
86 I E E E S O F T W A R E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 0 74 0 - 74 5 9 / 0 9 / $ 2 6 . 0 0 © 2 0 0 9 I E E E

tools of the trade
E d i t o r : D i o m i d i s S p i n e l l i s n A t h e n s U n i v e r s i t y o f E c o n o m i c s a n d B u s i n e s s n d d s @ a u e b . g r

P
arents spend years trying to teach their
children to be polite, and some of us had
to learn at school how to properly address
an archbishop. Yet, it seems that advice on
courteousness and politeness in technical
communication is in short supply; most of

us learn these skills through what’s euphemistically
called “on the job training.” With enough bruises

on my back to demonstrate the
amount and variety of my experi-
ence in this area (though not my
skill), here are some of the things
I’ve learned.

Talking to Humans
We developers spend most of
our time issuing instructions for
computers to execute. This type
of command-oriented work can

easily lead to déformation professionnelle (see also
J. Bigler’s alternative interpretation at www.mit.
edu/~jcb/tact.html); I can still remember, years ago,
a Navy officer who was talking to his son as if he
was ordering a sailor. When we compose a mail
message or open a chat window, our keystrokes are
directed to another human, not to a shell’s com-
mand-line interface. Therefore, we should switch
our tone to courteousness, kindness, and consider-
ation. “Please” and “thank you” aren’t part of SQL
(or even Cobol; but interestingly “please” is an im-
portant part of Intercal), but they should be sprin-
kled liberally in every discussion between humans.
Are you asking a colleague to do something for you
at the end of the business day? This isn’t a batch job
that a computer will run in the background. Think
of how your request may affect your colleague’s
family life. Ask him whether he can do it without

too much hardship, and at the very least apologize
for the urgency of your request.

Starting your exchange with some (sincere) flat-
tery can work wonders. This is especially impor-
tant if harsh criticism is to follow; it will help you
express yourself in a more compassionate way and
lift the spirits of the unfortunate soul who will read
your words. Imagine the feelings of your email’s re-
cipient by reading your message again through his
eyes; according to human-communication theory,
he will interpret the email more negatively than it
was intended. Therefore, aim to encourage rather
than complain. If your email is especially harsh,
don’t send it immediately. Put it aside and sleep on
it or ask other, more experienced colleagues for
advice. Although Google is experimenting with
a feature that lets you revoke an email within a
very small grace period, in general there’s no way
to undo a sent message—you can only regret the
damage it made.

In technical discussions, focus on technology
issues, not personal weaknesses. Read the mes-
sage, “You indent with horrible inconsistency like
a loser” as “the code in Foo.java can be better in-
dented”—this has to do with the code, not you.
Similarly, instead of shouting, “Your choices of
method names for the class Foo are awful,” phrase
your concern as, “The methods of class Foo would
be easier to remember if they were verbs.” More
concretely, Linda Rising, author of Design Pat-
terns in Communications, recommends the fol-
lowing format: “Deliver an Oreo cookie by saying
something nice, then present your suggestion of im-
provement, then close with an appreciation.”

Email Smarts
Every email should tackle one topic and that topic

Diomidis Spinellis

Basic Etiquette of
Technical Communication

Authorized licensed use limited to: Athens University of Economics and Business. Downloaded on October 21, 2009 at 03:23 from IEEE Xplore. Restrictions apply.

 November/December 2009 I E E E S O F T W A R E 87

TOOLS OF THE TRADE

should be the subject line. When com-
posing a new message, don’t start a new
subject by replying to an old email, this
will confuse colleagues reading email in
threads. Most developers dislike the over-
head of attachments. Instead, use simple
text or point to the URL containing what
you wanted to attach. Avoid using the
reply-all command and when you do, trim
away copied recipients who are no longer
relevant. When you add recipients outside
your organization, ensure that the mes-
sage’s contents are fit for general distribu-
tion and that it isn’t addressed to a private
list. Also, blind carbon copies (bcc) in gen-
eral are a bad idea. If the blind-copied re-
cipient replies to all, everybody will know
you’re sending copies behind their back.
To notify your reports without having
them appear in the recipient list, simply
forward them the original message with a
small explanatory note. And before press-
ing that “send” button always reread your
message. It takes little time but delivers a
significant reward.

Be careful how you manage an email
discussion. When you reply, have your
email client quote the preceding message;
don’t waste time repeating it with your
own words. However, quote with care,
trimming the replied-to message only to
the pertinent parts. Most technical people
prefer the response to be below each cor-
responding part of the original message so
that they can read the entire exchange in
serial order from top to bottom. If, how-
ever, someone is using a different conven-
tion, follow it when replying; there’s noth-
ing more puzzling than replies stacked
both on top and bottom of a message.

Our globalized profession creates a big
potential for communications problems
based on differences in personality, lan-
guage, and culture. Robert Watson, a mem-
ber of the FreeBSD Core Team who’s spent
countless hours mediating disputes be-
tween developers, says he’s always amazed
by how much comes down to simple com-
munication problems. Whether you speak
the same language natively and are taking
all the wrong social cues, or speak different
languages and perceive terseness and brisk-
ness as giving offense, failing to realize that
the issue is communication and not content
gives rise to a remarkable amount of pain!
Robert adds that he often benefits from
stepping away from the computer for a few

minutes, then coming back and rereading
email, often to find that the offensive tone
he thought he’d read was a product of ei-
ther his imagination or language issues.

Homework
Computing professionals with ample time
to kill are a rare species. Avoid wasting
your colleagues’ time by doing your home-
work before communicating with them. If
you think you’ve found a software bug or
have a proposal for an improvement, con-
sult the system’s issue database to see if it’s
already there. If it isn’t, filing your issue
can help you organize your case by doc-
umenting it through a specific scenario, a
test case, and perhaps even a proposal for
a fix.

There are also other sources you should
reference for related work. How do com-
peting systems implement your proposal?
Is it affected by a specific standard, regu-
lation, or formal specification? What’s
the history of your idea? Often, digging
through the software’s version control
system revision log can provide valuable
insights.

If your proposal involves a code or al-
gorithmic improvement that’s supposed to
increase efficiency, arm yourself with hard
data. Having your sophisticated code re-
jected because you can’t prove that it will
actually improve the system’s operation or,
worse, because it’s a regression compared
to the code it replaces, is disheartening and
humiliating. Demonstrate the superiority
of your approach with benchmark results

and a measure of their standard deviation
—Poul-Henning Kamp’s ministat program
is expressly designed for this task (www.
freebsd.org/cgi/cvsweb.cgi/src/usr.bin/
ministat). Thus, you can easily convince
your colleagues that your code is worth in-
tegrating into a code base. If your contribu-
tion comes with test cases that demonstrate
its correctness, even better, especially if the
code you aim to replace lacked such testing
infrastructure.

In Rome Do ...
There are many more things that will re-
duce friction in your technical commu-
nication. Some are particular to specific
organizations. For this, you have to learn
and adopt the local practices. In your first
weeks in a new group, observe carefully
how others communicate and follow their
example; don’t send a message to a large
email list until you’re confident you know
its conventions. For instance, some com-
munities have an intense dislike for the
waste of time associated with so-called
bike shed discussions of trivial technical
matters (www.bikeshed.org). In techni-
cal groups, there are often local rules as-
sociated with specific tools: how you write
commit messages in the version control
system, what you include in the bug da-
tabase, who can change a page on a wiki.
Sometimes, as is the case in Wikipedia,
these are spelled out in detail; in other
cases, you have to learn them by watching
and asking around.

A lthough a code review with an arch-
bishop is unlikely, you’ll sometimes
communicate with your organization’s

big shots. There’s no need to be servile in
such situations. If you’re sincere, avoid
technical jargon, and appreciate the priori-
ties and constraints of the higher ups, you’ll
do fine. Remember! You can’t go wrong
when you’re considerate, polite, and respect
other people.

Diomidis Spinellis is a professor in the Department of
Management Science and Technology at the Athens University
of Economics and Business and the author of Code Quality: The
Open Source Perspective (Addison-Wesley, 2006). Contact him
at dds@aueb.gr.

Every email
should tackle
one topic and

that topic should be
the subject line.

Post your comments online by visiting the column’s
blog: www.spinellis.gr/tools

Authorized licensed use limited to: Athens University of Economics and Business. Downloaded on October 21, 2009 at 03:23 from IEEE Xplore. Restrictions apply.

