
tools of the trade

88	 I E E E S o f t w a r E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 	 0 74 0 - 74 5 9 / 0 8 / $ 2 5 . 0 0 © 2 0 0 8 I E E E

E d i t o r : D i o m i d i s S p i n e l l i s n A t h e n s U n i v e r s i t y o f E c o n o m i c s a n d B u s i n e s s n d d s @ a u e b . g r

Using and Abusing XML
Diomidis Spinellis

Words are like leaves; and where they most abound,
Much fruit of sense beneath is rarely found. —Alexander Pope

I
was recently gathering GPS coordinates and
cell identification data, researching the algo-
rithms hiding behind Google’s “My Location”
(www.google.com/gmm/mylocation.html) fa-
cility. While working on this task, I witnessed
the great interoperability benefits we get from

XML. With a simple 140-line script, I converted the
data I gathered into a de facto standard, the XML-

based GPS-exchange format called
GPX. Then, using a GPS-format
converter, I converted my data
into Google Earth’s XML data
format. A few mouse clicks later,
I had my journeys and associated
cell tower switchovers beautifully
superimposed on satellite pictures
and maps.

Convenient versatility
XML is an extremely nifty format. Computers

can easily parse XML data, yet humans can also
understand it. For example, a week ago a UML-
Graph user complained that pic2plot clipped ele-
ments from the scalable vector graphics (SVG—an-
other XML-based format) file it generated. I was
able to suggest a workaround that modified the
picture’s bounding box, which was clearly visible
as two XML tag attributes at the top of the file.

Furthermore, a simple tool can trivially deter-
mine whether an XML document is well formed
(meaning that it follows XML’s rules). And, if we
have the document’s schema (a formal description
of a specific document’s allowed composition such
as GPX), we can validate that a given file follows
the schema. These properties are a boon to interop-
erability. With the XML schema at hand, when we
stumble across a data transfer problem between two

applications, we don’t need to quarrel about whose
program’s fault it is. A third party, an XML valida-
tor utility, can judge whether the data follows the
schema and impartially assign the fault to the data’s
producer or consumer.

XML also gives our code more robust input
handling. Input processing is a notorious source
of bugs, because there are literally infinite ways to
provide wrong input to a program. Moreover, mali-
cious adversaries deliberately craft input data aim-
ing to crash a program, or worse, gain and exploit
its privileges. By using XML, we can solve this
problem by relying on the widely available libraries
for parsing our input. These libraries are, by design
and through their ubiquitous deployment, much
more resistant to abuse than any special-purpose
code we could concoct on our own.

Finally, by adopting XML, we can take advan-
tage of the scores of tools that work on arbitrary
XML documents. Common tasks—like editing,
validation, transformations, and queries—become
just a matter of selecting and applying the right tool.
Also, we can then apply the experience we gain with
these tools on other documents we come across in
our work. And if, like me, you’re a devoted user
of the Unix toolchest, have a look at XMLgawk.
It manages to combine gracefully exactly what its
awkward name suggests.

Best practices ...
When we use XML, we sacrifice (sometimes

significant) processing time and space to gain in-
teroperability. So, it makes sense to actually verify
that we’ve achieved our goal. Once you come up
with a schema, ensure that you have at least one
independently written program to read and write
data in that schema. Additionally, have a human

	 March/April 2008 I E E E S o f t w a r E 	 89

TooLS of The TrADe

edit the file and verify that its structure is
intuitive to someone unfamiliar with the
schema and that programs can still read
and process the edited file. Also, formally
document your schema in a schema lan-
guage, such as Relax NG or XSD (XML
Schema Definition), and then have a third-
party tool validate your XML files.

Another way to promote interoperabil-
ity is to adopt existing schemas. You can do
that either wholesale, by having your appli-
cation read and write its data in an already
existing schema—for instance SVG—or
piecemeal, by having parts of your XML
document follow widely adopted stan-
dards. For example, the schema for GPX
uses the XML Schema xsd:dateTime data type
for time stamping waypoints. In turn, this
data type is precisely defined by reference
to ISO 8601, the international standard
for date and time representations. This ap-
proach lets you reuse large swaths of exist-
ing work and avoids troublesome ambigui-
ties. A criticism of the Office Open XML
file format is that it doesn’t use existing
standards for many of the elements it rep-
resents, such as (you probably guessed it)
dates but also drawings.

Furthermore, try to make your pro-
gram’s XML output accessible to non-XML
tools and humans. Specifically, if your data
consists of records up to, say, 80 characters
long, fit each one on a single line. This lets
many line-oriented tools like Unix’s wc,
awk, sed, and grep process your data. In
more complex files, use appropriate inden-
tation to make the file’s structure apparent
to its human viewers.

... and tar pits
By far, the worst offense in the take-up of

XML is its adoption as a format for human-
produced code. Three representative ex-
amples are the Apache Ant build files, the
XML schema definitions (XSD), and the
eXtensible Style Sheet Language Trans-
formations (XSLT). XML is an adequate,
if verbose, format for data that programs
produce and consume but a nightmare for
humans looking at anything more complex
than what can fit on a screen. In most pro-
gramming languages, tokens get a large
part of their meaning from their context.
For instance, a word appearing on the left
of an open bracket is a function or method
name. Contrast this with XML, where
each token is explicitly assigned its mean-

ing through tags and attributes. For exam-
ple, in a make file, we can associate a value
with a variable by writing

TESTSRC=test/src

Placement on one side or the other of the
equals sign distinguishes the variable from
its value. In the corresponding XML-based
Ant build file, we write the equivalent as

<property name=”testsrc” location=”test/src”/>

In this case, named attributes specify what’s
assigned to what. This XML’s approach
simplifies the parsing of arbitrary files, but
the corresponding verbosity hinders com-
prehension and comfortable programming.

In computer languages, there’s a sweet
spot between conciseness and wordiness.
Apparently, it’s the place where the means
for expressing an idea matches our cogni-
tive ability. Languages occupying this spot
are the ones in which we achieve long-term
productivity (this includes maintenance).
Some languages or programming styles,
like APL and Perl one-liners, have strayed
to extreme conciseness. Other languages,
like Cobol and XML, err toward excessive
wordiness. Both extremes hinder the soft-
ware’s analyzability, changeability, and
stability and, therefore, its maintainabil-
ity. Even with the best editor, expressing
yourself in XML is a lot less productive
than coding the same ideas in a notation
specifically designed for a given problem.
(Try rewriting a simple make file into its
Ant XML equivalent.) So, if humans will

typically communicate with your software
using a language, invest some effort in its
design rather than relying on the bland
(dis)comfort of XML.

Another popular misuse of XML in-
volves thin-wrapping arbitrary data with
XML tags. Because XML is flexible, it’s
easy to take any data format, throw in a
few tags in the most convenient places, and
(following the letter of the XML definition)
call that an XML document. Yet, such doc-
uments are difficult to process effectively
with standard XML tools. Their valida-
tion is a charade, and transformations and
queries become all but impossible. For in-
stance, consider the XML file format used
for storing iTunes libraries. Its generation
apparently takes the shortcut of converting
Apple’s Core Foundation types into a so-
called property list, which looks like XML
on the outside. Yet the contents of such files
are key/value pairs, such as the following:

<key>Name</key><string>Audiobooks</string>
<key>Playlist ID</key><integer>94</integer>

In a better, tailor-designed XML file for-
mat, we’d expect this pair to be something
like

<name id=”94”>Audiobooks</name>

A similarly dysfunctional XML file will
result if we dump a relational database in
XML as columns, rows, and tables. Again,
we miss the opportunity to express in XML
the deeper relationships between our re-
cords, which is really XML’s strength.

S o, when you’re designing an XML
document, place yourself in the mind-
set of its consumer. Think, what’s the

best possible structure you would expect?
Then invest in mapping your data into the
schema you’ve designed.

Diomidis Spinellis is an associate professor in the
Department of Management Science and Technology at the
Athens University of Economics and Business and the author
of Code Quality: The Open Source Perspective (Addison-Wesley,
2006). Contact him at dds@aueb.gr.

Post your comments online by visiting the column’s
blog: www.spinellis.gr/tools

If humans will
typically communicate

with your software
using a language, invest
some effort in its design.

