files, debugger scripts,
and configuration files. As I’ve seen with my
students, following this principle is an indica-
tion of a maturing developer and an early sign of
professionalism.

Diomidis Spinellis

Technical prose is almost immortal. — Frederick P. Brooks, Jr.

Code Documentation

tools of the trade
E d i t o r : D i o m i d i s S p i n e l l i s n A t h e n s U n i v e r s i t y o f E c o n o m i c s a n d B u s i n e s s n d d s @ a u e b . g r

Authorized licensed use limited to: Athens University of Economics and Business. Downloaded on July 05,2010 at 12:45:19 UTC from IEEE Xplore. Restrictions apply.

	 July/August 2010 I E E E S O F T W A R E 	 19

TOOLS OF THE TRADE

Tools
We developers are, by definition, always
trying to offload boring work to a com-
puter. Therefore, there’s no shortage
of tools to handle the documentation’s
drudgery. Most useful are those that cre-
ate online documents by extracting text
from specially formatted comments. The
use of javadoc is now standard practice
in the Java world. For other languages,
doxygen offers similar functionality,
and many C and C++ programs rely on
it. Interestingly, both tools (javadoc via
the UMLGraph plug-in) can also reverse-
engineer the code to create class dia-
grams. This is a case where we get valu-
able documentation, the proverbial pic-
ture worth a thousand words, for free.

Sometimes the problem is so complex
that code must take the back seat. In
such cases, instead of extracting readable
prose from our source code, we must go
the other way around and embed source
code into a larger body of explanatory
text. Here, we need tools to format source
code in the most readable way. The choice
of tools depends mostly on our text for-
matting system. On troff we’d use vgrind;
on LaTeX, the listings package; and with
DocBook, the programlisting tag. There
are also many tools that will format code
for HTML display; see the list in Wikipe-
dia’s syntax highlighting article.

Whenever your code contains the de-

finitive version of facts that must be docu-
mented, consider using a custom tool to
automate the generation of that docu-
mentation. I’ve used this approach for
creating lists of error messages and their
explanations, an outline for a product’s
manual, and documentation for a data-
base’s schema, while colleagues have thus
created contracts for complex financial
products. You can follow this path by pro-
cessing specially formatted code or com-
ments, by coming up with a domain-specific
language that will generate both code and
documentation, or even by having your
code create the documentation at runtime.
The concept is always the same: DRY.

Best Practices
We can easily determine what makes code
documentation great by looking at success-
ful software platforms. Completeness and
consistency are by far the most important
attributes. Consider the original Unix man-
ual pages, which documented every system
call and library function using the now
classic structure: Name, Synopsis, Descrip-
tion, See Also, Diagnostics (later morphed
into Return Values and Errors), and Bugs.
The C++ standard template library (STL)
upped the ante by documenting—apart
from concrete entities—definitions, seman-
tics, complexity guarantees, invariants,
and models for abstract concepts, like an
associative container. The documentation

of Microsoft’s universally adopted open
database connectivity (ODBC) specifica-
tion distinguishes itself by listing all possi-
ble error codes for every function; informa-
tion that is sadly still not available for other
parts of the Windows platform.

Effortless accessibility is another best
practice we find in successful platforms.
Again, the Unix manual pages are notable
here, because users could view them online
on any character terminal (even a Tele-
type), but also read them in high-quality
typeset form. Perl’s POD (plain old docu-
mentation) markup is also a chameleon
of sorts, as it can be easily transformed
into every imaginable output format. The
documentation of Sun’s Java platform is
remarkable due to the extensive use of hy-
perlinking. Its most recent version contains
more than 800,000 links.

Finally, we see that successful plat-
forms produce their documentation auto-
matically using a low-overhead process.
Java and Perl include the documentation
in specially formatted sections of code; a
valuable practice in itself that most mod-
ern languages have adopted. Using such
comments, javadoc processes the 7,000
Sun JDK (Java Development Kit) source
files to create more than 12,000 HTML
pages containing over 218,000 named el-
ements. Automated builds ensure that the
documentation is always current and con-
sistent. IDEs such as Eclipse rely on this
infrastructure to provide API help during
program editing.

I n his classic book The Mythical Man-
Month: Essays on Software Engineer-
ing, Fred Brooks describes how, six

months into the IBM OS/360 implemen-
tation, he realized that stacking the 100
five-foot-thick copies of the project’s doc-
umentation would tower above Manhat-
tan’s Time-Life building. He also found
that the maintenance of documentation
changes would take a significant part of
each workday. Luckily nowadays, the tools
we have at hand make Brooks’s problems
sound quaint. We therefore owe it to our
past, present, and future colleagues to cre-
ate brilliant code documentation.

Diomidis Spinellis is a professor in the Department of
Management Science and Technology at the Athens University
of Economics and Business. Currently, he is serving as the
Secretary General responsible for information systems at the
Greek Ministry of Finance. Contact him at dds@aueb.gr.

0

100

200

300

400

500

600

700

800

900

0 10 20 30 40 50 60 70 80 90
Comments per 100 lines

Nu
m

be
r o

f p
ro

je
ct

s

Figure 1. Comment density in third-party projects ported to the FreeBSD
platform. The code of 307 projects has less than one comment per 100
lines. The wide distribution of the numbers shows the variance in code
documentation practices.

Authorized licensed use limited to: Athens University of Economics and Business. Downloaded on July 05,2010 at 12:45:19 UTC from IEEE Xplore. Restrictions apply.

